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Abstract: In this study, non-cooperative dynamic game to resolve conflict among common natural resources

operators 1s represented. Bidestan aquifer, where two municipal and agricultural operators are sumultaneously
pumping common acuifer, is chosen as case study. Based on the cooperation among aquifer operators, aquifer

operation iz modeled by 3 scenarios (1) non-cooperative static game, (2) non-cooperative dynamic game and
(3) cooperative game. Results show the benefits of cooperative model are more than non-cooperative models.
Employing proposed dynamic game has lead to 25% more extraction than static game as well.
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INTRODUCTION

In common natural resources operation generally and
in groundwater extraction particularly, there are so many
evidences that have proved possibility of tragedy of
commons (Clarke ef af., 1997). As the optunization models
maximize one or more object to satisfy just one Decision
Maker (DM), practical results arising from applying
optimization medels in competitive situations, have not
met the expected success.

Game is called to the situation in which there is more
than one DM and decisions of each DM affect the rest of
DMs’ payoff. Modem game theory may be said to have
begun with the work of and Von Neumann and
Morgenstern (1944). Next major development was John
Nash's modification of the Von Neumann and
Morgenstern’s (1994) approach. Nash (1950) formally
defined equilibrium of a non-cooperative game to be a
profile of strategies, one for each player in the game.

Many researchers have applied non-cooperative
game to conflict resolution among common natural
operators. Transboundary fishery management (Cave,
1987, Fisher and Mirman, 1992), air pollution and
environment protection (Breton et al., 2006). Nakao et al.
(2002), analyzed potential gains from cooperation in the
withdrawal of water from the Hueco Bolson aquifer.
Salazar et al. (2007) applied game theory to a multi-
objective conflict problem for an aquifer in Mexico, where
economic benefits from agricultural production should be
balanced with associated negative environmental impacts.
Rubio and Casino (2001) distinguished between cost and
externalities by analyzing two equilibrium concepts, open

loop Nash and stationary Markov feedback in nonlinear
strategies to characterize private extraction. Msangi (2006)
studied asymmetric external effects on aquifer operators’
behaviors. Coppola and Szidarovszky (2004) analyzed a
two-person conflict, where a water company and a
commurmnty are the players and water supply and health
risk constitute the payoff functions.

When players interact by playing a static game in
finite stages, the game 1s called a stage dynamic game. In
this study, a non-cooperative dynamic game was
developed to imply in conflict resolution among aquifer
operators. In most of the mentioned study in groundwater
extraction to reduce calculation content, it has been
assumed that changes in the water level are transmitted
instantaneously to all users. Most of the researches on
conflict resolution among common natural resources
operators have applied static game theory, but it seems
that dynamic games are more compatible with the fact. In
this study to simulate the exact effects of DMs” decisions
on groundwater table fluctuation, the well-known Tiess
Well equation was employed.

The proposed model 15 developed based on the
earlier studies of Mangasarian and Stone (1964) and
Bellman (1957). Solution to static games was represented
by Mangasarian and Stone (1964). Bellman (1957)
represented dynamic programming for change complex
equation with many variables to many equations with little
variable (Denardo, 2003).

In this study, based on the amount of cooperation
among  the operators, common natural resources
operation is modeled in 3 scenarios: (1) non-cooperative
static games, (2) non-cooperative dynamic games and
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(3) cooperative games. Proposed scenarios are applied to
conflict resolution among common aquifer operators in
Bidestan area i Iran. In this area, two municipal and
agricultural operators are simultaneously pumping
common aquifer to provide potable water and irrigate
wheat fields, respectively.

NON-COOPERATIVE STATIC GAME

Game theory 15 a mathematical method for analyzing
strategic interaction. This theory would be useful when
two or more DMs with conflicting objects try to decide on
a common goal.

Here, we briefly review the equilibrium solution to
the non-cooperative static game. Let I and II denote
two players and M, = {1..m;} and M;; = {1..m;} be the
sets of all pure strategies available, S;={x= R |e¢"x =1} and
Sy ={yeRi=|e"y=1} are strategy spaces and x and y are
mixed strategies of players T and TI, respectively, e is the
unit vector and T denotes the transposition of the vector.
When player I chooses a pure strategy 1eM, and
player II chooses a pure strategy jeMj, the payoffs of
players T and TT are p' and p", respectively. The bi-matrix
game is defined by BG = {3, S, A, B}, where, A and B are
the players T and IT’s payoff matrices, respectively.

Definition (equilibrium solution): (x*, y*) €S, x 3; 13 said
to be a Nash equilibrium strategy of bi-matrix game BG
ifxT Ay* <x*T Ay* ¥ x € S;and x*" By <x*TBy*, ¥y e
Si-

All the mixed strategies of player i that satisfy the
relation above are called the best response of player 1 to
the opponent. Therefore, the mixed strategy equilibrium
point 1s a vector in which each player takes action the
best response to his/her oppenents. No player mtends to
change the strategy in case that all players play on this
point and the vector above would be the equilibrium
point. Based on the Nash Existence Theorem every
bi-matrix game has at least one equilibrium solution
(Owen, 1995), which will be found by following theorem:

Theorem (Mangasarian and Stone, 1964): A necessary
and sufficient condition that (x*, y*) be an equilibrium
solution of BG 1s that it 1s a solution of the followmg
quadratic programming problem:

max X (A+Bl)y-o-p
st (L
Ay<oe, B'x<Be, =xeS",ye%, wfeR
Further, if (x*, y*, &*, B*) is a solution to the problem
above, thus:

pr=x*" By* and xT(A+B)y*-o*B*=0 (2)

DYNAMIC GAME AND SOLUTION

When players interact by playing a static game in
finite stages, the game 1s called dynamic game. In every
stage of such a game, players simultaneously move
knowing the moves in the earlier stages.

Development of dynamic game: Let us consider non-
cooperative dynamic game for two players. The decisions
of players T and 1T at stage t are expressed as
Dle M, and Dfe M. Assume that the initial system state
at stage t be R, and the maximum and minimum possible
values of it be R™ and R™, respectively. The players’
payoffs at stage t, denoted by p} and p!' for players I and
IT, respectively, depend on the current system state R,
player 1 and player II's decisions, so that:
p{:f(Rt,D{,D]tI) and p{I:g(Rt,D{,D]tI) where f and g are
desired utility functions for players I and II, respectively.
Each player chooses optimal policies to maximize his/her
utilities all over the stages with regard to his/her
opponent’s probable action. Players’ optimal decision at
stage t will be a decision that leads to the maximum payoff
to the end of the plamning horizon for lhim/her. In other
words, at each stage both Eq. 3 and 4, should be satisfied
simultaneously:

Ur(R, DLDP )= sl + U (R,0oDL, DE)) )

t+1

U7 (R, D7D )=mgx{ pf + UZ (R, D2 ) ()

t+l

where, U and U are the maximum expected cumulative
payoffs for players T and IT from stage t to the end of the
planning horizon, respectively. I and D" are the optimal
decisions of players I and II, respectively at stage t as
well. Attention to the right hand side of equations above
shows that players’ payoffs consist of two components:
the first one 1s the current payoff and the second 1s the
future payoff.

Solution to the dynamic game: To solve the stage
dynamic game, the combination of dynamic programming
and solution to the static games are employed. Dynamic
programming is a theory extensively adopted by Bellman
(1957). Programming starts with the final stage t T For
all players’ decisions, De} €M, i=Iand I, the players’
payoff matrices are created. By solving each of static
game by Eq. 1, the optimal decision of players I and II,
Dy and DI | respectively, are obtained for each possible
system state. At staget = Tr1 for all players’ decisions,
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the current players’ payoffs are obtained. Since, the
system state at the end of stage t = Tr1 15 equal to the
beginmng of the next stage t = T; and players’ optimal
decisions at stage t = Ty, have been defined previously,
s0, by addmg the cumrent and future payoffs, the
cumulative payoffs are created at stage t = Tr-1. By
solving this game, the players make a decision which
leads to the maximum payoff from stage t = T1 to the final
stage. The mentioned process continues till it reaches the
first stage t = 1.

SCENARIOS OF AQUIFER OPERATION

Scenario 1: Non-cooperative static game: In this scenario,
1t 18 assumed that the players monthly decision 1s defined
by myopic policy. In other words players are not long
sighted and ther monthly decision 15 just to reach
monthly compromise. Therefore during the operation
stages, players should solve T; mdependent static games.
If B denotes the payoff of player i at stage t, Eq. 5 shows
the interaction of operators with each other:

fort=1:T,
fori=TII
max pi (5)
Dield;
end
end

Scenario 2: Non-cooperative dynamic game: In this
scenario the goal of each operator is getting the maximum
and possible benefit at the whole stages of operation and
at the same time watching the probable moves of the
opponent.

Scenario 3: Cooperative game: To better evaluation of
before conflict resolution scenarios, another scenario with
the aim of optimization of aquifer operation was prepared.
The objective function of this model is maximizing the
total extraction of players during the whole stages of the
game. In other word, it is supposed that instead of two
DMs, one DM is the owner of the wells and try to
maximize the whole extraction of them:

max {E} (! +p?>} (6)

(D{eMy) and (DeMy) | 15

CASE STUDY AND DECLINE EQUATIONS

Figure 1 indicates the position of Bidestan and the
wheat field around it. This city is located at 150 km to the
North-west of Tehran, the capital of Iran. Some of the
potable water of this city, with 10000 inhabitants, is
provided with M1 and M2 wells. The water for wheat
fields 138 drawn from pumping Al to A7 wells. To make
the calculation easier, one municipal equivalent well
(ME) instead of M1 and M2 and one equivalent
agricultural well (AE) mstead of Al to A7 are used.
The equivalent of the municipal pumping rate is
Qe = 1500 m* day ™" and the equivalent of the agricultural
pumping rate is Q, = 2000 m’ day ™.

First and second rows of Table 1 shows monthly
value of municipal and agricultural operators. Third row
indicates the monthly increasing level of groundwater
table fed by precipitation.

The planning period is based on a one-year scale.
The set of pure strategies for operator 11s a discrete
one which including ten elements, M; = {0, 10%,...100%}
i€ {1, 1T}, where symbols T and IT stand for municipal and
agricultural operators, respectively. Groundwater level at
the beginning of each month determines the system state
at the beginning of each stage.

Operators payoff at stage t, depends on the current
system state, operators’ decisions and the amount of
monthly demand, so that: p, = min{De < Q,,Demand,) (), is the
pumping rate for player I, Demand, is the demand of
operator i at month t. To aveid the aquifer overdraft if
hi,, <0 thus punishment is enforced on the operator i. The
amount of drawdown m the groumdwater table at the end
of each month is calculated by Tiess Well equation
(Maidment, 1993):

+
~

L

-
-
-

Fig. 1: Position of municipal and agricultural wells

Table 1: Monthly demand of operators (m’ day ") and groundwater table incensement at Bidestan aquifer (m)

1 2 3 4 3 6 7 8 9 10 11 12
Municipal operator 900 1000 1000 1200.0  1500.0 1500.0 1200.0 1000 1000 1000 900 1200
Agricultural operator 1500 1500 1000 200.0 200.0 500.0 1000.0 1500 1500 500 200 200
Inflow 2 2 1 0.5 0.5 0.5 0.5 1 2 2 2 3

2158



J. Applied Sci., 9(11): 21

Tiess well equation: s! = L iDe‘th‘ X W (u')
4nT ia t
1.12

dok

o
X

i

L=

x
dx, u

= T
W(u‘t) = ot:S—
up ]

5
9

where, 8; is the amount of water decline in well 1 at month
t, 1; is the distance from the point at which the decline is
measured to well i is 1000 m, T is the aquifer transmissivity
equal to 432 m* day ', D is the duration of operation with
the fixed pumping rate equal to 30 days and S; is the
specific storage coefficient equal to 4x107",

RESULTS AND ANALYSIS OF
EQUILIBRIUM POINTS

Here, we analyze the results arising from different
scenarios. Table 2 and 3 explam the
extracted water, Fig. 2 and 3 show the equilibrium points
and Fig. 4 and 5 shows the changes on ground water
basin, respectively in the locations of municipal and
agricultural operating wells.

Comparison and analysis of tables and figures above
shows as the following:

amount of

According to Table 2 and 3 the average of
obtained water by players m scenario 3 1s
more than scenario 1 and 2. The reason of this
matter is because of the cooperation between the
two operators. As I scenario 3 extracting the
maximum amount of water by two operators are
assumed as the goal function, so the players
cooperate with each other to achieve a collective aim.
In this scenario the collective aims of operators is
prior to mdividual aims

Tn scenarios 1 and 2 to resolve the conflict among the
operators, individual interests are considered.
According to Table 2 and 3 the amount of obtained
water arising from scenario 2 1s more than scenario 1.
In scenario 1 the operators on the basis of monthly
needs

Decision

and also the probable movements of  Fig

the opponent choose a decision that leads mto the

Table 2: The amount of extracted water by municipal operator in different scenarios

56-2161, 2009

individuals benefits at the mentioned month. But in
scenario 2 the players in addition to watching the
probable moves of opponents analyze the effects of
current decisions on acquired water on the oncoming
months and take decisions that require more
extraction at the sum of current stages and future
stages

Comparing Fig. 2-5 show that in scenario 1 mumnicipal
and agricultural operators without considering the
effects of current decision on future payoff tries to
extract water from aquifer. The process of aquifer
extraction in scenario 1, emphasis on this fact that as
long as possible the operators tried to extract water
from the aquifer. In other word, in scenario 1, players
obey myopic policy. In this scenario obtaining water
at the first half of the year 1s more than the second
half of the year. But in scenarios 2 and 3 water
extraction is done gradually throughout the year with
the monthly need of operators

Generally, the results show that cooperative model
has more profits for the group of players. But we
should emphasize that the operation on the base of
optimization 1s not applicable. Because this method

=¥ Scenario 1
-0 Scenario 2
=A= Scenario 3

1.0+
0.94
0.8
0.74
0.6+
0.54
0.4+
0.31
0.24
0.11
0.0

"7 8 9 10 1 12

Time {month)

. 2: Monthly decision of municipal operator in
different scenarios

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 Average
1 900 1000 1000 1200 500 0 0 167 333 333 500 833 563.88
2 500 833 833 1200 1333 333 167 667 1000 667 667 1200 783.33
3 900 1000 333 333 1333 333 1167 667 1000 667 667 1200 800.00
Table 3: The amount of extracted water by agricultural operator in different scenarios

Scenarios 1 2 3 4 3 6 7 8 9 10 11 12 Average
1 1500 1500 1000 200 200 500 444 222 444 444 200 200 571.28
2 1111 1500 667 0 0 222 667 1333 1111 500 200 200 625.93
3 1111 1111 889 200 0 222 889 1333 1111 500 200 200 647.22
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0.94 -%- Scenario 1
-0 Scenario 2
0.8 - Scenario 3

Decision
[~
Lh
1

1 2 3 4 5 6 7 8 % 10 11 12

Time (month)

Fig. 3. Monthly decision of agricultural operator in
different scenarios

151 =% Scenario 1
-0 Scenario 2
-A- Scenario 3
124
g
2 9
g
-
3_
0_

1 2 3 4 5 6 7 8 9 10 11 12

Titne (tnotith)

Fig. 4 Monthly fluctuation of groundwater table in
mumnicipal well in different scenarios

is assumed on the basis of cooperation among the
operators, but it is possible that the operators don’t
keep their words on the agreement or by optimization
model be spoiled the mterest of one of the operators
on behalf of other operators. As it was said in
introduction, despite having less benefit for the
players, using non-cooperative conflict resolution
model 1s a necessity. There 13 no need to the
agreement of operators with each other but logical
operators follow the operation rules which arises
from non-cooperative conflict resolution models.
Results show that among the non-cooperative
resolution meodels, the results of the
(scenario 2) on providence of

conflict
proposed  model

15+
=M= Scenario 1
-0 Scenario 2
12- -A Scenario 3
g
5 9
g
E 9
3_
c L} T L) L] L} L L AL AL L] 1
1 2 3 4 5 6 7 8 9 10 11 12

Time (month)

Fig. 5: Monthly fluctuation of groundwater table in
agricultural well in different scenarios

operators and in addition to conflict resolution
among the operators, there 1s a little difference with
the results of cooperative model in a way that the
differences of suggested conflict resolution and
cooperative model in the case study 1s 3%

CONCLUSION

In this research, the dynamic conflict resolution is
presented on the basis of compilation of static games
study and the dynamic programming. The theory of static
games for conflict resolution among operators and
dynamic programming for transferring players payoff from
one stage to another stage 1s used. This model application
1s in long term and mid term programming of conflict
resolution for common natural resources. The proposed
model 13 applied for contlict resolution among municipal
and agricultural operators from Bidestan aquifer, which 1s
located in Tran. To analyze the effectiveness of the
proposed model, the static non-cooperative and
cooperative model on the Bidestan aquifer were applied
also. Results showed that among the above scenarios,
cooperative model has more benefit for the players but in
practice the possibility of using cooperative model 1s less.
The results show that in non-cooperative conflict
resolution the results of the proposed model on the basis
of operators” providence has a little difference with the
results of cooperative model.
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