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A Novel Simulated Annealing Algorithm to Hybrid Flow Shops Scheduling
with Sequence-Dependent Setup Times
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Abstract: This study deals with the hybrid flow shop scheduling problems in which there are sequence-
dependent setup times. This type of production system is found in industries such as chemical, textile,
metallurgical, printed circuit board and automobile manufacture. This study describes a simulated annealing
algorithm to the scheduling of a hybrid flow shop with sequence-dependent setup times. The obtained results
are compared with those computed by RKGA presented previously. The superiority and effectiveness of our
novel simulated annealing algorithm is inferred from all the results obtained in various situations.
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INTRODUCTION

A hybnd flow shop model, commonly known as
flexible flow line, allows us to represent most of the
production systems. The process industry such as
chemical, pharmaceutical, oil, food, tobacco, textile, study
and metallurgical industry can be modeled as a hybrid
flow shop. A hybrid flow shop consists of a series of
production stages, each of which has several facilities in
parallel (Zandieh ez al., 2006). Some stages may have only
one facility, but for the plant to be qualified as a hybrid
flow shop, at least one stage must have several facilities.
The flow of products in the plant is unidirectional. Each
product 1s processed at only one facility in each stage and
at one or more stages before it exits the plant. Each stage
may have multiple parallel identical machines. These
machines can be identical, uniform, or unrelated. Each job
is processed by at most one machine at each stage.

Pinedo (2002) cited that machine setup time 1s a
significant factor for production scheduling in all flow
patterns and it may easily consume more than 20% of
available machine capacity if not handled well. Also the
completion time of production and machine setups are
mfluenced by production mix and production sequence.
On the one hand, processing in large batches may
increase machine utilization and reduce the total setup
time. On the other hand, large batch processing increases
the flow time. Scheduling problems with Sequence-
Sependent Setup Times (SDST) are among the most
difficult classes of scheduling problems. A single-machine

sequence-dependent  setup scheduling problem s
equivalent to a Traveling Salesman Problem (TSP) and is
NP-hard (Pinedo, 2002). Even for a small system, the
complexity of this problem 1s beyond the reach of existing
theories (Luh et al., 1998).

Moreover sequence-dependent setup scheduling of
a hybrid flow shop system 1s even more challenging.
Although there has been some progress reported, but the
understanding of sequence-dependent setups, however,
is still believed to be far from being complete (Luh et al.,
1998). Robust local search improvement techmiques for
flexable flow-line scheduling were considered by Leon and
Ramamoorthy (1997).

Hung and Ching (2003) addressed a scheduling
problem taken from a label sticker manufacturing company
which 18 a two-stage hybrid flow shop with the
characteristics  of sequence-dependent setup time at
stage 1, dedicated machines at stage 2 and two due dates.
The objective was to schedule one days mix of label
stickers through the shop such that the weighted maximal
tardiness is minimized. They proposed a heuristic to find
the near-optimal for the problem. The
performance of the heuristic was evaluated comparing its
solution with both the optimal solution for small-sized
problems and the solution obtained by the scheduling
method used in the shop.

While many studies have been written in the area of
scheduling hybrid and flexible flow lines, many of them
are restricted to special cases of two stages, specific
configurations of machines at stages and to simplify the

schedule
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problem, setups are seldom considered in the scheduling.
For those ones addressing setups, the setup tumes are
fixed and included n processing times. However, in most
real world cases, the length of the setup time depends on
both jobs, which 1s separable from processing. There
seems to be published only three works addressing
heunstics for flexible flow lines with sequence-dependent
setup times. Kurz and Askin (2003) examined scheduling
rules for SDST flexible flow lines. They explored three
classes of heuristics. The first class of heuristics (cyclic
heuristics) is based on simplistic assignment of jobs to
machines with little or no regard for the setup times. The
second class of heuristics 1s based on the msertion
heunistic for the TSP. The third class of heuristics 1s based
on Johnson’s Rule. Note that the second class caters to
setup aspects of the problem while the third class derives
from standard flow shops. They proposed eight heuristic
rules and compared the performance of those on a set of
test problems. Moreover, Kurz and Askm (2004)
formulated the SDST flexible flow lines as an integer
programming model. Because of the difficulty in solving
the Integer Programming (IP) model directly, they
developed a Random Keys Genetic Algorithm (RKGA).
Problem data was generated to evaluate the RKGA with
other scheduling heuristics rules, which they proposed
aforetime. They created a lower bound to evaluate the
heuristics. Zandieh et al. (2006) proposed an immune
algorithm and showed that this algorithm outperforms the
RKGA of Kurz and Askin (2004).

PROBLEM DEFINITION

Let g be the number of workshops in series. Let n be
the number of jobs to be processed and m' be the number
of machines in parallel at each stage t. We assume that
machines are initially setup for a nominal job O at every
stage. Job ntl exists at every stage only to indicate the
end of the process, if needed. We have the followmng
definitions.

pi = Processing time for job1 at stage t(1=1,2...n;
t=1,2,....2)

s, = Sequence-dependent setup time from job 1 to job
jatstaget(i=1.2....nj=1,2,..nt=1.2..g)

p. = Modified processing time for jobi at staget
G =pltmins) (i=1,2...nj=1,2.nt=12,.g

S* = Setof jobs that visit workshop stage t (t =1,2,....g)

m* = No. of machines at staget (t=1,2,....g)

The processing time of job O 1s set at 0. The setup
time from job O indicates the time to move from the

nominal set solution state. We assume that all jobs
currently in the system must be completed at each stage
before the jobs under consideration may begin setup. The
completion times of job O at each stage are set to the
earliest setup time may begin at that stage. The setup time
for job n+1 is set at 0; this job only exists to indicate the
end of the schedule. We also include the restriction that
every stage must be visited by at least as many jobs as
there are machines in that stage.

THE PROPOSED SIMULATED ANNEALING (SA)
ALGORITHM

Standard simulated annealing algorithm: SA was first
proposed by Kirkpatrick ef al. (1983) as a method for
solving combinatorial optimization problems. The name of
the algorithm derives from an analogy between the
simulation of the annealing of solids first proposed by
Metropolis et af. (1953) and the strategy of solving
combinatorial optimization problems. Annealing refers to
a process of cooling material slowly until it reaches a
stable state.

SA (Metropolis et al., 1953) is a generalization of a
Monte Carlo methed for statistically finding the global
optimum for multivariate functions. Tn SA, a system is
initialized at a temperature T with some configuration
whose energy 1s evaluated to be E. A new configuration
is constructed by applying a random change and the
change in energy AE is computed. The new configuration
is unconditionally accepted if it lowers the energy of the
system. If the energy of the system is mcreased by the
change, the new configuration is accepted with some
random probability. In the original Metropolis scheme
(Metropolis et al., 1953), the probability 1s given by the
Boltzmann factor

~AE
expl )

This process 1s repeated sufficient times at the
current temperature to sample the search space and then
the temperature 1s decreased. The process 1s repeated at
the successively lower temperatures until a frozen state 1s
achieved.

SA has been used in operations research to
successfully solve a large number of optimization
problems (Kirkpatrick, 1984) such as the TSP and various
scheduling problems. Here, it is applied to the problem of
application scheduling in hybrid flow shops with
sequence-dependent setup times.
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A simulated annealing algorithm to SDST hybrid flow
shop scheduling: SA consists of four phases mcluding
initialization of the algorithm at a temperature T, evaluate
the objective function for each solution, application of
neighborhood search to the next solution by hill climbing
movements, decrease of temperature and repeat phases 2
through 4 until a lower temperature is achieved.

ALGORITHM SA

Initialize the parameters (T, : Initial temperature;
N: Number of temperature decrement ; NITER: Number of
iterations at each temperature; CS: Cooling schedule):

Choose an initial solutions € S
Evaluate the objective fumction for solution S
g* =3
best = objective value of solution s
Repeat
Generate a neighborhood solution s' € N(s)

If random [0,1]< exp (%) Then s=¢

It best > objective value of solution s Then s* =g,
best = objective value of solution s'

Reduced temperature based on cooling schedule
(CS)

Until stop criterion

Tnitialization: TIn this step we generate a solution
randomly from the feasible domain. Usually, mitial
solution is randomly generated in the feasible space, but
initial solution can influence the convergence time. Thus,
random numbers serve as sort keys in order to decode the
solution. The decoded solution is evaluated with a
objective fumction for the problem at hand. For example,
Normen and Bean (1999) suggest using the followimng
solution representation for an identical multiple
machine problem. Hach job is assigned a real number
between [1, m'] whose integer part is the machine number
to which the job is assigned and whose fractional part is
used to sort the jobs assigned to each machine. Once the
job assignments and order on each machine are found
through the decoding, a schedule can be built
incorporating additional factors such as non-zero ready
times and sequence-dependent setup times. The desired
performance measure can then be found using the
schedule.

Kurz and Askin (2003) proposed three heuristics
based on greedy methods, flow line methods and the
insertion heuristic for the TSP. These heuristics were
named Shortest Processing Time Cyclic Heuristic
(SPTCH), Flow-Time Multiple Insertion Heuristic (FTMIH)
and Johnson’s rule based heuristics (g/2, g/2).

In SPTCH, the jobs are ordered at stage 1 in
increasing order of the modified processing times ;. At
subsequent stages, jobs are assigned in earliest ready
time order. Jobs are assigned to the machine 1 every
stage that allows it to complete at the earliest time.

The FTMIH is a multiple insertion heuristic to
minimize the sum of flow times (completion-ready times)
at each stage. It 15 a multiple machine, multiple stage
adaptation of the Insertion Heuristic for the TSP. Setup
times are accounted for by integrating their values into
the processing times using B . The FTMIH can then be
performed using these modified processing times at each
stage. Once jobs have been assigned to machines, the
true processing and setup times can be used.

Johnsons Rule (Gupta and Tunc, 1994) finds the
optimal makespan solution for n2/F/C_,, (C.. 1s
malkespan). The g/2.g/2 Johnson's rule is an extension of
Tohnson's rule to take into account the setup times for the
flow shop with more than two stages. The aggregated first
half of the stages and the aggregated last half of the
stages are considered to create the order for assignment
instage 1. The value f; is the sum of modified processing
times for stages 1 to g/2 and @ is the sum over stages
[g/2]+] to g.

In this research, the representation of Norman and
Bean (1999) is used for the jobs in the first stage. The
assigmment of jobs to machines in subsequent stages
follows the method used in SPTCH and the Johnson’s
rule based heuristics (g/2, g/2), where each job is assigned
to the machine that allows it to complete at the earliest
time as measured in a greedy fashion.

In this study, we adapted a heuristic making use of
NEH (Nawaz, Enscore and Ham) rules in SDST hybrid flow
shops. The NEH procedure 1s based on the 1dea that jobs
with high processing times on all machines should be
scheduled as early as possible. Modified processing time
is used in this adapted algorithm.

ALGORITHM ADAPTED NEH

(1) Find the total modified processing times of all jobs:
b= 30

(2) Order the jobs in descending order of P;

(3)Letn = % empty initial sequence

(H) For[i]: =1ton:
(a)J: = job[1]
(b) In order to test job [1] in each possible position of
7, call Procedure A
(c) Insert job [i] in T at position resulting in lowest
makespan
End for
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Procedure “A”
(1) At each stage t=1; . . .
machine m that stage.
(2) At stage 1:
Let bestme =1
For [TI]: =1tondo
Forme: =1 tom' do
Place job [1] last on machine me.
Find the completion time of job [i]. If this
time is less on me than on bestme,
Let bestmc = me.
Assign job [1] to the last position on
machine bestme.
End for
End for
(3 Fort: =2togdo
Update the ready times in stage t to be the
completion times in stage (t-1).
Arrange jobs 1n increasing order of ready
times.
Let bestme = 1.
For[i]: =1tondo
Forme: =1 tom' do
Place job [1] last on machine me.
Find the completion time of job [i]. Tf this
time is less on me than on bestime,
Let bestmc = mec.
Assign job [1] to the last position on
machine bestmc.
End for
End for
End for

; g, assign job [0] to each

In the proposed SA, first the problem 1s solved by
four heuristics SPTCH, FTMIH, g/2, 2/2 Johnson’s Rule
and NEH. Then the better solution 1s selected as initial
solution.

Local search: In this step, randomly two solutions in the
neighborhood of the mitial selution {current solution) are
generated, their makespans are calculated and the better
solution is selected as new one. If the new solution is
better than the current solution, it 1s accepted. Otherwise,
1t will be accepted with a probability:

p= exp(—%) @

where, Af i1s the mcrease in cost function f and T 1s a
control parameter.

For generating new solutions, two methods were
used as follows. In the first method, two numbers within

81 |1.41]2.13]1.23]1.65]2.01 51 [1.41]2.13]1.23]1.65]2.01

52 [FL01L205]2.00 52 [Lal[zol.65]L.23]213]
(a) (b)

Fig. 1: Generation of new solution

the range of 1 to m* are generated randomly and then they
are exchanged with two numbers which themselves have
been chosen randomly from current sequence (Fig. 1a). In
the second one, two numbers are selected randomly from
the current sequence and then the new solution is
generated as shown in Fig. 1b.

SA’s major advantage over other methods is an
ability to avoid becoming trapped at local minima. The
algorithm employs a random search, which not only
accepts changes that decrease objective function, f, but
also some changes that increase it.

In each step of Metropolis algorithm, a particle is
given a small random displacement and the resulting
change, Af, in the energy of the system 1s computed. If
Af < 0, the displacement 1s accepted. The case Af > 0 15
treated probabilistically.  The probability that the
configuration is accepted is given in Eq. 1. A certain
number of iterations are carried out at each temperature
and then the temperature 1s decreased. This 15 repeated
until the system freezes into a steady state.

The probability of accepting a worse state 1s given
by the equation:

p = exp(- A—f) =T (2)
T
Where:
Af = The change in cost (objective) fimction
T = The current temperature
r = A random number uniformly distributed between
Oand1

The probability of accepting a worse move 1s a
function of both the temperature of the system and of the
change in the objective function. As the temperature of
the system decreases, the probability of accepting a
worse move 15 decreased. If the temperature 1s lower
temperature, then only better moves will be accepted.

This loop 1s repeated number of iterations times at
each temperature, then temperature is decreased by one of
these cooling schedule:

T 3
T = (1D 3
i

i+1
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TI:TU—iA,A:M (5)
log(N)

where, 1 13 mdex for stage, T, 1s mutial temperature, T, 13 the
temperature of stage i and N is the number of temperature
decrease.

Therefore, the solution of the problem 1s the best of
all temperature current solutions.

EXPERIMENTAL DESIGN

Data generation and settings: An experiment was
conducted to test the performance of the
electromagnetism algorithm. Following Kurz and Askin
(2003), data required for a problem consists of the number
of jobs, number of stages, number of machmes in each
stage, range of processing times and the range of
sequence-dependent setup times. The ready times for
stage 1 are set to 0 for all jobs. The ready times at
stage t + 1 are the completion times at stage t, so there 1s
no need this data to be generated. Processing times are
distributed uniformly over two ranges with a mean of 60:
[50-70] and [20-100]. Flexible flow lines are considered by
allowing some jobs to skip some stages. Following Leon
and Ramamoorthy (1997), the probability of skipping a
stage is set at 0, 0.05, or 0.40. The setup times are
uniformly distributed from 12 to 24 which are 20 to 40% of
the mean of the processing time. The setup time matrices
are asymmetric and satisfy the triangle inequality. The
setup time characteristics follow Rios-Mercado and Bard
(1998).

The problem data can be characterized by six factors
and each of these factors can have at least two levels.
These levels are shown m Table 1.

In general, all combinations of these levels will be
tested. However, some further restrictions are mtroduced.
The variable machine distribution factor requires that at
least one stage have a different number of machines than
the others. Also, the largest munber of machines m a
stage must be less than the number of jobs. Thus, the
combination with 10 machines at each stage and 6 jobs
will be skipped and the combination of 1-10 machines per
stage with 6 jobs will be changed to 1-6 maclhines per
stage with 6 jobs. There are 252 test scenarios and five
data sets are generated for each one.

Simulated annealing algorithm parameters tuning: It is
known that the different levels of the parameters clearly
affect the quality of the solutions obtained by a simulated
annealing algorithm. A number of different simulated
anmealing algorithms can be obtained with the different
combinations f the parameters. We have applied

Table 1: Factor levels

Factor Levels

No. of jobs 6-30-100 Constant:1-2-10

No. of machines Variable: Unitorm| 1-4] - Uniform[ 1-10]
No. of stages 24-8

Processing times Unitorm| 50-70]- Uniform| 20-100]

Skipping probability 0.00-0.05-0.40
Table 2: Parameters tuning

Problems
Parameters Small Medium Large
Initial ternperature (Ty) 15 20 15
No. of temperature decrement (N) 20 40 30
No. of iterations at each 3 60 100
termperature (NITER)
Cooling schedule (C8) 1 i 11

parameters tuning only for the initial temperature (T,),
number of iterations executed at each temperature
(NITER), number of temperature decrease (N) and Cooling
Schedule (CS), considering the following ranges:

»  Initial temperature (T,): two levels (15, 20)

»  No. of temperature decrement (IN): two levels for each
state small (20, 30), medium (40, 30), large (30, 50)

» No. of iterations executed at each temperature
(NITER): two levels for each state small (3, 2),
medium (60, 80), large (100, 60)

s Cooling schedule (CS): three levels (I, TI, TIT)

Thirty six different SA are obtamned by these levels.
We generate 14 nstances, 5 small, 5 medium and 4 large,
for each combmation of n, m, SDST. All 14 instances are
solved by 36 different SA algorithms.

The results have been mdicated in three states small,
medium and large problem in Table 2.

As the results of the SA algorithm with the
mentioned parameters were not better than the RKGA
one, Number of temperature decrement and also iterations
at each temperature were increased and as a result best
final parameters of SA algorithm versus RKGA was
estimated for all size problems:

Initial temperature (T,): 15

No. of temperature decrement (N): 80

No. of iterations at each temperature (NITER): 80
Cooling schedule (C3): Cooling schedule 11

Experimental results: Here, we are going to compare the
proposed simulated annealing algorithm with the RKGA
which proposed by Kurz and Askin (2003) for the SDST
flexible flow lines. The heuristics were implemented in
MATLAB 7.01 and run on a PC with a Pentium IV 2600
MHz processor with 256 MB of RAM. When the C,_, of
each algorithm has been obtamed for its mstances, the
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Table 3: Average RPD of makespan and solution time for the 8A and GA
algorithms by nand g
RPD of makespan

Solution time

Instance SA GA SA GA

6%2 1.89 8.30 043 0.74
64 3.56 8.73 0.61 1.12
6%8 1.69 .64 0.69 2.28
6 Job 2.38 7.56 0.57 1.38
30x2 3.67 1575 3272 36.07
30x4 532 16.96 52.79 80.23
30x8 1.52 747 107.71 152.24
30 Job 3.50 1339 64.40 89.51
100=2 0.97 12.15 35610 21043
100=4 4.76 25.88 697.43 522.56
100=8 1.74 2141 125073 984.85
100 Job 2.49 19.81 768.22 572.61
Average 2.79 13.59 27774 221.16

best solution obtained for each instance (which is named
Min,) by any of the two algorithms 1s calculated. Relative
percentage deviation (RPD) is obtained by given formula
below:

_Alg—Min, (6)

Min_,

RPD

where, Alg,, is the C,_, obtained for a given algorithm and
mstance. RPD of 4% for a given algorithm means
that this algorithm is 4% over the best obtained
solution on average. Clearly, lower values of RPD are
preferred.

Analysis of makespan and solution time: The results of
the experiments for two subsets, averaged for each one of
the n and g configurations (5 runs in each experiment) are
shown in Table 3. As it can be seen, SA algorithm
provides better results than RKGA.

To identify the best algorithm, we have performed
a design of experiments
(Table 3).

The results demonstrate that there i1s a clear

and an analysis of results

difference between performances of the algorithms. The
means plot for two algorithms are shown i Fig. 2.

Analysis of problem size factor (number of jobs): In order
to see the effects of number of jobs on two algorithms,
means of makespan RPD is applied Means plot for
the interaction between the factors type of method
and number of jobs are shown in Fig. 3. As we can see,
the all size problems (3, 30, 100), SA works better than
RKGA.

Analysis of g factor (number of stages): Tn this section,
Means of RPD are applied to see the effect of magmtude

307 -5

TG 4%6  BW6 2%30 4%30 8430 291004*10084100

Fig. 2: Means plot and for SA and GA algorithms

257 ——SA
—-m—-RKGA
20
a9
% i5-
101
=}
=
i —
G T T 1
6 30 100
Job

Fig. 3: Means plot for the interaction between the factors
type of algorithm and mumber of jobs

207 —-ga
—-u—RKGA

o 154
g /\.
B
[
fé 104
E ] ’/\’

G ¥ T 1

2 4 8

Stage

for the interaction between the
of algorithm and magnitude of

Fig. 4. Means plot
factors  type
stages

of stages on quality of the algorithms. The results are
shown in Fig. 4. As we can see, in the majority of the
cases/trials SA works better than RKGA.

Final analysis of makespan and solution time: Table 4
shows the required computational time for SA versus
RKGA. Based on this data, we can see the solution time
for SA will significantly increase as problem size

increases. This 18 reasonable because makespan will
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Table 4: 8A Solution time versus GA

Solution time

Decrease

Rimilar

Increase

Problem size  Percent of problem Average decrease

Percent of problem

Percent of problem Average increase

Smmall 95.8 0.88 4.2 0.84
Medium 65.5 4911 34.5 20.57
Large 12.2 195.74 87.8 250.10
Table 5: SA Makespan value versus GA

Makespan value

Decrease Similar Increase

Problem size  Percent of problem Average decrease

Percent of problem

Percent of problem Average increase

Small ot 3715 2.7 333 8.55
Medium o8 91.73 - 32.0 21.20
Large 70 55845 30.0 49.63
significantly increase as the problem size increases. Kurz, ME. and R.G. Askin, 2003. Comparing
Table 5 shows the makespan value for SA versus scheduling rules for flexible flow lines. Int. J. Prod.
RKGA. Econ., 85: 371-388.

CONCLUSION

A simulated annealing approach for the scheduling
of a hybrid flow shop has been successfully developed.
SA’s major advantage over other methods is an ability to
avold becoming trapped at local minima. The algorithm
employs a random search, which not only accepts
changes that decrease objective function, but also some
changes that increase it.

A set of experiments were carried out to illustrate the
effectiveness of sunulated annealing algorithm in SDST
hybrid flow shop scheduling. Compared to past RKGA,
the lower makespan values in many test problems,
specially in medium and large problems can be attributed
to the fact that the SA tends to converge prematurely due
to the absence of a method to restraint the
dominance of good solution.

‘over-

REFERENCES

Gupta, IN.D. and E.A. Tunc, 1994. Scheduling a
two-stage hybrid flowshop with separable setup and
removal times. Eur. J. Operat. Res., 77: 415-428.

Hung, T.8.1.. and JL. Ching, 2003. A case study ina
two-stage hybrid flow shop with setup time and
dedicated machines. Int. J. Prod. Econ., 86 133-143.

Kukpatrick, 5., 1984, Optimization by simulated armealing:
Quantitative studies. J. Statist. Phys., 34: 975-986.

Kurz, ME. and R.G. Askin, 2004. Scheduling flexible
flow lines with sequence-dependent setup times. Eur.
]. Operat. Res., 159:; 66-82.

Leon, V.J. and B. Ramamoorthy, 1997. An adaptable
problem-space-based search method for flexible flow
line scheduling. ITE Trans., 29: 115-125.

Luh, PB., L. Gou, Y. Zhang, T. Nagahora, M. Tsuji and
K. Yoneda et al., 1998. Job shop scheduling with
group-dependent setups, finite buffers and long time
horizon. Ann. Operat. Res., 76: 233-259.

Metropolis, N., A. Rosenbluth, M. Rosenbluth,
A. Teller and E. Teller, 1953. Equation of state
calculations by fast computing machines. J. Chem.
Phys., 21: 1087-1092.

Norman, B.A. and T.C. Bean, 1999. A genetic algorithm
methodology for complex scheduling problems.
Naval Res. Logist., 46: 199-211.

Pinedo, M., 2002, Scheduling Theory, Algorithms and
Systems. 2nd Edn., Prentice-Hall, Englewood Chffs,
New Jersey,.

Rios-Mercado, R.Z. and I.F. Bard, 1988. Computational
experience with a branch-and-cut algorithm for
flowshop scheduling with setups. Comput. Operat.
Res., 25: 351-366.

Zandieh, M., SM.T. Fatemi Ghomi and SM. Moattar
Husseini, 2006. An immune algorithm approach to
hybrid flow shops scheduling with sequence-
dependent setup times. J. Applied Math. Comput,,
180: 111-127.

1949



	JAS.pdf
	Page 1


