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Abstract: In this study, Q-learming has been extended to multiagent systems where a kind of ranking in action
selection has been set among several self-interested agents. The process of learning 1s regarded as a sequence
of situations modeled as extensive form games with perfect information. Each agent decides on its actions, in
different subgames the higher level agents have decided on, based on its preferences affected by the lower level
agents’ preferences. These modified Q-values, called associative Q-values, are the estimations of possible
utilities gained over a subgame with respect to the lower level agents’game preferences. A kind of social
convention can be addressed in extensive form games providing the ability to better deal with multiplicity in
equilibrium points as well as decreasing complexity of computations with respect to normal form games. This
new process is called extensive Markov game which is proved to be a kind of generalized Markov decision
process. Tt is also provided a comprehensive review on the related concepts and definitions previously
developed for normal form games. Some analytical discussions on the convergence and the computation space
are also included. A numerical example affords more elaboration on the proposed method.

Key words: Multiagent reinforcement learning, extensive form game, normal form game, Nash equilibrium
points, subgame perfect equilibrium points

INTRODUCTION

Multiagent systems are a group of entities interacting
with each other and with a common environment,
perceiving with their sensors and act upon it through their
actuators. Internal interaction is a key point in most of real
world applications, especially those aroused during recent
years in the field of social problems (Weiss, 1999), robotic
teams, distributed control systems, collaborative decision
support systems, resource management, data mining, etc.
One of the most unportant 1ssues m this area s learming
when there i1s not considerable mformation on the
among agents.
Although the agents in a multiagent system can be
programmed with behaviors designed in advance, but it 1s
often necessary to learn new behaviors such that the
performance of the agent or the whole multiagent system
gradually improves (Stone and Veloso, 2000). This is
usually because of the complexity or insignificant
information about the environment and the effects of

environment and the mteractions

agents” behaviors on environment and other agents.
It causes a priori design of a good agent behavior
difficult, or even, impossible. Moreover,
environment that changes over time, a hardwired
behavior may become inappropriate.

m an

Various paradigms i the field of multiagent
learning was proposed such as policy gradient method
(Sutton et al, 2000), evolutionary learning (Panait and
Luke, 2005) and reinforcement learning among which
integration of game theory and reinforcement learning
seems to be the most promising solution. As a learning
method that does not need a model of its environment and
can be used online, Reinforcement Leaming (RL) has been
extensively used in single agent problems. Simplicity and
generality of the algorithms make RL attractive even for
multiagent systems, where agents know little about other
agents and the environment.

In most of initial studies, single-agent RL. were
applied directly without modifications. Such approaches
treat other agents in the system as a part of the
environment, ignoring the differences between responsive
agents and passive environment. A simplified version of
Q-learning to estimate agents” value-fimctions has been
proposed (Claus and Boutilier, 1998). This method fails to
converge n some difficult coordination problems, and
some improvements aiming to overcome these
problems were published (Kapetanakis and Kudenko,
2002). However, cooperative learning through sharing
sensation, episodes and leamed policies was
experimentally shown to outperform the independent
learning mn multiagent systems (Tan, 1993).
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The contribution of game theory to MRI. algorithms
has been reviewed in some papers. A critical survey on
some state of the art approaches were presented
(Shoham et af., 2003) resulting in four well-defined
problems in MRI.. They, later, tried to start a set of
discussions about MR, (Shoham et ., 2006). Most of
the review papers can be considered as comprehensive
reports on MRL methods. The most recent one has been
accomplished by Busonwm et al. (2008). They, first,
classified briefly recent developments on multiagent
learning from the basis, including direct policy search,
reinforcement learming, and game theory. Then, they
categorized the leaning algorithms with respect to the
types of tasks they can address ranging from fully
cooperative to fully competitive.

Generally, game theory provides a convemnent
framework to study a number of interactive agents trying
to maximize their outcomes which generally focus on
stateless (static) situations. They may be set to select
their actions simultaneously (flat) or make their decisions
sequentially (hierarchical). Simultaneous decision making
can be modeled through normal form games. Its
applicability is restricted due to a number of cumbersome
constraints such as equal resources, authorities,
requirements, etc. Nevertheless, normal form games
provide easier modeling capabilities which make it
mteresting for being used m multiagent
reinforcement learning. Hu and Wellman (1998) proposed
Nash-Q for general-sum Markov games with simultaneous
action selection. Unfortunately, their method is
guaranteed to converge only under very restrictive
conditions. Littman (2001} proposed a new method,
which relaxes these limitations by adding some
additional (a prior1) information about the roles of the
agents in the system. Wang and Sandholm (2002)
proposed a method that is guaranteed to converge with
any team Markov game to the optimal Nash equilibrium 2).
Conitzer and Sandholm (2003) presented an algorithm
that converges to a Nash equlibrium in self-play and
learn to play optimally against stationary opponents.

In some other approaches, a kind of sequential
decision making can be addressed while learning. The
premier one  proposed by Littman (1996), called
MinMax-Q. The game was supposed to be between two
successive fully competitive agents which latter was
partly modified by Asymmetric-Q (Kononen, 2004). In
asymmetric-Q, the process of learning was divided into a
sequence of two levels zero-sum game states between two
agents, so-called leader and follower. The game was still
fully competitive but the follower was restricted to select
its actions subjective to the leader’s preferences in each
game state which basically was proposed to deal with
multiplicity in equilibrium points. Tt was proved that
optimal action selection, i each game state, can be

accomplished via Stackelberg’ equilibrium point. The
encountered game state 1s called Stackelberg’s duopoly
game which is a special kind of extensive form of games.

Generally, when the game 1s played among several
agents with alternative action selection, in game theory,
1t 18 called extensive form game. Majority of applications
inmultiagent systems can be considered in extensive form
games which are not necessarily competiive. Even
though sequential decision making is more complex to be
used in MRL but, it has some key benefits due to its
hierarchical structure with respect to simultaneous
movements:

» Computation space i8 reduced due to hierarchical
structure. Tt is not necessary to model the decision
space of lugher level agents during action selection

+  Equilibrium peints are always in pure strategies,
(Osborne, 2000), which provide better convergence
properties

»  Computing equilibrium points 1s
backward induction algorithm

»  Many problem instances are inherently hierarchical.
This is true e.g., in semi-centralized multiagent
systems (Kononen, 2004)

easier using

As the main contribution, m this study, Q-leaming
has been extended to general-sum extensive form games
with perfect information. To better understand the results,
it is needed to provide more elaborative definitions on
previously used concepts i1 MRL, as a joint area in
reinforcement learning and game theory, which has been
enriched by some related concepts on extensive form
games. Self-interested agents sequentially decide to
maximize their rewards such that each agent knows about
other agents’ actions and rewards. After each action
selection, the game state 1s trimmed down to one of its
subgames. Agents maintain all other agents” Q-functions
together with therr own Q-functions. A new concept,
named associative Q-value, has been introduced, which
1s the estimation of the possible utilities gained over a
subgame with respect to subsequent agents’ preferences.

Agents will not need to bear n mind the higher level
agents” decision space (game preferences) during action
selection. They only need to know about the game
preferences in different subgames, the higher level agents
may decide on. This will not only decrease the
computation space, but also provide a kind of social
convention or communication which can better deal with
multiplicity in equilibrium points.

Greedy action selection based on associative
Q-values results in subgame perfect equilibrium points
while it is also possible to use other directed exploration
strategy such as Boltzmann. Exploring new strategies is
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another forte which is not clearly addressed in normal
form game based MRL algorithms.

This new learmng process has been named Extensive
Markov game and proved to be a kind of Generalized
Markov Decision Process. Finally, a numerical example
and a computer simulation have been given to better
present the method and the concepts.

PRELIMINARY DEFINITIONS

Learning mn multiagent systems i1s the process in
which less than fully rational players inspect for
optimality over time (Fundenberg and Levine, 1998).
Regarding Markov property, the whole process for
dynamic tasks can be divided into a mumber of static
situations in which agents have assigned to select one
action only. The encountered situation has been widely
explored in game theory. Game theory initially was
mtroduced for reasoming in economic theory, wlich later
has been widely used in social, political, and behavioral
phenomena. Tt provides the necessary tools to model an
interactive situation in which self interested agents
interact to gain more according to their preferences and a
set of game rules.

Definition 1: A game state is a situation among several
self-mterested agents which interact to gam more
according to their preferences and a set of game rules
such that each of them selects an action and the utilities
are assigned when there is no other agent to select its
action.

A game state can be presented m different forms
among which normal and extensive form games are mostly
used (Hu and Wellman, 1998).

Definition 2: A Normal game (with ordinal preferences) 1s
atupleI' = (P, X, R) consists of

s P={p.ps...pus 1s the set of players

« YX=1{0g, 0,. g} i1s the set of possible jomnt
actions 0, € (A, x A, x ... x A), where A, is the set of
admissible actions for agent i

R ={R | Ry Z-R} for each player assigns the
preferences over the set of joint actions

In normal form games, agents simultaneously decide
on their actions.

Definition 3: An extensive game with perfect information
is atuple ¥ = (P, X, f, R) where,

*  P={p.ps...DPus 1s the set of player

o X =1{0,0,.. 04 is the set of joint actions
called terminal  histories in  extensive form
game o, (A * A, x ... x Ay where A, is the set of
admissible actions for agent 1

¢ f(h) is the agent function that assigns an agent to
every sublustory h of a terminal history. (Assign the
priority in action selection)

*» R =1{R | Ry Z-R} for each player assign the
preferences over the set of terminal histories (joint
actions)

Any sequence h = (a, a,..., a,) with respect to a
terminal history o = (a,, a,..., ay) where m<N is called a
subhistory.

Definition 4: Extended Q-function is the agent preference
to select its actions with respect to other agents’
preferences.

In Q-learning based MR algorithms, an extended
Q-function assigned to each agent 1s defined as:

Q =[QQuen Qy]

Equilibrium concept: Insingle agent case with only one
decision malcer, it is adequate to maximize the expected
utility of decision maker. However, in games, there are
many players each of which tries to maximize their own
expected utilities. Thus, it 18 necessary to elaborate
solution concepts in form of equilibrium points in which
all the agents are, to some extant, satisfied and do not
volunteer to decide on another movements.

The 1dea of Nash Equilibrium (NE) solution 1s that the
strategy choice of each player is a best response to her
opponents’ play and therefore there is no need for
deviation from this equilibrium point for any player alone.

Definition 5: The action profile ¢ in a strategic game with
ordinal preferences 1s a Nash equilibrium if, for every
player i and every action a; of player i, 0" is at least as
good according to player 1’s preferences as the action
profile (a, 0",) in which player i chooses a, while every
other player j chooses 0 (Osbome, 2000). Equivalently,
for every player i,

R,(6)2R,(a,07) (1)

In accordance to the aforementioned defimtion which
is well suited for normal game, Nash equilibrium in
extensive game 1s defined as follows:

Definition 6: The strategy profile ¢” in an extensive game
with perfect information 1s a Nash equilibrium if, for every
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player i and every strategy & of player i, the payotf of the
terminal history R(o") generated by o is at least as good
according to player i’s preferences as the payoff R(a;, 0",)
generated by the strategy profile (a,, 0 *;) in which player
i chooses a while every other player other than i chooses
0", (Osborne, 2000). Equivalently, for each player i,
R,(07)2 R;(a,0",) (2)

In the aforementioned definition, there is no
assumption on the structure of the game, to be flat or not.
A method to deal with extensive form game is to model it
as a normal game, considering only the payoff matrix. The
resulting game 1s called a flattened game.

In order to take mto account the hierarchical structure
of extensive form games, subgame has been introduced
by which more reasonable results on equilibrium points in
extensive form games can be derived.

Definition 7: Let ¥ be an extensive game with perfect
information, with player function f (Osborne, 2000). For
any non-terminal history h of ¥, the subgame WY(h)
following the subhistory h is the following extensive
game.

* Players: The players in P

* Terminal histories: The set of all sequences h’ of
actions such that (h, h”) 1s a terminal history of ¥

* Player function: The player f(h, ") 15 assigned to
each proper subhistory h’ of a terminal history

»  Preferences: Each player prefers h’ to h” if and only
if (h, 1) is preferred to (h, h™) in ¥

Definition 8: A Subgame Perfect Equilibrium (SPE) 1s a
strategy profile ¢ with the property that in no subgame
can any player i do better by choosing a strategy different
from o', given that every other player adheres to o
(Osborne, 2000),

R,(0,(c"))zR, (0, (a,0")) (3)

where, Oy(0) 15 the terminal history consisting of h
followed by the sequence of actions generated by o after
h.

In a subgame perfect equilibrium every player’s
strategy is optimal.

Proposition 1: Every subgame perfect equilibrium is also
a Nash equilibrium.

Proof: If h=o, then O, (o) = O (o).

MDP
Single agent
Multiple states

Repeated game
Multiple agents
Single state

Markov game
Multiple agents
Multiple states

Fig. 1: Different frameworks used in remnforcement learming

The aforementioned proposition means that SPE are
a subset of NE, {Eq},,; €{Eq},; . There may emerge some
extra equilibrivm points i flattened games which are not
robust in steady state. This 1s the main reason of treating
extensive form games in their hierarchical form using SPE
(Osborne, 2000).

SINGLE AGENT REINFORCEMENT LEARNING

Reinforcement learning can be expressed in different
frameworks. A rough but informative categorization of the
learming model 15 depicted in Fig. 1. Fite Markov
Decision Process is the basis of most of the reinforcement
learning methods.

Definition 9: A Markov Decision Process (MDP) is a
tuple (S, A, R, T), where:

s Sis the set of all states

s A is the set of all actions

s R={RIR: 5xA - § is the reward function

o  T:8xA - A(S)is the state transition function

A(S) 1s the set of probability distributions over the set S.
The agent’s objective is to leamn a Markov policy, a
mapping from states to probabilities of taking each
available action, ™ : S x A - [0, 1], that maximizes the
expected discounted future reward from each state s:

VH(S) = E{fy + My + ¥ + |5, = 8,7
=E{r, + WV"(s,,)I5, =57 (4)

= En(s, a){rj + YZT:S,V’“ (S’)}

ach

where, T (s, a) 13 the probability with wlich the policy &
chooses action a_ £ A m state s, and v € [0, 1] 15 a
discount-factor. V7(s), is called the value of state s under
policy m, and V™ is called the state-value function for m.
The optimal state-value function gives the value of each
state under an optimal policy:
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V'(s)=max V" (s)
= maxE{r, + ¥V (s.)[s, =s.a,=a} (5)

= [?Ea.i(|:rs + VZTSS,V (s )}

Planning in reinforcement learning refers to the use of
models of the environment to compute value functions
and thereby to optimize or improve policies. Particularly
useful in this regard are Bellman equations, such as
Eq. 4 and 5, which recursively relate value functions to
themselves.

The value of taking action a in state s under policy T,
denoted Q(s, a), is the expected discounted future reward
starting in s, taking a and henceforth following m:

Q*(sa)=E{r,, + 1, + VL, .5, = s7]
=1V TEVH(S) (6)

=y I Y (s, e) Q7 (5a)
The optimal action-value function 1s,

Q'(s.a)=max Q" (s,2)

. R (7)
— 4y TomaxQ (520)
F4

It was shown finding the optimal policy 1s equal to
finding the optimal state-action value function through
the following recursive equation (Watkins, 1989),

Q(s,a)=(1-o)Q(s.a)+ oc(r: +max Q(s, a’)) ®
MULTIAGENT REINFORCEMENT LEARNING

Markov Games (MG) (Owen, 1995) is a generalized
framework that can be use to extend single agent mto
multiple interactive agents in multiagent systems.

Definition 10: A Markov game with perfect information 1s
atuple (G, P, &, R, T) where,

* (G 1s the set of all game states

¢ P={p,ps ..., Pyt is the set of player

¢ Y =1{0,0,.. 0. is the set of possible joint actions
0, € (A <A< xAy), where A 1s the set of admissible
actions for agent i

¢ R={R |R:G %X~ R}is the reward function

¢ T:G x X~ A(G) is the state transition function

Tt has been presented (Littman, 1996) that MG is
mcluded in a more general framework called Generalized
Markov Decision Process (GMDP).

Definition 11: A generalized Markov decision process is
a tuple (G.ZT.RN.,v.®®) where the fundamental
quantities are a set of games G, a finite set of actions o, a
transition function T:GXZ—A(G), a reward function
R:GxZ—N a next-state function N mapping GxX to
finite subsets of G, a discount factor 7y, a summary
operator @ that defines the value of transitions based on
the value of the successor game, and a summary operator
@ that defines the value of a state based on the values of
all state-action pairs (Littman, 1996).

One of the basic algorithms in multiagent Q-learming
is proposed by (Hu and Wellman, 1998), called Nash-Q.
Nash-Q was proved to be convergent to the unique
equilibrium point of the game. It provides the most
significant concepts in MRT, techniques based on normal
form games. Agents decide on their actions to reach the
equilibrium pomt of the current game state. Even though,
it is one of the basic methods in MRL, but some restrictive
assumptions hinder widespread use of it,

¢  Each agent computes the Nash point independently
which may cause divergence in the presence of
multiple equulibrium points

¢ FEach agent must record all the other agents Q-values.

¢ Nothing has been proposed to explore new joint
actions, (exploration vs. exploitation)

¢+ Computing the Nash equilibrium is very complex
when the number of agents increases

The proposed reinforcement learning is based on
well-known Q-learning.

Qi (gt,al,...,aN): (1 - cct)Q‘t(gt,al,...,aN) (9)
+ cct[rt‘(gt,al,...,aN) + v Nash Q‘t(g’)}

where, NashQ;(g") is the Nash equilibrium point value in
the next game state g' for the learning agent 1.

A wide class of the problems cannot be modeled
through normal form games. As it was previously
mentioned, it is not always proper to flatten an extensive
form games. Actually, MRL 1s a complex problem and
can be considered as a large scale system.
Conventionally, when the number of the parameters is
enormous, it is more practical to tackle with the
problem 1n a hierarchical form.

Sequential decision making, to some extent, has been
implemented in MRL. It was first proposed by Littman
(1996) where the structure of the game state has been
supposed to be in a special kind of two levels zero-sum
game with leader and follower. Tt was called Minimax-Q
which the process of learming was named Alternating
Markov Game (AMG). TLater, in Asymmetric-Q,
Stackelberg’ equilibrium pomt was used for jomt action
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selection. Tn the proposed method, the follower was
forced to pursue the leader, somehow deal with
multiplicity in equilibrium points. Some drawbacks in the
method are,

* Agents are divided only mn two levels, leader and
follower

¢ Generalization of the algorithm to a group of leaders
and a group of followers 1s not as easy as it is
supposed and needs more investigations

¢+ Nothing has been proposed to explore new joint
actions

¢ The equilibrium concept is only introduced for zero-
SUIM games

The last assumption is a very restrictive one, since
there are a few real life applications in which the leader
compete the follower. Majority of applications in
multiagent systems are in a hierarchical form which are not
necessarily competitive. However, the algorithm is
proposed based on Q-leaming,

Qo a)=(1- 00 ) Q(soa,a; ) o [ Rie,a.8) +ySE ()], =12
(10)

where, SE(g'") is the Stackelberg’s equilibrium value of the
next game g' for the learning agent 1.

In this study, Extensive Markov Game (EMG) as
another framework in MRL has been introduced as an
extension to AMG.

Definition 12: In extensive Markov game agents
sequentially decide on their actions which the process
can be explained as a tuple ¥ =(G,P,Z,R, T} where,

¢ (G is the set of game states

¢ P is the set of players ordered based on their priority
in action selection {Py,---Py)

¢« X=1{0,0,... 0} 1s the set of termimal histories
o, € {A A x .. xA, ) where A is the set of
admissible actions for agent i

« T 1is the state transition function, T:GxZ—A(G)
where A(G) is the set of probability distributions
over the set G,

* R isthe reward function R={R;|R; :GxZ >R}

The objective for the learning agent i is to select its
actions such that rewards over the whole game 1s
maximized. The game states in EMG are modeled in
extensive form games with perfect information which can
be presented as,

g g g
a0 < 1ol ¢ I
2208, 74104, 7T F 04

where, of is the action performed by agent i, at subgame
g*,1=1,....N which is in game state g"<{g",....g"}.

Agents’ rewards are influenced by two factors. One
of them 1s related to the way agents act to reach another
game state, T, and the second one is related to the
interaction among agents in a game states to reach one of
the possible equilibria, 7., . Learning happens over the
game states which 15 a Markov process. On the other
hand, decision making in game state is a semi-Marlov
process which 1s related to acting optimally. Actually, the
equilibrium policy for leaming agent i is a function of
possible histories, m, :h,xA —[01], where, h..; is all the
possible history ending to agent i-1, and A, is the set of
admissible actions for agent 1.

Finally, each agent is concerned with a composition
policy m=m <%, planming to maximize its expected
discounted reward over the set of games while interacting
with other agents to reach the equilibrium points.

E {ivtn (gk)lg”} (11)

k=0

where, 1,(g*) is the accumulated reward for learning agent
i at game state g*.

Rewards are calculated at the end of each game state.
This will not affect the learning algorithm, since by
definition, the leaming agent will not decide on any new
actions until the next game state.

)= {e () o ()] 12

where, ©'(g,) is the reward of agent i after agent j,
7=1,....N, selects its action in game g*.

In this study, it 1s assumed that agents will only gain
when the last agent decides on its action. In other words,

reward  function 15 introduced  such  that
{g*)=0 j=L..N-1.Thus,5(g")=r'(g*) .
State transittion of the cumrent subgame
£ie Gx A . xA for agent 1 1s,
ng:ZT(g’giﬁ) forall g€G, (13)

where, Tig'|£.5) is the probability that the game
terminates to € starting from & according to the set of all
possible sequences of actions §€ A;x...x Ay This kind of
model is called here, an extensive model in light of the
mults step model (Sutton ef al., 1999).

The Max operator 13 proved to be non-expansion
(Littman, 1996) and conventionally has been used to
game states. Tt is
necessary to introduce another operator to maximize
rewards ina game state.

maximize reward over now
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Definition 13: Associative Q-value is the expected payoff
gained by the leader of a subgame & by selecting an
action, over the possible set of followers® actions with
respect to their preferences.

Q¥ (E.a)= Y .. ¥ Bla,.a,

a1€ Ay anEAY

g.a,) (14)

where, a, € A,, &5 GxAX..xAy, is the current subgame
where agent i is the leader and P(a, ..a,8.a) is the
probability of selecting 2.3y by the subsequent agents
of the corresponding subgame after agent 1 selects a in
the current subgame &; and

ooy Pi(aM...aN gi,ai):l (13)
5] aneZ(Pn)
R (])=1 (16)

Based on the proposed concept, utilities (Q-values)
are propagated up through the hierarchies. Finally, each
agent 1s concemed with a set of associative Q-values
related to its admissible actions.

Lemma 1: Greedy action selection based on Associative
Q-values m generic games gradually converges to SPE.

Proof: Tt is trivial to presents the similarity of backward
mduction in finite horizon MDP in (Putermary, 1994) and
proposed associative (Q-values. Based on backward
projection, (Kohlberg and Mertens, 1986), the solution in
subgame,2; | is a part of the solution in the game, g.

Similarly, it was proved in other MRI, based
algorithms (Laslier and Walliser, 2005).

Associative Q-values are more advantageous than
SPE values in MRL, since it provides the possibility of

using exploration strategies such as Boltzmann.
Exploration strategies are not addressed in most of the
proposed MRL.

Learning agent i, at the end of each game state,
updates its extended Q-table. Recall that the game state 1s
the one with perfect mformation and the ligher prionty
agent can view lower level agents’ actions and rewards.
The proposed update rule for learning agent i is:

Q7 (g8t ) = (1- ) QF (8,808 ) (17)

[ g)+ySPEV( f{g AL ay) )}

where, SPE!(Q"(g’a,....a,)) is the SPE value of the it
player for the next game state 8.

The following algorithm can be used for the learning
with Boltzmann exploration,

(1) TInitialize:
T 1s big
All Q-tables are initialized to zero
The game 1s imtiated, g,
(2) Loop from =1 toN
Compute the associative Q-values for agent i,
Select an action based on associative Q-values
Play action
(3) Calculate the return values for the resulting game

state
(4) Update Q-table for each agent based on
Eq. 17
(5) Decrease T
(6) If the goal 1s not met goto 2
(7) End
ANALYTICAL DISCUSSION

Playing the equilibrium solution in game states 13 an
important 1ssue i multiagent learning system. This 1s due
to the theorem proved (Filar and Viieze, 1997), stating that
the Nash solution in a game state 13 a part of the solution
of the whole game. The aforementioned theorem is the
basic assumption in most of the proposed MRIL
algorithms.

Convergence issue: Tn Nash-Q it is proved that agents
converge to the unique equilibrium policy which is mixed.
In Asymmetric-Q, the solution is also proved to be
convergent. Generally, convergence in extensive form
game 1s faster than the normal form game, since the
equilibrium points are pure, while it 1s not always true in
normal form games.

Theorem 1: Every finite extensive game with perfect
information has a pure strategy Nash equilibrium point
(Nash, 1951).

Convergence in EMG can be verified through Lemma
2 which here is proved form a generic game (Laslier and
Walliser, 2005). The convergence in GMDP is presented
(Littman, 1996).

Lemma 2: Extensive Markov game with SPE action
selection 18 a generalized Markov decision process.

Proof: The composition policy for each learning agent can
be considered as:
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m 1 [Gx A —]01]
m, [Gx A |2 A, —[01] (18)

Ty ([Gr AL x Ay |x A, = [01]

where, & = GxA,..x A, are the subgames that agent i may
lead. Consider the game states of the GMDP to be
G= U_1 . and the action space U=H]N=1A1’ reward
function R={r(g)....5;(g)} and transition function

1_[11 ., - Tor any game policy, T, the state-value
functlon can be written as:

[ttt g =g
:En[rkJr,YvV—in(ng)‘gk :g;ﬂ:} (19)

- Snfgt,o) 7le') 7T 80) W (")

e Zkal

Vi{g)=E

where, n(g*, )= (g*,1,)%m, (85,8, ). xm, (8,2, ), such that
0=(a2;2)  (Recall that, r/(g,)=0 j=1..,N-1)

Equivalently:

QUle0)=n(g") TR T(e™ Ig" o) Zrle o) (e, 0)
(20)
=1 )*YET g | g5, o) Vi {(g™)

Biel

The optimal subgame value function for each agent
is the optimal value if the SPE is selected,

() VﬂspE(g)
_E’%PE[ (2" )+ V= (g k“)\g“:gsﬂsps} (21)
=SPE! (Q')

According to Lemma 1, greedy action selection based
on associative Q-values will result in subgame perfect
equilibrium which is the optimal solution i extensive form
game (Defimtion 8). Thus,

Q(g"0)=r(e") T g0 Vilg")  (22)

Now, the well-known Q-learning can be used at the

end of each game state,

Q7 (82,024 ) = (1= ) Q (28),..2y ) (23)
[r.(g)HSPEV(Q“( enty)) ]

Tt is now necessary to prove that the relevant
operator V'(g)=8Q"{g.2) is a non-expansicn operator.

Theorem 2: SPE operator is non-expansion, where,

Vi (e) = SPE] (Q)
=®Q(g.2,,...0y)
Proof: For an operator to be non-expansion, it is sufficient

to satisfy the following conditions. Given fumetions f and
f' over a finite set 3,

rgi}l(flf(x)sx?xf(x)STEagf(x) (24)
BE(x) - (%) < maxf (x) () (25)

where, for the learning agent 1,

f(x)=Q(go) and

29 =SPE/ ()

The distance norm for the value function 1s defined
as:

vt = v2 | = sup |V (x) — V2 (x)|

That can be extended to Q-function, as well
(Littman, 1996),

10 - supmax| Qi g.0) - Qi (e.0)

The first constraint 1s a trivial. As it was proved in
(Littman, 1996), the simple max operator is a non-
expansion, thus, for any learning agent 1, i=1,... N,

|#Q - &Q = swp|@Q (2.0)- 2’ (2.0)
_Sup‘SPEV ' (g.0)) - SPE! (@' gc))‘
a)

<sup|NashV 1( ) NaShv( ‘(g G))|

Due to proposition 1 which implies {Eq},, ={Eq},; .
Now, 1t suffices to prove that Nash operator 1s
non-expansion, which has been previously proved in
lemma 16 (Hu and Wellman, 2003).

Thus, the operator 1s non-expansion and

H®Q' —aQ? H < sup‘NashfI ((3' (g,o)) — Nash,' (QZ (g,c))|
g
=@ (e.0)- Qe 0)

Computation space: Consider a game G of N agents with
action set, A. All agents need to know about other agents
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especially to update its Q-function. Thus, each agent has
to know all about the other agents. This results in
extended Q-table, Q(g,a,,...a,)=[Q, .. Q;], with the size
of Nx|G|x|A[". The computation space in both extensive
and normal form game is equal. But, Nash equilibrium
computation in normal form game is not easy and it is still
an open problem which suffers complex computations. On
the other hand, backward induction in extensive form
game, especially for the so-called game state, can be
easily used.

The hierarchical structure reduces the action space.
Agent i in each game state knows what the higher level
agents have done. Thus, it only needs to decide based on
N-1+1 Q-table [Q .. Qy]. For example, the first agent
should decide based on all other agents Q-values. The
second agent action space is reduced to (N-1)x |G|=|A[".
The same reduction in action space can be deduced for
the later agents as well. Actually, as the agent is placed
lower in the hierarchy, its action space is reduced.

Simple example: Consider a game in which three agents
are interacting. Each agent has only two possible actions.
The environment is divided into 10 states. Thus, there
may be 10 possible game states. Consider a game state
presented in Fig. 2. There are 7 subgames for each history
including h=5 in extensive form game. & is one of the
two possible subgames which agent B may lead
Qp"(2,.9,) is the associative Q-value if agent B plays a,.
Tt can be calculated simply in each game state,

hse o [ q31
§.2)=P =
C ( 375 ) 111 B B

where, P, is the probability of agent C plays its first
action if both agent B and agent A plays their first
actions.

LT
Oz
Qs

Fig. 2: A three player extensive game. Each player has
two actions. Presented numerically as the outcome
of the terminal history

where, & is the right hand subgame and B, is the
probability of agent C plays its first action if both agent B
and agent A plays their first actions.

Equivalently, for agent C’s second action:

QcAsc (épaz) = Pﬁz = q31qj'2q32

Note that, these are the associative Q-values for only
one of the subgames which agent C may lead. The other
assoclative Q-values can be calculated similarly for other
subgames.

Thus,
corresponding to its first action 1s,

assoclative  Q-values for agent B

e (s B B
Q" (85,3 ) =Py + P

Pt Pt P pe
_ qzlpltfl x[ 2, P }r qzzpﬁz x[ wm o, im
Oy T2z Ay T On tdzm Gzt

The other associative Q-values can be calculated in
a same manner.

The same can be done for agent A’s associative
Q-values.

QiSE(gﬁJ = QQ:E(QT 4 )[PFMH(QM)"' Pﬁzn(qu)]
+Q§1§E (gz’ az)[P1§1H(Q13) + szl_[ (QMH

Where:

N P Pe
II(q) = Q5 (8.2 qu[im 1 }
(@)= Q& (Eom) q+ds 9+

+QAsc(g a )qu{ chzl + PEZE :|
B, \B2:%2
q+4q; 9t+9;

Even though, the computations seems a little
cumbersome m extensive form game, but they are easy to
drive with respect to the fact that estimating Nash
equilibrium point in normal game 1s still a complex issue in
game theory (Daskalakis et al., 2005).

CONCLUSION

Usually, m MRL algorithms, games are supposed to
be in normal forms for general-sum games. On the other
hand, most of real life applications are mherently
hierarchical, thus, extensive form games have been
investigated so much in game theory.

In this study, Q-learming had been extended to be
used in extensive form games with perfect information,
using subgame perfect equilibrium points. This results in
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a new version of Markov games, called extensive Markov
games. A new concept, called associative Q-values has
been mtroduced which can be used m action selection
which provides an estimation on SPE action. Associative
Q-values are the probability of reaching a joint action with
respect to subsequent agents’ preferences. Using the
Boltzmann operator during associative Q-values
computations, a trade off between exploration and
exploitation can be established which cannot easily being
umplemented in normal form games. Finally, it was proved
that the proposed extensive Markov game is a generalized
Markov decision process. It was also discussed that the
action space 15 reduced in the proposed extensive Q-
learning with respect to normal form game based

algorithms.
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