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Stability of the Cubic Functional Equation in Menger Probabilistic Normed Spaces
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Abstract: In this study, the stability of the cubic functional equation: f(2x+y)Hi(2x-y) = 2f(x+y)+21f(x-y)+
12f(x) in the setting of Menger probabilistic normed spaces is proved.
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INTRODUCTION
The functional ecuation:
f(2x+y)H(2x-y) = 2f(xty) +21 -y 2f(x)

is said to be the cubic functional equation. Skof (1983) by
proving that if £ 1s a mapping from a normed space X into
a Banach space Y satisfying:

[ty HUx-y - 26(x)-26(y) | <&

for some €>0, then there is a unique quadratic function
g:X—Y such that:

€
If)-g ol < =

Cholewa (1984) extended Skofs theorem by replacing X by
an abelian group G. Skof’s result was later generalized by
Czerwik (1992) i the spirit of Hyers-Ulam-Rassias (Ulam,
1964). The stability problem of the quadratic equation has
been extensively mvestigated by a number of
mathematicians and references therem. In addition, Alsina
(1987) and Mihet and Radu (2008) investigated the
stability in the settings of fuzzy, probabilistic and random
normed spaces.

In the sequel, the usual terminology, notations and
conventions of the theory of random normed spaces shall
be adopted, as by Schweizer and Sklar (1983). Throughout
present study, the space of all probability distribution
functions (briefly, d.f.’s) is denoted by:

A" ={F:R U{-co, 400} 5 [0,1]:F©) =0 and F(+ee) =1}

where, F is left continuous and non decreasing on R.
Also the subset 1s the set:

D" = {FeA": [F(+eo) =1}

where, I'f (x) denotes the left limit of the function f at
the pomt x, ["f(x) = lim,., f(t). The space A" 1s partially
ordered by the usual point-wise ordering of functions, i.e.,
D<G if and only if F(t)<G{t) for all tin R. The maximal
element for A" in this order is the d.f. given by:

0, if t<0

g (t)=

1, if t=>0

Definition 1: A mapping T:[0, 1]%[0, 1]—[0, 1] 18 a
continuous t-norm if T satisfies the following conditions:

« T is commutative and associative

+ T is continuous

o Ta,l)=aforallae[0 1]

s T (a b)<T(c,d) whenever a<c andb<d and a, b, c,
de[0,1]

Two typical examples of continuous t-norm are
T(a,b) =ab and T(a,b) = min (a, b)
Now t-norms are recursively defined by T' = T and
T (% n Xy )= T (T“" (Xl,...,xn),xnﬂ)
fornz2and x, €[0,1], forallI e{l1,2,.. . nt+l1}

The t-norm T 15 Hadzic type if for given € € (0,1) there
is 8 € (0,1) such that:
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T"(1-8,..,1-8)>1-¢, meN

A typical example of such t-norms 18 T (a, b) = min (a, b).
Recall that if T is a t-norm and {X} is a given

sequence of numbers in [0.1] T.x; is defined recursively

by:

L —
Tx=x

T, = T(T,ZIX,,X“) forn=>2

is defined as

lim,_ T x,
Definition 2: A Menger Probabilistic normed space
(briefly, Menger PN space) is a triple (3{, u,T), where X is
a nonempty set, T is a continuous t-norm and u is a
mapping from X into D' such that, the following
conditions hold:

¢ (PN1)p, forallt=0if and only if x =0
e (PN2yp,, ()=¢gforallx,yinXandt=0
t

o (PN3) uux(t)_ux[j]forallxinX,OLiOaﬂdt>0
o

o (PN4) pos ()= T, p(s)) for all x,y, ze Xand
t, 50

Clearly every Menger PN-space 1s a probabilistic
metric space having a metrizable umformity on X if
sup, T(a, a) = 1.

Definition 3: Tet (X, 1, T) be a Menger PN-space:

¢+ A sequence {x,} in X is said to be convergent to x in
X if, for every t£=0 and >0, there exists positive
mteger N such that p . (t)>1-£ whenever n>N

¢ A sequence {x,} in X is called Cauchy sequence if,
for every t>0 and £>0, there exists positive integer N
such that L., w (t)>1-6 whenever 2m>N

+ A Menger PN-space (X, p, T) is said to be complete
if and only if every Cauchy sequence in X is
convergent to a point in X

Theorem 1: If (3{, u, T) is a Menger PN-space and {x,} is
a sequence such that x, —x then lim,_,_pn_{t)=p (1)

In this study, the stability of the quadratic functional
equation in the setting of Menger probabilistic normed
spaces is established.

MAIN RESULTS

Definition 4: Let XY be vector spaces. The functional
equation £ X—=Y defined by:

f(2x+ )+ F(2x—y) =2 (x+y)+ 2 (x—y)+126 (x) (D)

is called cubic functional equation.

Theorem 2: Let (X, v,R) be Menger PN space and
(Y, u, T) be a complete Menger PN space. If f: X—=Y bea
mapping such that:

e 2y £ 2 - 3926 () 26 (- 9126 () (1)=&, (1) (2)
for t=0 in which £: X* =D" and
f—ee Ti=1

lim___ T~ (‘%mi-lx_o (2o t)) =1 (3)

Then there exists a unique quadratic mapping
Q: X—Y such that:

Pem—qpe (t) 2T (‘E'zi‘lx,tl (221+l t)) )
Proof: Putting v = 0 in Eq. 2, then:

()7 £,0(20)22,.(2) )

Replacing x by 2x in Eq. 5, then:

Hejax) (=&, (24t) (6)

Triangular inequality implies that:

t t
B [72}21‘ Ko {7
() ol 8 22k 2

7 3

S CRUES )

22

t
}’“‘f(zj)f{x)[f\]} (7)
Thus:

()2 T(%, 5 (2°1),. & o (2°1))

4 (®)
> T(, (21,6, (2'))

Replacing x by 4x in Eq. 5 and triangular inequality implies
that:
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)= THE,,  (2°t),6,, . (2°0).E (2%t
R e

2T (B (70). 80 (2'1).8,0 (2'1))

Using the induction on n, 1s obtamed that:

Mo
8"

Hmém@mﬁf“ﬁ (10)

In order to prove convergence of the sequence

[

replace x with 2%x in Eq. 10 to find that for m, n>0:

uf[zm z) f[®z) (t) 2T (§2‘““’lx,2”""lx (22”1“+1 t)) (1 1)

) =

Since, the right hand side of the inequality tend to 1
as m tends to infinity, the sequence

2

1s a Cauchy sequence. Therefore, define:

23n

QO =lim

forallx e X.

Now, it is showed that Q is a quadratic map.
Replacing x, v with 2% and 2%y, respectively in Eq. 2. Then
it follows that:

“f(f‘xﬂ“y) f(Fx2ty)  F(2) zﬂ(t) 2 E—'fx,zny(zant) (1 2)

Taking the limit as m—e, can be found that Q
satisfies Eq. 2 forallx,y e X.

To prove Hq. 4, take the limit as n—< in Eq. 10.

To prove the uniqueness of the quadratic function Q
subject to Eq. 4, assume that there exists a quadratic
function Q' which satisfies Eq. 4. Obviously;

Q(2“X) =2"Q(x)and Q (2“X) =2"Q(x)forallxe X andne N
Hence, 1t follows from Eq. 4 that:

u’Q(x)fQ‘[x) (t)

z uQ[Q“x)—Q' (2“x) (Zjnt)

> T(“’Q[z“x)ff(f‘x) (Zjn—lt)au'f(z“x),q‘ (2“::) (23n—1t)}

T(-[:ﬂ;.1 (&-'2““_1)(,0 (23n+21+1 t)),T‘Z (&.!2\“4-1 . (23n+21+1 t))

for all x € X. By letting n—< 1n Eq. 4, implies that the
uniqueness of Q.
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