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Abstract: Gas lift is one of a number of processes used o artificially Lift oil or water from wells where there is
insufficient reservoir pressure to produce the well. The process involves injecting gas through the
tubing-casing annulus. Injected gas aerates the fluid to reduce its density; the formation pressure is then able
to lift the oil column and forces the fluid out of the wellbore, Gas may be injected continuously or intermittently,
depending on the producing characteristics of the well and the arrangement of the gas-lift equipment. To
enhance the financial revenues this operation has usually always been a subject for optimization to reach the
most rewarding design before its operational establishment. Evolutionary approaches have recently been
successfully applied to almost every aspect of engineering problems. This study reviews the general facts and
ideas related to the gas lift and its optimization and further focus on the application and evaluation of genetic
programming for such a purpose. It has been concluded that genetic programming is fully capable in aiding
faster gas lift optimizations while is also stable and applicable to a very broad range of operating conditions.
The merits and draw backs are finally compared with the neural network approach.
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INTRODUCTION

Artificial lift 1s wsed in oil production when the
energy of the reservoir is not enough to sustain the flow
of oil in the well up to the surface with a satisfactory
economic return. Selection of the proper artificial lift
method 1s critical to the long-term profitability of an oil
well: a poor choice will lead to low production and high
operating costs, There is a very little margin for error
when one is designing lift systems for oil fields. There is
a strong need for reliable An extensive overview of
artificial lift design considerations 15  presented in
(Clegg er al., 1993). Rod pumps, electric submersible
pumps and gas lift schemes are the most common artificial
lift systems, but plunger lift, hydraulic and progressing
cavity pumps are also used. Gas lift is a widely used
method among artificial lift methods, in which gas is
injected in the production well providing energy (o the
flow. Continuous gas lift being cost-effective, easy to
implement, very effective in a wide range of operating
conditions and requiring less maintenance in comparison
to other alternatives, is one of the most typical forms of
artificial 1ift in oil production. It is a vsual one where there

is an abundance of natural gas resources (Taheri and
Hooshmandkoochi, 2006).The basic principle consists of
decreasing the pressure gradient in the liquid via the
injected gas (Fig. 1). The resulting mixture becomes less
heavy than the original oil so that it eventually starts
flowing (Pafalox-Hern, 2005) and (Poblan, 2002) can be
named for further understanding of the mechanisms
(Fig. 2} (htp:/fwww weatherford.com). In gas lift
operations, two problems are the most important ones.
The first one is finding the optimal position for
injection point and the other 15 estimating the optimal
ras injection rate (Santos er al., 2001). These
parameters are interrelated, the more the rate of gas
injection the deeper would be the optimum injection
point. In other words, the deeper the injection location the
more gas volumes would be needed for maximum
production. In the present study, the data of 40 wells that
are under gas lift operation were used. These wells were
selected from one of the huge oil reservoirs in
Southwestern Iran.

This reservoir has more than 150 wells a portion of
which are producing under gas lift system. For each of
these wells the following set of data were gathered for
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Fig. 1: Schematic of a gas lift well

Fig. 2: Enlarged view of a typical gas injection valve

subsequent use in the study: Bottom Hole Static Pressure
(BHSP), Well Head Flowing Pressure (WHEFFP). Bottom
Hole Flowing Pressure (BHFP), Productivity Index (PI),

F——ap =pp.

Tahle I: Range of training data

Parameters Min Mlax
BHSP (psi) 44 3000 5933
WHFP (psi) 411 a7l
BHEP (psi) 4157 53060
Pi .43 1.56
Well-bore size (in} 3" G 1/8"
Tubing size {in) 31" 7™
Wi % [ 2

Q. (STB/dav) 200 3200
Qg IMMSCFD) (1.9 32
Injection depth (ft) He) 0988
Well depth (ft drilled depth) | 1508 13650

Well-bore size, tubing size, water-cut percent (W(C%), oil
production rate (QO1l), gas injection rate (QGaslnj) and
depth of injection. The range of the data is given in
Table 1. The last two variables are considered as output
data and the others as input data.

Though, Gas il Ratio (GOR) 15 also a role-plaving
parameter but since the considered reservoir is an
under-saturated, spatially well-communicating one, so,
GOR 15 the same for all wells and therefore 1s not taken as
a variable here.

The two aforementioned crucial factors of the design
are conventionally usually estimated through the use of
multiphase flow simulation packages available in the
market and subsequently they are implemented in a field
scale plan. Evolutionary Algorithms has proved to be
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helpful and interesting for petroleum engineering
purposes. For Gas allocation problems in cases where
there 1s a limited source of gas these algorithms has
shown promising results (Ray and Sarker, 2008). In the
present study, the Genetic programming approach has
been applied to gas lift optimization, through predicting
the two most important parameters of the design as
described above,

[t should be mentioned that due to the industrial
scale of the events, data availabilities are usually choked
by confidentiality limitations,

OPTIMIZING GAS LIFT FOR INDIVIDUAL WELLS

Gas lift i1s a costly, however indispensable means to
recover o1l from high-depth reservoirs that entails solving
the gas-lift optimization problem (GOP) often in response
to variations in the dynamics of the reservoir and
economic oscillations (Camponogara et al., 2005).

As the relative oil and gas superficial velocities in a
pipe vary the flow regime in the pipe changes according
o some empirical vertical flow pattern maps. For example
Duns and Ros (1963) and Kaya ef al. (1999) usually try to
avoid entering the slug regime area. If you take a well
under tubing head pressure control and gradually
increase the supply of lift gas to it, the production rate at
first increases due to the reduced density of the mixture in
the tubing. But as the lift gas supply is increased further,
friction pressure losses in the tubing become more
important and the production rate starts decline (Fig. 3).
For an individual well with no constraints other than a
tubing head pressure limit, with an unlimited free supply
of lift gas, the optimum lift gas injection rate is the value

at the peak (point A).

(il progduction rafe

Lift gas injection rate

Fig. 3: Economic point and optimum point in gas lift
performance curve (Eclipse Technical Description

v2004 A)

In reality though, lift gas is never free. Compression
costs can be expressed as a cost per unit rate of lift gas
injection (for example, dollars/day per MMsci/day). This
must be balanced against the value of the extra amount of
o1l produced. Thus there 1s a minimum economic gradient
of oil production rate versus lift gas injection rate, at
which the value of the extra amount of oil produced by a
small increase in the lift gas injection rate is equal to the
cost of supplying the extra amount of lift gas. The
optimum lift gas injection rate is then somewhat lower
than the peak value, at the point on the curve where its
gradient equals the minimum economic gradient (point
B). However in this study we assumed that gas supply is
unlimited and free-source and therefore we have tried to
obtain point A.

[n reality though, lift gas is never free. Compression
costs can be expressed as a cost per unit rate of lift gas
injection (for example, dollars/day per MMsct/day). This
must be balanced against the value of the extra amount of
oil produced. Thus there is a minimum economic gradient
of oil production rate versus lift gas injection rate, at
which the value of the extra amount of oil produced by a
small increase in the lift gas injection rate 15 equal to the
cost of supplying the extra amount of lift gas. The
optimum lift gas injection rate is then somewhat lower
than the peak value, at the point on the curve where its
gradient equals the minimum economic gradient (point B).
However, in this study we assumed that gas supply is
unlimited and free-source and therefore we have tried to
obtain point A.

Having influential parameters quantitatively available
from a real field we optimized the injection position and
gas injection rate in the individual wells using the Wellflo
software. The obtained results were in good agreement
with the real world designs already implemented in the
field. This way we were assured of having our available
field data as a reliable set of reference optimum criteria.
We then tried adopting the best genetic structures, their
output results were then compared with the outputs of the
available field data and the Wellflo outputs. This was
done through the use of the data from 36 wells for the
training step and testing the networks with the rest
4 remaining wells.

Conventional methodology: Nodal analysis: The system
analysis approach, often called NODAL analysis has been
applied for many years to the systems composed of
interacting components. Its application to well producing
systems was first proposed by Gilbert in 1954 and was
discussed by Nind in 1964 and Brown in 1978
(Mach er al., 1979). NODAL analysis requires first
selecting a node and calculating the node pressure,
starting at the fixed or constant pressure existing in the
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system. These fixed pressures are usually mean Reservoir
Pressure (PR ) as the inlet pressure and either wellhead
pressure (Pwh ) or separator pressure (Psep ) as the outlet
pressure. The node may be selected at any point in the
system (Fig. 1),

Components begin with the static reservoir pressure,
ending with the separator and including inflow
performance, as well as flow across the completion, up the
tubing string (including any down hole restrictions and
safety valves), across the surface choke (if applicable),
through horizontal flow lines and into the separation
facilities are analyzed (Brown, 1985). The expressions for
the flow into the node and for the flow out of the node
can be expressed as:

Pooie = Pouo=AP (upstream components)
=P, .. +AP (downstream components) (1)

The two criteria that must be met are: 1- Flow into the
node equals flow out of the node and 2-Only one
pressure can exist at the node for a given flow rate. The
performance of a gas lift well can also be treated similar to
a flowing well with the only difference that the tubing
string is divided into two sections with the dividing point
placed at the depth of the gas injection. The section
below the gas injection point contains the gas produced
from the formation only, whereas the one above the
injection point contains the injected gas volume as well.

Simulation tools: WellFlo: WellFlo software 15 a
powerful, stand-alone application for designing, modeling,
optimizing and troubleshooting individual o1l and gas
wells, whether naturally flowing or artificially lifted, With
this software, the engineer builds well models, using a
ruided step-by-step well configuration interface. These
accurate and rigorous models display the behavior of
reservoir inflow, well tubing and surface pipeline flow, for
any reservoir fluid. Using WellFlo software results in more
effective capital expenditure by enhancing the design of
wells and completions, reduces operating expenditure by
finding and curing production problems and enhances
revenues by improving well performance. The WellFlo
software package 1s a single well tool which uses Nodal
analysis techniques to model reservoir inflow and well
outflow performance. By using the program’s specialized
capabilities for gas lift, engineers can design and model
gas lift installations and determine the number and
position of the gas lift valves, as well as the optimum
injection rate by taking into account the available
injection pressure. This program will allow you to
incorporate gas injection rate or gas-liquid ratio terms as
preferred (www.ep-solutions.com).

GENETIC PROGRAMMING

One of the hot topics in computer science is finding
wiys to have a computer do a specific job without
describing for it how to do that job. Genetic programming
has proved to be an approach to this issue. Genetic
programming was introduced in early 1990s and has
eradually been developed mostly by its innovator John
Koza (Andries and Engelbrecht. 2007). This method
produces a program for a high level problem. Genetic
programming develops a population of computer
programs that are modeled as graphs and are grown up
based on the Darwin’s evolution theory (Genetic
Algorithm). Development of this population is derived
from selection and reproduction operations of biological
systems. These operations include mutation and cross
over phenomena combined with parent and survivors
selection procedures. As genetic programming models as
oraphs and trees it can be used for function estimation
purposes (Koza, 1992).

First Steps for Genetic Programming are the
following:

«  We determine a set of terminals. For converting a
function into chromosome forms needed for genetic
algorithm that is tree, we need to determine leaf
elements. These elements are also called “Terminals’.
Terminals can be independent variables of the
problem, functions without input parameters or
constants that are generated stochastically

« A set of primary functions based on which the tree
should be constructed

«  Fitness criteria, for the purpose of evaluating and
recognition of best trees produced by genetic
algorithm

*  Parameters that are need for controlling the genetic
algorithm execution. For example the way of parent
selection and generations, mutation rate and rate of
Crixss OVEr

«  Stopping condition

*  The flow-diagram deployed for this study is depicted
in Fig. 4

Two issues should be noted: firstly the closure
condition should be fulfilled. This means that each
function that takes a value should be able to manage all
output results. A typical example is avoiding dividing by
ZEro,

Secondly, the problem we are to program must be
soluble by a combination of terminals and functions we
consider. For example if we want to write a program that
calculates logarithm of a number, so if we limit ourselves
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logarithm  with

(Reily et al., 2005).

an acceptable  approximation

Representation: In this state we construct a binary tree
for each function (Fig. 5).

Internal nodes are constructed by the following set,
{#, -, +, /[, " Sin, Cos, Exp, tgh} and the leaves are
constructed using the following set, {Real Numbers +
Properties].

For any vector of data set like x, the tree 1 estimates
its output according to its internal nodes. So, it's obvious
that we would have as many trees as the number of
functions; this means that any chromosome is composed
of some several trees (Fig. 6) which are two for this
specific case. But if each tree evolutes in a separate
population we would reach better individual outputs and

O /

QD G G2 Q2
=\

Terminal set

Fig. 5: A tree type chromosome

it was observed that if the poor elements of one
population are transferred into another one this can yield
better mutual performance.
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Fig. 7: How to generate dense trees

/O\**

Fig. 8 How to generate non-homogeneous trees

Based on a procedure like Fig. 4, we seek optimized
trees and chromosomes that are capable of acceptable and
good predictions.

Initialization: It should be noted that the depth of new
born trees has to be controlled. There are two strategies
for doing so, the first method 1s that all the initial trees
have the same depth and be dense. Figure 7 shows how
such trees are generated. The second method is to
generate trees without any limitations other than the
maximum depth control. An example of such a procedure
is given in Fig. 8.

We adopted and suggest a combination of the both
above o ensure enough versatility.

Fitness function: A fitness function is adopted for the
evaluation purposes. For this case the least square is
used (Eq. 2).

Fitness = t{lﬂwluute[xi =y (2)

Parents level:

a1 ) LX) ( x3 X4

Mew generation
level:

Fig. 9: Cross over

Selection: For selecting among the generated population
a tournament method 1s usually adopted. This has proved
better performances than the Rolet wheel and the SUS
methods, This is simply executed by stochastic selection
of Q initial elements and a final element among them based
on the best fitness. This procedure is repeated several
times to reach enough number of selections. This method
ensures a global search due to its diversity in selection
number of selections. This method ensures a global
search due to its diversity in selection (Miller and

Goldberg, 1995).

Cross over: Cross over is an operation performed on
some several chromosomes and produces a new
generation.  Each  child takes a combination of
characteristics from both its parents. This is simulated in
programming by substituting stochastically selected
elements (sub-trees or terminals) taken from the parent

trees (Fig. 9).

Mutation: Mutation is an evolution fundamental which
causes new creatures in a novel search space. Any
function or terminal in the tree can be replaced by any
other arbitrary function or terminal. Mutation changes are
of four types:

. Removal of a sub-tree (Fig. 10)

*  Adding a sub-tree (Fig. 11)

*  Changing the function of an internal node (Fig. 12)
»  Changing the value or characteristic of a leaf (Fig. 13)

The fourth type mutation can help a lot toward a
better fitness. Here we tried changing the constant
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Fig. 10: First type mutation

Fig. 11: Second type mutation
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Fig. 12: Third type mutation

terminals by a stochastic positive and negative € number.
This number is larger in the first generations and
approaches zero in final generations. This ensures global
searches and also local refinements. Also, the probability
of this type of mutation changes ascending by the
generation number to allow other types of mutation to
come into help for better global searches.

Finalization criteria: Selection of finalization criteria may
be more difficult than it appears since we do not know
weather the algorithm has reached the optimum answer or
not. A specific average fitness, a specific generation
number or that the fitness variation is no more improvable
can define the conditions when we can abandon the
process. The maximum generation number yielded the
result for this specific study.

() (D Gy D
HCDCD G CDCGD QD

Fig. 13: Fourth type mutation

A control on the depth of the tree should exist as
uncontrolled growth of the depth causes the following:

« It takes considerable amount of memory out of the
system

»  The convergence time increases as the speed of
genetic operations decreases

For such a purpose the following two approaches are
in use:

»  Defining a maximum depth for the trees can be simply
programmed by harvesting branches exceeding the
maximum allowed number of levels. If the answer is
not obtained in this method the allowable limit may
be increased

Penalizing long trees can be done to lower the
chance of survive for them. This method has shown
better performances than the former

SPECIFIC EVALUATION OF PARAMETERS

For a genetic programming to succeed, a proper set
of operators, functions and terminals must be applied with
a proper combination of reproduction, cross over and
mutation probabilities that not only guoarantees the
convergence but also expedite it. In this study, a mutation
probability of (.2, Cross over probability of (.7 and
reproduction probability of 0.1 is adopted and could vield
satisfactory results. The maximum depth for the trees were
taken 10) levels and with a penalizing strategy the chance
of survive for those deeper than 20 levels was reduced to
zero. The number of generations was 5000 and the
population number also was 100,

A COMPARISON WITH THE NEURAL NETWORK
APPROACH

The following could be concluded by comparison
with a research based on a neural network optimization
approach (Khamehchi er al., 2008):
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Fig. 14: Error vs. generation Number

* In the genetic programming there is the possibility 1o
use variety of functions and operators combinations
but in neural network you have to use a single
mathematical function or operator and therefore the
coverage of operators in genetic programming is
broader

«  In multilayer neural networks the number of layers
and nodes are initially adopted and remains constant
through out the calculations this is while in Genetic
Programming the depth of trees can vary and where
the search space is voluminous the Genetic
Programming yields faster convergences while for
smaller search spaces ANN 15 more suitable

«  Artificial  neural networks give have better
outputs for the training data but for the testing
data genetic programming is more desirable as it
utilizes  variety of functions and
dynamically

*» As in the neural network method a fixed network
15 continually  updated and the error back
propagation is used this method gives lower average
Srrors

ﬂpEFﬂ[ﬁl'ﬂ

RESULTS

With the parameter values given in section 4 a final
error of 5.3% was reached at the generation number S00(),
The trend of changes in error is depicted in Fig. 14,

CONCLUSION

[t can be concluded that genetic programming is fully
capable in aiding faster gas lift optimizations purposes
while 15 also stable and applicable to a very broad range
of operating conditions. There can be observed some
merits and also draw backs compared to the artificial
neural networks approach.
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