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Abstract: In this study, a new fast method for selecting the next update time in two maneuvering target tracking
algorithms, namely the Interacting Multiple Models (IMM) algorithm and the Multi Rate Interacting Multiple
Models (MRIMM), will be presented. Both MM and MRIMM are used here to predict and estimate the target’s
possible states and to select the correct next update time. The 1dea 1s to assign to each model in the IMM and
MRIMM algorithms an appropriate rate and to weight these rates by the models” probabilities to obtain the rate
to use. The resulting algorithms are named, respectively, the Fast Adaptive IMM (FAIMM) algorithm and the
Adaptive MRIMM (AMRIMM) algorithm. Using Monte Carle simulations, the performances of these
algorithms are compared to that of the Adaptive IMM algorithm that uses Van Keuk criterion to select the next
update time and to that of the TMM algorithm and MRIMM that use a constant update time.
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INTRODUCTION

Both air traffic control and military applications have
strict requirements on tracking algorithms. They should
be accurate, survivable and fault tolerant and should
require low computation and communication complexity.
A lot of research work has been devoted to investigate
tracking algonthms that fulfill the requirements of modern
surveillance. Many works have proposed the use of
variable update rate trackers to reduce the computation
processing. However, most of them use single model
filters and decisions oriented techniques and cannot,
therefore, cope well with all possible target behaviors. For
a better tracking accuracy, it 1s necessary to recourse to
multiple models algorithms. Many of these algorithms
have been developed, among which the Interacting
Multiple Models (IMM) (Bar Shalom, 1995) is widely
used. The main feature of this algorithm 1s its ability to
estimate the state of a dynamic system, which can switch
from one behavior mode to another.

For areal time implementation, data processing is an
unportant 1ssue. Many researchers have focused on
reducing the computation time. A moving bank multiple
models adaptive algorithm has been proposed by
Mayback and Hentz (1987). Li and Bar-Shalom (1996)

introduced the idea of multiple models sets and presented
a variable structure multiple model algorithms. L and
Atherton (1993) presented a selected filter TMM (SFIMM)
algorithm m which models close to target acceleration
are selected. Hong (1999), Hong and Dig (2000) and
Hong et al. (1998 ) presented a Multirate Multiple Model
(MRIMM) algorithm that uses a multi-resolution filtering
approach, where each model works with a rate appropriate
to a motion of the target.

In fact, Time is the most precious resource for real
time application, especially when using multi function
radar, such as a Phased Array Radar, whose occupancy
by the tracking task should be kept as low as possible.

The Phased Array Radar has the ability to direct the
antenna beam in any direction without moving
mechamcally the radar. It performs surveillance in a
mumber of regions, to identify new targets, it then
maintains tracks on the targets by directing the beam to
the predicted target position, for each updated track. Each
track may be updated at a variable rate.

Many approaches have been proposed for selecting
the next update time. Some approaches (Efe and
Atherton, 1998; Kirubarnyjan et al., 1995; Daeipour et al.,
1994; Efe and Atherton, 1996) select the next update time
from aset of a predefined update times and assign one
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of these to each track, so that the track is maintained over
a target trajectory. Usually, a high update rate is chosen
for a manoeuvring motion and a lower update rate is
chosen for a non manoeuvring motion. Another approach
(Sarunic and Evan, 1997) uses an iterative selection of the
next update time, whereas Van Keuk (1977, 1979), Watson
(1994) and Shin (1995) an empirical form is used. In
Ahmeda et al. (1997), an exact formula for computing the
next update time in the JPDAF is derived, using on the
Van Keuk criterion. This formula has been generalised to
the IMMIPDAF in Benoudnine et al. (1999a, b).

In Benoudnine ef al. (2006), a Fast ATMM algorithm
(FAIMM algorithm), which computes the next update time
by using the probabilities of action of models 1s
presented. A considerable amount of computational time
is saved, by this algorithm, in comparison with the ATMM
that uses the Van Keuk criterion. In Benoudnine et al.
(2007), the incorporation of a variable update time into the
MRIMM improved the performance of this algorithm.

This study describes in more details the work
presented in Benoudnine et al. (2006, 2007). 1t’s also
presents new simulation reseults.

TARGET AND SYSTEM MODELS

The problem addressed in this paper is the estimation

of the state (position, velocity and acceleration) of a

target moving in a plane. The motion of the target is

assumed to obey several possible models. The discrete
state equation for such a target is:

kD) =F k)= kw k), j=1,...r (D

where, ! (k) is the state vector of the target, F' (k) is the

transition matrix and w’ (k) is the process noise, assumed

to be a zero mean Gaussian process with a known

covariance (Y. All these quantities are at time k and for

model j.

The measurement equation is given by:

2(k) =T (ki (k)+v(k) (2

where, z(k) is the (m=1) measurement vector at time k, due

to the return from the target, F is the (m>n) measurement

matrix for model j and v is the measurement noise vector,
with zero mean and known covariance R.

DESCRIPTION OF TRACKING ALGORITHMS

TMM algorithm: The Interacting Multiple Models (TMM)
algorithm has been proposed for tracking a manoeuvring
target (Bar Shalom, 1995). Tt is a sub-optimal well
documented method for solving the problem of state
estimation, in the case of a manoeuvring target. In this
algorithm, several filters are run in parallel, each filter
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being matched to an assumed model for the target’s
motion. The jumps between models are assumed to be
govermned by a Markov Chain. The overall estimated state
is formed by summing the estimates from different filters,
weighed by the probabilities of models. The MM
consists of the following steps:

Step 1: Mixing of state estimates from the previous time:
For each target, starting with the state estimates
#'k-1k-1), matched to the models Mk}, their
covariances Pitk—1jk-1) and the model probabilities
pis(k-1[k-1), the mixed state estimate "(k-1k-1) and its
covariance P?{k-1k-1) are computed according to:

k- 1k -1= Y&k 1lk-Dp,, k-1k-1), j=1_
i=1

it
and

Pk -1k-1) = Eu;;](k71|k71)[f"(k71|k—1)+f>§1(k—1\k—1)]
4

Bik-1k-1 =[Hk-1k-D-K"k-1k-1)]
[ﬁ‘(k—1|k—1)—3”’(k—1\k—1)T, ij=l.r

where, 1 denotes the number of interacted models and
Lis (k-1[k-1) is the probability that model M, was in effect
at time (k-1) given that M, is in effect at time k-1,
conditioned on 2!, the set of measurements up to k-1:

(5)

1 ..
u‘,j(kfl\kfl):Fp‘jui(k71), i,j=12.r
1

In the above equation, p; is the a prior probability of
transition from model i to model j, p(ke-1) is the probability
that model 115 in effect at time k-1 and § are normalising
constants:

= S k=1, j=1.r (6)
i=1

Step 2: Kalman filtering: Based on the initial states
estimates Eq. 3, their covariances Eq. 4 and the received
measurements, the #(klk) and its
covariance f”(k\k) are updated using the jth Kalman Filter
in the IMM algorithm.

state estimate

Step 3: Computation of the likelihood function: The
likelihood Al(k) of medel M.(k) 1s updated from:

AK) = P[ 200 M, k), 2% ] )
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Step 4: Update of the models’ probabilities: The
probability that model Mdk) is in effect at time k is
computed from:

u(k):P[hﬂ(kﬂZkJ,j:L~gr
- (8)
= ARG

where, ¢ 1s defined in Eq. 6 and c 1s the normalisation
constant for (k) given by:

c:jN®§ 9)

Step 5: Combination of the model conditioned estimates:
For each target, the overall state estimate %(kk) and its
corresponding error covariance P(k|k) are updated as
follows:

MRIMM algorithm: The Multirate TMM (MRIMM)
algorithm is derived by Hong et al. (1998), at different
multi-resolution levels, by using a discrete wavelet
transform, a hierarchy of models and a data structure. The
tracking algorithm 1s applied to this hierarchical structure
and final tracking outputs can be obtained at specified
levels (rates). In Fig. 1 a diagram of one cycle of a two
models MRIMM algorithm 1s presented. In the algorithm
considered in this work, the first model i1s a constant
acceleration (CA) model. It operates at full rate (level 0)
and is suitable for a manoeuvring motion. The second
model, named half rate Multirate Constant Velocity
(MRCV) model, was derived by Hong (1999) and
Hong et al. (1998) from a geometrical interpretation of a
discrete wavelet transform. It operates at half rate (level 1)
and is appropriate for a non-manoeuvring motion. The
superscript ()™ 1s used to denote a quantity related to the
manoeuvring model (CA) and ()" a quantity related to the

Rklk) = Z}’A‘J (kflm, (k) (10) non manoeuvring model (MRCV). The measurements and
=
state for the non manoeuvring model are processed at
Bl = : (P &I+ Pkl (11) level 1, whereas for the CA model the state and the
= ,Z,"uj ( | k] ) measurements are processed at level 0. The results from
the two models are mixed and combined at the same
where, f’j(k|k):[ij(k|k)—i(k‘k)][f(k|k)—§<(k\k)f level (level 0O is used here). Transformation details of
55 !
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| | | I '
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Fig. 1: A Two- model, two- level MRIMM algorithm
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non manoeuvring quantities between level 0 and level 1
are given in Hong (1999), Hong et al. (1998) and (Hong
and Ding, 2000). The main steps of the MRIMM starting
at t,, and ending at t, consist of the following.

Step 1: Mixing of state estimates from the previous time:
Assuming that the state estumates and their covariances
matched to each model at level 0

/a0 ] &m0 Hm,0
Pk—z\k-zj and {Xk-z|k-z’Pk—2\k—2_[

{i:—uzlk—z’
are available at time t, ,, the multirate models probabilities
and the multirate states are derived as follow:

s _pna oo nn o n
By = Pplab s + Pl

(12)

“’?—2 = P&ﬁk_guzz + B (1 3)

k—l‘k—Eu'?fz
where, T ,andp?, are the non manceuvring and the
manoceuvring mixing Multirate model probability at time
ty, and:

0, 1m
Pk‘k—Z

pon

k—llk—Z

na
plians ={ Pk|k—2

(14)
piten

k—llk—2

is the Markovian model probabilities transitional matrix,
which defines the transition between the two models.

The mixed half rate and full rate state vectors are then
derived as:

=0 _ an0 T e nm m
X2 = [Xk—z|k—zpk\k—zuk-z + Xk—2|k72Pk|k72l"‘k—2} (15)
k-2
1
e 40,0 mn gn L gm mm
Xpa = T[Xk—z\k—zpk—qk—zuk—z + Xk—2|k72Pk71\k72”‘k—2 J (1 6)

k-2

The corresponding mixing multirate covariances are
derived in the same way.

Step 2: Transformation of the non maneuvering
quantities: The mitial state estimate and its covariance
for the MRCV model are transformed to level 1, to yield
xp', and B, (details transformation can be found in Hong

(1998, 1999) and Hong and Ding (2000).
Step 3: Multirate propagation

. for the
maneuvering model 18 derived using the following

equation:

Full rate propagation from ty,tot,,
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m —
k-lfk-2

(17)

E" &

X k-2% k22

P (18)

m Jm m T m
k-fk-2 — FLPY, (kaz) +0Q,

The state is composed of position, velocity and
acceleration, for example in one dimensional Cartesian
coordinates F, 1s:

1 T

E', =0
0

H A

1
0

Half rate propagation from t;; to t, for the non
maneuvering model 18 derived using the following
equation:

snl
Az

= Flf-lzigflz\k—z (19)

where, fi;]i_g is the predicted state estimate at level 1
composed of low and high component of wavelet
decomposition:

& L&l gh
2 2
|8 El& 8
k-2 2
0 &
g
and
2 (k) = hyz(k - 1) + hyz (k) (20)
R™ (k) = h?R (k1) + h’R (k) 21)

h =h, = g, =-g, = 2/2 are, respectively, the two taps Haar
low pass and high pass filters coefficients, for Wavelet
decomposition.

Step 4: Propagation of the manoeuvring model: The
propagation from t;, to t, for the manoeuvring model is
given by:

m m
Xklk—l

k—l‘k—l

(22)

— m o
=E' X

o (23)

m Tym w AT m
T Y (Fk—l) Q.

o
-1

where, E.; =F
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Step 5: Updating at time t: A full rate update is performed
on the manoeuvring model sequence, yielding &}, and f’;‘l‘k.
The half rate updates %, and 1513“’;, are transformed to level
0 to yield the non manceuvring states and covariance
vectors i and 151‘:‘3? . Also the probabilities of models are
updated at time t, yieldingp®and p®. The output of
MRIMM algorithm at time t, 1s then:

(24)

& _ nand
e = MKy

+ uﬁf(ﬁ“k
REVIEW OF SOME ADAPTIVE UPDATE TIME
METIODS FOR PHASED ARRAY RADAR

Criteria for the update time choice: The next update time
1s calculated, according to some techmical considerations:
To maintain track in different situations
(manoeuvring and non manoeuvring), the update
time should be small enough so that, at the next
illumination, the target will be withun the predicted
region, scanned by the radar beam, with a high
enough probability

The update time should be not teo small, to mimmise
the use of the radar resources. This will allow the

radar to do more within a given time

Hence, a large update time should be used for
tracking a non manoeuvring target and a faster update 1s
needed to track a manoeuvring target or fast targets,
which accelerate harder or change range and which may
possibly escape from the beam of the antenna.

Most of the algorithms proposed in the literature for
the selection of the next update time are based on Van
Keuk criterion.

Van keuk criterion: Tt can be observed, in any target
tracking algorithm, that when the target manoeuvres, the
uncertainty in the estimates increases, this is reflected by
an increase i the value of the error covariance. One can
exploit this observation, for selecting the sample time:
Reducing it when the target manceuvres, not to lose its
track and increasing it when the target stops
manoeuvring, not to waste radar resources.

This is the 1dea behind the Van Keuk criterion (Van
Keuk, 1977, 1979), who proposed that the next update time
should be selected so that the predicted error variance in
position 1s kept under a given threshold. Based on this
criterion an empirical formula for calculating the next
update time T has been derived:
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8T,

8,

V024
1+0.5v,}

(25)

04
T= 0.4{ }
where, v, is a constant, & is the measurement error
covariance, T, is the manoeuvre correlation time and &, is
the covariance of target acceleration.

However, Van Keuk uses a single model to
update a track. Many researchers, Watson ef af. (1994),
Shin et al. (1995) and Benoudmne ef al. (1999a, b) have

extended the use of Van Keuk criterion to multiple models
based tracking algorithms.

Revisit time controlled using the IMM algorithm: In this
algorithm (Watson, 1994), three models are used in the
IMM for tracking a manoeuvring target. The first oneis a
Constant velocity model (CV), the second one is
Exponentially Increasing Acceleration (EIA) and the third
one is a three Dimensional Turning Rate (3DTR). The next
update time 1s scheduled when the predicted error
covarlance in position exceeds a given threshold. The
sample time, T, 1s computed such as:

(26)

where, lsm‘k denotes the errors covariance of the
predicted position and P, a threshold. Since E,,T‘k is a
matrix and T is a scalar, the trace operator Tr is introduced
and T is computed such that:

} <Tr [Eh]

- 27)
P,y increases monotonically with T. T is chosen from
the condition:

Tr[§k+"r|k] = T['[ﬁ'h] (28)

The sample time 15 determined by solving Eq. 28,
using Newton's methods and choosing the next update
time to be the maximum of the possible solutions.

Adaptive update rate control in the IMM algorithm: The
detection probability of the target 13 dependent on
the accuracy of the beam pointing, which depends
on the accuracy in the target position prediction.
Shin et al. (1995) integrate the Van Keuk criterion and use
the empirical formula Eq. 25 to update the next update time
in the IMM algorithm.

The IMM is used to estimate the manoeuvre
parameter &,
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& (kf2)= Zn, ()82, (29)

=1

where, ; (k) is the prebability of model j at time k, 1 is the
total number of models used in the IMM and 38, is the
assumed acceleration covariance for model j.

Adaptive IMM algorithm (ATMM): This algorithm uses the
IMM, with two models: Constant Velocity (CV) and
Constant Acceleration (CA) (Benoudnine et al., 1999a, b).
The tracking 18 made i 2 Cartesian co-ordinates (x, y). A
variable update time is incorporated into the TMM
algorithm using the Van Keuk (1977, 1979)method. For the
x direction, the update time T.(k) at the kth scan is
determined from:

[P(k|k—17}, = v,[R],

where, [P(kk-1)], is the (1,1) element of the predicted
covariance matrix, [R],, is the measurement variance in the
x direction and v, is a constant.

The expression for the (1,1) element of the predicted
covariance matrix is given by:

[Pk - 1)}, = guj(k\k—l){[f”(k\k—l)ll + [Psl(k|k—1)]”} (30)

where, pklk-1) is the predicted probability of model j:

[P3(k|k 131, = [FICT, (k3B tk — 1]k — DFCT, ()7 + QCT, (kD)
(3D

and

Piklk -1y = [{?{’(k\k—l) ~3iklk - DKk -1 - &ik[k 71)}1

11

In Eq. 31 F and Q' denote the transition matrix and
the process noise covariance matrix, both matched to
model M,

It can be shown from Eq. 30-31 that [P(k|k -1)], 1s a bi-
quadratic polynomial in TJ(k) whose coefficients
depend on the elements of the matrices P"(k|k-1), the
variances of the process noises used in the models, the
components of the initialisation state vectors X(k/k-1)
and the predicted model probabilities p(k[k-1). The next
update time T,(k) can then be determined by zeroing the
bi-quadratic polynomial

[f’(k\k—l)ll -v,[R],

and taking the maximum real and positive root.
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Similarly, the update time T (k), for the y direction,
can be obtained by solving the following equation:

[Bik|k 1y = v, [R], (32)

where, [f’(l<:|l<:—1)]44 1s the (4,4) element of the predicted
covariance matrix and [R],, is the measurement variance in
the y direction.

The update T(k) at the kth scan 1s taken as the time
which guarantees a mmimum for the position covariance
error in x and y.

Fast adaptive IMM  algorithm (FATIMM): In
Benoudmne et al. (2006), a Fast Adaptive IMM algorithm
(FATMM) was proposed to select a next update time,
which is appropriate to the motion of the target. In this
algonthm, two models are used: (CV) and (CA). We assign
to each model in the IMM a suitable rate: T, to the non
manoeuvring model and T,;, to the manceuvring model.
Then, the next update time at scan k is obtained by
computing the following mean:

T=N1p, (k) j=1,..r (33)
=1

where, (k) 1s the probability of model j attime k, r 1s equal
to2, T, =Ty, and T, =T,

Adaptive MRIMM algorithm (AMRIMM): In
Benoudnine ef al. (2007), a variable update tiune 1s
incorporated into the MRIMM algorithm; the resulting
algorithm is called the Adaptive MRIMM algorithm
(AMRIMM). One of the properties of the MRIMM
algorithm 1s that the state estimate i1s obtamed every
second scan (k-2, kg, k+2,...etc), so we propose to calculate
the next update time in the MRIMM at each second scan
and keep it comstant between these two scans. The
selected update time 13 weighted by accurate models
probabilities, updated at each second scan.

We assign to each model in the MRIMM a suitable
rate: T, . to the non manoeuvring model (IMRCV)and T,
to the manoeuvring model (CA). Then, the next update
time at scan k is obtained using the Eq. 33.

SIMULATIONS RESULTS

Monte Carlo simulations are often used to assess the
performance of constant update tracking algorithms. The
squares of the estimation errors are computed at each
time point, for each run and then the root mean square
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estimation errors are obtained by averaging over all
and taking the square root. Plots of these RMS
errors versus time give an mdication of the tracking
accuracy time’s dependence. This procedure can be used
to compare the performance of the algorithms that use a
constant update time such as the TMM and the MRIMM.

In the case of the algorithms that use vanable update,
there 1s a difficulty in applying this procedure, since the
updates occur at different times, from rn to mun. To
overcome this difficulty, we have divided the target
trajectory mto segments of equal length (10 sec). The
mean square error, in each segment, was obtained by
averaging over all the points that lie in this segment. Thus
the time step in the plots relative to the FATMM, ATMM
and AMRIMM 1s equal to 10 sec.

To avoid that the update time becomes too small or
too large in the ATMM, FATMM and AMRIMM, it is
limited between 0.25 and 5 sec. The full rate in the TMM
and MRIMM algorithms 1s equal to 2 sec.

The measurement noise 13 generated in polar
coordinates with standard deviations of 185.2 m and
2.5%107° radian in range and bearing, respectively. The
range and bearing are then converted to two dimensional
Cartesian co-ordinates. The probability of switching
between the two models is equal to 0.05 in both
algorithms.

The modeling statistics were chosen so that the
MRIMM work on its best performance (Hong, 1998, 1999):
Qi = Qe =031 and qg,, = g, = 30for the MRIMM
and Qg = Qoyy = 0.1 and qg, = qg,y, = 15 for the IMM
algorithm.

The update time 1n the algorithms CMRIMM and
CIMM is constant and equal to 2 sec.

runs

Targets trajectories: Two target trajectories are used to
evaluate the performance of the algorithms; both
trajectories consist of three segments.

Trajectory 1: 90° Manoeuvre: The trajectory duration is
246 sec (Fig. 2). The first segment is a non manoeuvring
segment with a constant velocity m x equal to
308.67 m sec”, it lasts 120 sec, starting at the initial
position of (129650, 0 m). Tt is followed by a manoeuvring
segment from 120 to 136.48 sec and a non manoeuvring
segment from 136.5 to 246 sec.

Trajectory 2: 180° Manoeuvre: The trajectory duration is
200 sec (Fig. 3). Starting at the initial position of (0,
9166.942 m), the target travels at a constant velocity in x
and y equal to 218.26 m sec”', for 80 sec. It then
undertakes a manoceuvre from 80 to 113 sec, before
resuming to a quiescent motion for the remaining of the
trajectory.

The first results concern the IMM and MRIMM with
a constant update time. The RMSE in position on x and y
coordinates obtained over 1000 Monte Carlo are
presented m Fig. 4-7 for trajectory one and two,
respectively.

We can observe from these figures that the
performance of the MRIMM algorithm is better than that
of the IMM during the non manoeuvring segments and
that the two algorthms have approximately the same
performance during the manceuvring segment with a
significant error at the onset of the manoeuvre and
lateness in detecting the end of manceuvre, especially for
the MRIMM. This lateness in the case of the MRIMM
can be explained by the fact that its non manoeuvring
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Fig. 2: True and estimated target trajectory 1 (90° manoceuvre)
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Fig. 4: RMSE in x coordmates for CIMM and CMRIMM algorithms, for trajectory 1

model is updated at half rate. However, the MRIMM is
faster than the IMM. It can save between 15 and 25% of
the IMM's computation time.

For a fair comparison between the algorithms that use
a variable update time and those that use a constant
update time, the constant update time has been chosen
equal to the mean update time obtamed by the FATMM,
the AIMM and AMRIMM over 1000 Monte Carlo
simulations.
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In Fig. 8 and 9, the RMSE in x and y co-ordinates for
the FAIMM, AIMM and CIMM obtained over 1000
Monte Carlo simulations are presented. [t can observed
that for the same mean update time (3.5 and 2.8 sec, for
trajectory 1 and 2, respectively), the performance of the
FATMM algorithm is better than those of the ATMM and
the TMM during the manoeuvring segments. We also
observe that the FAIMM has approximately the same
performance as the AIMM during the non manoeuvring
segments.
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trajectory 2
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However, about 25 to 40% of computation can be
saved by using the FAIMM algorithm, instead of the
ATMM algorithm.

In Benoudmne ef al. (2007), it has been shown, that
for the same mean update time, the performance of the
AMRIMM 15 better than that of the CMRIMM and CIMM
during the manoeuvring segments and it 18 approximately
the same as that of the CMRIMM, during the non
manoeuvring segments. However, at the onset of the
manoeuvre, the CTMM is more responsive than the
MRIMM algorithm.

The results of RMSE in x and y co-ordinates,

obtamed over 1000 Monte Carlo simulations using

trajectory 2, for FATMM and AMRIMM are presented in
Fig. 10and 11.

It can be observed that the performance of the
FAIMM is better than that of the AMRIMM at the onset
of the manoeuvre and has roughly the same performance
during the manoeuvring and non manoceuvring segments.

In Fig. 12, the averaged update times over 1000
Monte Carlo runs, for the FAIMM and the AMRIMM
algorithms are plotted versus the time for trajectory 2.

This shows that AMRIMM and the FATMM adapt
their update time to the motion of the target. Tt is reduced
in response to a manoeuvre of the target and again
inereased when the manoeuvre ceases.
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Fig. 10: RMSE in x coordinates for FATMM and AMRIMM  algorithms, for trajectory 2
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Fig. 11: RMSE iny co-ordnates for FAIMM and AMRIMM algorithms, for trajectory 2
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Fig. 12: Update time versus time for FATMM and ATMM algorithms, for trajectory 2

CONCLUSION

A comparison of two adaptive manoceuvring target
tracking algorithms namely the TMM and MRIMM is
presented. The results show that both TMM and MRIMM
have a good trade off between complexity and
performance. The following conclusions can be made:

The MRIMM improves the tracking accuracy of the
IMM during the non manceuvring segments

The MRIMM has the same performance as the IMM
algorithm, during the manoeuvring segments

The IMM 1s more sensitive to any change in the
motion of the target (onset and offset of manoeuvre)
About 15 to 25% of the computation time 1s saved
when usimg the MRIMM instead of the IMM
algorithm

In the second part, a fast method for selecting
adaptively the next update time m a Phased Array Radar
15 incorporated mto the IMM and the MRIMM
algorithms. The resulting algorthms are named,
respectively, Fast Adaptive IMM (FAIMM) and Adaptive
MRIMM (AMRIMM). The following conclusions can be
drawn:

Compared to the ATMM and CTMM algorithms, the
FATMM has globally a better performance in terms of
tracking accuracy and complexity

The AMRIMM algorithm improves the tracking
accuracy and computation complexity of the
MRIMM algorithm by using an adaptive variable
Update time

212

Both FAIMM and AMRIMM achieve a good
compromise between complexity and tracking accuracy
and are therefore good candidates for tracking a
manoeuvring target.
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