——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 9 (12): 2218-2227, 2009
ISSN 1812-5654
© 2009 Asian Network for Scientific Information

Optimal Bidding Strategy of Power Generating Companies
with Consideration of Load Forecast Uncertainty

'S. Akbari, 'M. Kabiri and N. Amjady
"Faculty of Engineering, University of Kashan, Ghotb Ravandi Blvd., Kashan 87317, Iran
“Semnan University, Semnan, Iran

Abstract: This study presents a new method for calculating the optimal bidding strategies among Generating
Companies (FENCOs) in the electricity markets with the assumptions of imperfect competition and complete
nformation and with consideration of uncertainty in load forecast The parameterized Supply Function
Equilibrium (SFE) is employed for modeling the imperfect competition among GENCOs in which proportionate
parameterization of the sole and the intercept 15 used. A pay-as-LMP pricing mechamsm 15 assumed for settling
the market and calculating the GENCOs' profits. The fuzzy approach is utilized for modeling the uncertainty of
load forecast and the result is compared with probabilistic approach. A nine GENCOs test system is used to

show the efficiency of the proposed method.
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INTRODUCTION

In recent decades, the electricity supply industry
throughout the world has been moved from nationalized
monopolies mto competitive markets. Electricity 1s
evolving into a distributed commeoedity m which market
forces are bound to drive its price and reduce the net cost
through increased competition. In such a market, the
existence of an independent entity called Independent
System Operator (ISO) is necessary. The ISO 15 a
regulatory organization and one of its responsibilities is
to balance the network in a manner that maximizes the
welfare of the industry as a whole (Kirschen and Strbac,
2004; Shahidehpour et al., 2002).

In a restructured electricity market, each Generating
Company (GENCO) submits bids to the ISO with the goal
of maximizing its own benefits. So, each GENCO tries to
establish a suitable bidding strategy to maximize its
potential profit (David and Wen, 2000). Finding the
optimal bidding strategy of GENCOs depends on the type
of competition. In the perfect competition, all of the market
participants are called price takers and don't have the
ability to influence the market price through their
individual actions. Developing bidding strategy in perfect
competition 1s based on price forecasting. Forecasted
price will be used in a Price-Based Unit Commitment
(PBUC) program for determining the bid that maximizes
profit. In Arroyo and Conejo (2000), Li et al. (2002) and

L1 and Shahidehpour (2005b) a determimistic PBUC was
applied for developmng bidding strategies. But due to the
uncertainty in equipment outages, fuel prices and other
price drivers, it could be difficult to forecast market prices
accurately (Amjady and Hemmati, 2006). However,
because of direct impact of the precision of market price
forecasting on PBUC solution, it would be very important
to consider the market price uncertainty. Mont-Carlo
Simulation (MCS) 1s utihized (L1 et al, 2007) to generate a
set of discrete (deterministic) market prices based on
forecasted market prices and then the bidding curve is
constructed with the goal of maximizing the expected
payoff.

There are several approaches to analyze the problem
of developing optimal bidding strategy in electricity
markets with imperfect competition. They could be
categorized into non-equilibrium and equilibrium models
(L1 et al., 2007). The basic idea in non-equilibrium models
is to use an approximate model for analyzing the impact of
a GENCO's bidding strategies on market clearing price. For
example, an ordmal optimization method was used
(Guan et al, 2001) to find the good enough bidding
strategy for power suppliers. In equilibrium models, game
theory concepts are utilized to simulate bidding behaviors
of GENCOs. The solution of this game, if it exists, 13 the
optimal bidding strategy of each GENCO and represents
a market Nash Equilibrium (NE) which means that each
GENCO's profit will reduce if it unilaterally changes its
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bidding strategy while other GENCO's bidding strategy
remain fixed. If there is no collusion and each player's
payolf are known to all players, then the optimal bidding
strategy problem could be considered as a non-
cooperative game with complete information.

In recent research, the strategic bidding problem is
formulated as a bilevel optimization problem using the
Supply Function Equilibrium (SFE) model for modeling the
inperfect competition among GENCOs. In this bilevel
optimization problem, the upper level sub-problem
maximizes the individual GENCOs' payoffs and the lower
sub-problem (convex quadratic programming) solves the
1S0's market clearing problem. Weber and Overbye (2002)
represented the problem as a bilevel optimization problem
and utilized price and dispatch sensitivity information,
available from the OPF solution, to determine how a
marlet participant should vary its bid in order to increase
its  profit. Via a bilevel optimization technique and
Karush-Kuhn-Tucker (KKT) complementary conditions,
Hobbs et al. (2000) transformed the strategic bidding
problem to a nonlimnear programming model or, more
specifically, to a mathematical program mvolving linear
complementary constraints. Alse Li and Shalidepour
(2005a) utilized the primal-dual interior point method and
sensitivity functions to solve this bilevel problem.

One of the common uncertainties in equilibrium
models of imperfect competition markets is the uncertainty
of load forecasting. In fact, forecasted load has the direct
impact on the solution of the game and it will be very
important to be considered. There are two approaches to
handle this uncertainty: probabilistic approach and fuzzy
approach.

In this study, a fuzzy approach for modeling the
uncertainty of load forecast in imperfect competition
market is developed and its result is compared to
probabilistic approach. In probabilistic approach, it's
assumed that future demand 1s normally distributed and
each player attempts to solve a Chance Constrained
Problem (CCP) (Chouchman et al, 2005). In fuzzy
approach, possibility distributions are used for demand
values in the future (Rosado and Navarrov, 2004; Popovic
and Popovic, 2004) and fuzzy game theory 1s utilized for
developing the optimal bidding strategy of each GENCO.
Also, the bilevel optimization model, applied by Li and
Shalidepour (2005a), or equivalently, the Mathematical
Problem with Equilibrium Constramts (MPEC) model
applied by Hobbs et «l. (2000), is employed for
developing optimal bidding strategy for competitor
suppliers participating m the Day-Ahead (DA) energy
market. In this market, it's supposed that the ISO uses a
DC Optimal Power Flow (DC OPF) to clear the market after
collecting bids and pays the suppliers under pay-as-TL.MP

pricing. Suppliers are assumed to bid affine non-
decreasing  supply Strategic
represented via a parameterized SFE model andthe x & y
parameterization techmque 15 considered for the SFE
model in which the suppliers can manipulate the slope and
the intercept proportionally.

curve. behavior 1s

Market assumption: Here, supply curves of the energy
are restricted to be affine and non-decreasing. An SFE
model is adopted to represent the strategic behavior of
the suppliers. If an SFE model 1s chosen, then the supply
function 18 m the form of x + y - P. Each GENCO can
choose different values for x and y which are referred to
as strategic Four  parameterization
techmques for strategic variables are considered,
including x parameterization, y parameterization, x o y
parameterization and x, y parameterization. Baldick (2002)
showed that the parameterization effect on the market
results 1s significant. For sumplicity, it's supposed that
each GENCO has an equivalent cost function of its own
generators and will submit a bid to the TSO according to
the following linear supply function (Wood and
Wollenberg, 1996):

variables.

Bid (P) =k . Mec, =k, . (2. ¢, .P,+b) (1)

where, Bid (P,) 1s bidding price of GENCO 1 for producing
the power of P, and k is bidding strategy of GENCO i
(a real mumber). The value of k; 1s close to 1 for price
talkers in equilibrium points.

Market clearing mechanism (lower level sub-problem):
The market clearing mechanism is based on the
maximization of the declared social welfare, or
equivalently, the minimization of the consumer payments
subject to transmission and suppliers physical
constraints. Accordingly, Locational Marginal Prices
(LMPs) are calculated as:

min g{ k;+(2-3,-P +b)-P, (2)
s.t.
Qp-P+ X T-YT,=0 VieN (3)
e
i%sqm Zg-Ty=0 ¥mel (4
PSP <P VieG (5)
0T <TM  vije A (6)
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where, Hq. 2 represents the total cost of providing energy
which depends on the bids submitted by the suppliers.
Equation 3-4 state the Kirchhoff's current and voltage
laws, respectively (DC load flow  formulation).
Equation 5-6 specify the supplier capacity and the line
limits, respectively. To avoid non-convexities in Eq. 2-6
due to 0-1 Unit Commitment (1JC) decisions, the suppliers
are assumed to take the 0-1 states as given based on the
UC results (Haghighat et al., 2007).

Forming the KKT conditions (Wood and
Wollenberg, 1996) for the primal problem Eq. 2-6 and
using dual variables p, 7, A and v, the following nonlinear
complementary formulation of the primal problem
(by dropping indices) is obtained:

0<P™ —-P 1 p=20
0P -P™ | —h+p+t disgk)(diag(d-a)P + b)> 0

0<T™ -T L ¢.=20 )
0<T 1 A"TA+n+RTyz0

A free Qp-P+AT=0

v free RT=0

where, matrices A and R were introduced earlier.

After solving Eq. 7 with respect to the strategy of
each GENCO and calculating the dual variables, the
following results will be obtained.

Lemma 1: The LMP and accepted power of each GENCO
can be stated as:

IMP=——  .ID, g
A +B ®)
4.3 -k
P = LMP, b, (9)
4-a,-k; 4-a

where, k; is the strategy of ith GENCO and A, B, and L.D,,
are parameters which depend on other GENCOs' strategies
(k) and have different values for different states of
reaching a generation or transmission constraint.

With the assumption of the network lines have large
enough capacity, the expressions for A, B, and LD,, would
be as follows (These are proved in Appendix):

A =1

i

1

B =

' g‘ 4-2;°k,
jEcan j#i

(10)

b
LD, =Q,— 3 P - 3 P+ 24 !
jevap” jecap® JJ:SP "a;

All GENCOs in cap” and cap™ sets should produce
their maximum and minimum capacity, respectively.

According to Eq. 10, the strategies of these GENCOs
don’t have any effect on LMPs and accepted power of
other GENCOs that aren't n cap set.

Supplier problem (upper level sub-problem): The problem
faced by each player 1s the maximization of its profit where
profit comprises the difference between revenue and
production cost. The cost of producing energy 1s
calculated as:

(cost), =a,-P*+b,-P, +¢, (11)

The revenue of the supplier is the revenue of selling

energy in the market and can be calculated under a pay-
as-LMP scheme as:

(reverue), = LMP, . P, (12)

The supplier payoff (profit) 1s revenue minus cost,
namely:

[l =LMP,-P, ~(a, -P? +b,-P,+¢) (13)

Using the results of the market clearing problem and
inserting the calculated LMP; and P; in Eq. 1, the supplier
payoff can be written with respect to its strategy (k) as:

H]_{ —b; - (k +0.5) }LDA— 4.2,k -1 : LD (14)
A +B;-(4-1,k) (A +B,-(4-3,-k))
After some manipulation, we have:
2
= QKRS gy (15)
{A;+Bk)

Where:
Q =—4-a, b, -B, LD,

R, =(-A,-b,-b, B, -(2-3,))-LD, +4a,-LD}
8, =—A;-b -(0.5)-LD, — g, -LD]
B{=B, (4-a)
Thus, the supplier problem is transformed from the
bilevel optimization problem (or the MPEC problem) to the

following one level optimization problem:

max IT, = f(k,) (16)

where, the impact of the ISO and the rivals' actions are
observed through the A;, B, and T.d,.

Complete information gaming: Tn an electricity marlket,
each GENCO tries to maximize its own profit as shown in
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Eq. 16, thus by equating the first derivative of the profit
with respect to its strategy (k) to zero (i.e., the necessary
conditions for maximization), its optimal strategy will be
calculated as:

JlT.

i

ok

1

B [b(2-a) LD, [+B;- (-b,-A,-LD,~4-a,-LD}}+

xl-(Al-bi-(z-al)-LDl+2-aj-(4-a]-)-LDf)
xl-(—Af-bi-LD1+4-a]--LDf-Ai)=0,
= ! > Bi:2 :

4.8, -k; ¥cd-a; -k

1#1

(an

The sufficient conditions for maximization will be
reached, if the solution found in Eq. 17 satisfies the
following inequality:

2
aal;[‘ <0 =
‘ (18)
B -(2-B{-5,-R,-A)+{(2-Q-A,-B['R ;) A

* <0

(A +B k)

where, Q,, R, and S, are defined m Eq. 15.

Finally for computing the Nash equilibrium of the
market through utilizing game theory technique, we can
state the problem as an n-player game. There are n players
in the game that they sumultaneously play with their own
bidding strategies. Therefore, a NE will be calculated from
solving n equations similar to Eq. 17 for all players
simultaneously and the solution of this set of equations
means that no player will have incentive to unilaterally
change its bidding strategy.

UNCERTAINTY MODELS OF LOAD FORECAST

Two fundamental models to handle the uncertamty
of load forecasting are possibilistic (fuzzy) and
probabilistic models that are presented.

Possibilistic model: In this approach, it's supposed that
the uncertamnty m load forecasting is represented as a
Trnengular Fuzzy Number (TFN). Then, the profit of each
GENCO will be computed as a fuzzy number. The fuzzy
game theory 1s utilized for determining the optimal bidding
strategy.

Fuzzy uncertainty: In fuzzy set theory, each object x ina
fuzzy set X 1s given a membership value using a
membership function denoted by p(x), which 1s
corresponding to the characteristic function of the crisp
set whose values range between zero and one. In fuzzy
sets, the closer the value u(x)to 1, the more x belongs

to X. Fuzzy sets are defined as functions that map a
member of the set to a number between 0 and 1, indicating
its actual degree of membership as means to model the
uncertainty of natural language.

One of the major uncertainties associated with the
strategic bidding problem is the uncertainty in the load
forecast. Typically, the load forecast is subject to +(2-3)%
error (Shahidehpour et al., 2002). The power demand at
each bus can be represented using a value d,
(the pessimistic value of demand), a wvalue d,
(the optimistic value of demand) and a value d, (the
possibilistic value of demand that corresponds to the
value 1 of the membership function w), as shown in Fig. 1.

This description of the demand 1s associated with a
triangular possibility (fuzzy) distribution, §,=(d,.d,.d,)
(Rosado and Navarrov, 2004; Popovic and Popovic, 2004)
and represents simultaneously a large set of possible
future demand values at a given bus.

Comparison of objective function values: When the power
demand has possibility distribution with triangular
membership function, thus the nonlinear objective
functions (GENCOs' payoffs functions) have possibility
distribution. These fuzzy values must be compared and
ranked to assess solutions. The ranking function removal
(Lai and Hwang, 1992) allows comparison between these
values. The removal of a fuzzy number & for a Bender cut
of magnitude B is defined as (Fig. 2):

R, (@) = (a) + 22, +23)/4 (19

To compare two fuzzy values & and b, their removal
values will be compared. For example, in Fig. 3, for the
minimal acceptance degree B and for every Bender cut
greater than [3, the inequality R, @ =R, (b} will be valid

Linearity is one of the main properties of removal
function. For example, if fuzzy value ¢ is composed of
two fuzzy values as C=a-A+b B, then after applying
removal function, we have:

B
A

0 »Q
d, d, d,

Fig. 1: Fuzzy representation of power demand
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o

o

ap a8, a‘l‘l >

Fig. 2: Bender cut of magnitude P of a triangular fuzzy

number
A
1
L b
B
0 P
by, & 3, b b, &

Fig. 3: & is preferred to b with minimal accepted grade

of B
R(E) =a-R(A)+b -R(@B) (20)

Fuzzy constraints: By modeling loads as fuzzy numbers,
the accepted power and the power flow of lines are
translated into the fuzzy domain and have triangular
distribution. But limitations of supply capacity in
suppliers and thermal capacity in lines are presented as
deterministic (crisp) value. Thus in fuzzy notation, these
constraints are expressed as follows:

b

=R (21)

i
<x

i

max

Equation 21 doesn't have a simple true or false value.
For measuring the possibility of occurrence Eq. 21, we
have to define a Exposure Risk (EX) which means the
minimum degree of ct-cut that all values of this cut are less
thanx,, for X£x,,. or more thanx_, for £ 2x,,. The final
exposure risk for every solution (vector) k of the problem
1s calculated as shown in Fig. 4 and 5:

A

L1

> |

Ko

Fig. 4: The maximization constraint of £

A

M

— >

Fig. 5: The minimization constraint of %

EXE, =min{ o [%F €, X, |
EX:, = min{ A } 22
EXk = maX{ ]E‘:’(::mx:1 » EX:(nin,x}

Solution analysis: By modeling loads as fuzzy numbers
and using fuzzy arithmetic (Lai and Hwang, 1992), the
GENCOs payoffs are fuzzy numbers, but not TFNs, as:

o2
1—"[‘_|: _bi'(ki+0'5) j|'be+ 4'ax'ki_ax - {LDI]
A +B (42, k) (A +B,(4:2,k,)

(23)

Applying fuzzy game theory concepts (Wu and Soo,
1999), the optimal bidding strategies can be obtained
through three following steps.

Step 1: Using the removal function with several distinct
cuts (distributed between 0 and 1) and based on the
linearity property of removal function, the set of
non-dominated strategies in Nash points for each GENCO
1s obtamed. In the other words, the removal function
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transforms the fuzzy payoff function to a crisp value.
Then the optimal strategy for each GENCO is calculated
in the same way as the deterministic case.

After analyzing the set of non-dominated solutions,
the GENCO can select the final non-dominated solution,
considering the most satisfactory strategy according to
its experience and professional pomnt of view or uses the
following steps to determine it.

Step 2: Each solution k in the set of non-dominated

solutions has an associated vector of values
(1 i=1,..G,EX,) that can be normalized as:
R(ITf)-TIr= EX™= - EX* (24)
Hf““—l‘[f“m - ’E mex_ pgmin

where, I and EX™ are the removal values of the
maximum values obtained for the GENCOs payoffs
functions and for the exposure function, respectively and
I and EX™ are the removal values of the minimum
values obtained. Note that the result of this normalization
gives the vector (1,...,1,1) for the ideal pomnt (I Vi€ G,
EX™) and the vector (0,..,0,0) for the anti-ideal

point (T i e G, EX®®), that is, it represents the level of
satisfaction for each GENCO.

Step 3: A max-min approach (Lai and Hwang, 1992),
shown in Eq. 25, is applied to select the best (final)
solution (that 1s, the most satisfactory solution using the
aforementioned approach):

= kY rymin
max{min{R(H’) i

e | I -

EX™ - EX* H (25)

EXm _ i

Probabilistic model: Here, it 1s assumed that the power
demand at each bus is normally distributed Q, ~N(Q, 5o, )
Among models, the
constrained programming, applied by Chouchman et al.
(2005), is utilized and can be defined as:

various stochastic chance-

max A,
ki

st
PrIl, zAD=zo

(26)

where, Pr{ll;>A} 1s the probability degree. The constramt
shows that in ¢, x 100% of the simulations, the profit of
GENCO 118 above A, and the value of ¢; s specified by
GENCO 1.

If Q. k) is nondecreasing in Q, and Q, ~N(Q,.5,,),
then the k; is obtained as (Chouchman et al., 2005):

max IL(Q, +1, -8, . k) (27)

where, ®©(1;) = ¢; and @ is the normal tail distribution
function: Pr (Z=z) = ® (z) for Z~N(0,1).

The profit functions of GENCOs in Eq. 14 would be
a second-order equation and are nondecreasing in Q,, if
and only if the two following conditions are satisfied.

4.3,k —q .

(A +B-(4-3,-k)) (28)
b, -(k, +0.5)

2'(A;+B; (4-a, -kx))

Q==

These two conditions will be met in most cases, so
we have the deterministic optimization problem (Eq. 16) in
which the random variable Q, 15 replaced by Q, +1,-Sg,.

NUMERICAL RESULTS

The two approaches for modeling the load forecast
uncertainty will be compared by applymng them to a
network in which nine GENCOs compete. It's assumed
that all transmission lines have large enough capacity.
The GENCOs' cost functions data 1s given in Table 1.
Also, mn the case of fuzzy approach, the fuzzy demand is
equal to Q,=(254,284,316) and in the case of stochastic
approach, the random demand 18 equal to
Q,~N(284,10.67). The optimal bidding strategies of
GENCOs in these two cases are presented n the following
sections, respectively.

Fuzzy approach: The three steps mentioned above.
Sections are applied to compute strategies and profits of
all GENCOs.

Step 1: For various Bender cuts from 0 to 1, GENCOs'
profits and exposure risks 15 computed using removal
function. Figure 6 and 7 show the profit and the exposure
risk of GENCO 7 for different Bender cuts from Oto 1. For
other GENCOs, the profits have an upward trend in terms
of Bender cut magnitude, like GENCO 7 and are not shown
here for brevity.

Table 1: GENCOs cost function data
Cost function coefficients

GENCONo. a b P (MW) P, (MW)
G 0.0816 104.6316 10 80
G, 0.0863 107.9728 10 50
Gs 0.0872 102.3128 20 70
Gy 0.0047 109.1516 5 50
Gs 0.0041 107.6804 5 50
Gy 0.0898 107.7646 10 50
Gy 0.0074 101.5457 20 50
Gs 0.0024 107.0894 10 50
Ga 0.0053 107.1944 5 50
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340.554
340.504
340.454
340,40+
340.354
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GENCO 7 profit ($)

340.251
340,201
340.15

010 01 02 03 04 05 06 07 08 09 100

Bender cuts
Fig. 6: The variation of GENCO 7 profit

0.7378%

0.73784
0.73774
0.73774
0.73774
0.73774

Exposure risk

0.73774
0.73764
0.73764

0.7376

01 02 03 04 05 06 07 08 09 100
Bender cuts

Fig. 7. The variation of exposure risk for GENCO 7

Step 2 and 3: After normalizing profits and exposure risks
of the nine GENCOs and drawing them n a same figure in
terms of the corresponding Bender cuts, the final (best)
solution, as shown m Fig. 8, can be found via a max-min
operator.

In Fig. 8, the upward curves are GENCOs profits
variations and the downward curves are exposure risk
variations 1n terms of different Bender cuts from 0 to 1.
Closeness of the profit variations of GENCOs and
exposure risk variation causes that their normalized
removal functions have matching plots as shown in
Fig. 8.

The GENCOs strategies and the pessimistic,
possibilistic and optimistic values of the fuzzy profits of
GENCOs in the best point calculated in Fig. 8, are shown
in Table 2.

In thus solution, the main part of GENCO 7 production
fuzzy value is out of the maximum capacity as shown in
Fig. 9. To reduce the exposure risk, it is possible to set

1.0
0.91
0.8
0.7
0.6
0.51
0.41
0.31
0.21
0.11
0.0

Best point

Normalized removal function of
GENCOs' profits and EX

02 03 04 05 06 07 08 09 100
Bender cuts

0 0l

Fig. 8: Normalized removal function of GENCOs' profits

1o
0.9
0.81

0.7
0.6
0.5
0.4

Possibility dgeree

0.34
0.21
0.14

0.0 ¥ T T r
45 46 47 48 49 50 51 52

GENCO 7 production (MW)

Fig. 9: The TFN of GENCO 7 production

Table 2: GENCOs strategies and profits values

Fuzzy profit
GENCO No.  Strategies Pessimistic  Possibilistic  Optimnistic
Gy 0.95822 164.790 216.760 279.270
G, 0.97303 48.056 7115 114.730
G 0.94547 265.490 328.530 402.450
Gy 0.97778 22.485 42,630 70.129
G; 0.97017 50.737 79.278 115.800
Gy 0.97134 51.049 80.318 117.910
Gy 0.93837 278.180 339.440 410.790
Gy 0.96743 66.286 98.684 139.450
Gy 0.96744 61.710 92.634 131.630

the production of GENCO 7 to its maximum and repeat the
three steps to find a better solution.

Here, the calculated exposure risk would be equal to
zero. The best solution is determined in the same way as
the earlier condition shown m Fig. 10.

In Fig. 10, the downward curve shows the profit of
GENCO 7 and the upward curves show other GENCOs'
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1.0
0.9
0.8+
0.74
0.6
0.5 T

041 Best point
0.31
0.2+
0.1
0.0

Nomaized removal funciion of
GENCO¢' profits

02 03 04 05 06 07 08 09 100

Bender cuts

0 0l

Fig. 10: Normalized removal function of GENCOs' profits

Table 3: GENCOs strategies and profits values

Fuzzy profit
GENCO No. _ Strategies Pessimistic  Possibilistic  Optimistic
Gy 0.96080 163.990 222120 293.000
G 0.97427 48.100 80.868 124.120
Gs 0.94861 264.140 334.550 418.020
Gy 0.97844 22.625 45.503 77.452
Gs 0.97134 50.818 83.004 124.970
Gy 0.97258 51.105 84.102 127.290
Gy 0.00100 283.640 348910 418.530
Gg 0.96884 66.300 102.760 149.440
Gy 0.96874 61.761 96.588 141.280

profits in terms of different Bender cuts from Oto 1. Tt is
necessary to note that the closeness of the profit
variations of GENCOs and exposure risk variation causes
the similarity of Fig. 8 and 10 and is not a general rule for
all networks.

The GENCOs
possibilistic and optimistic values of the fuzzy profits of
GENCOs of the best point calculated in Fig. 10 are shown
in Table 3. The strategy of GENCO 7 doesn't have any
effect on the results obtained for other GENCOs. In
addition, Table 3 shows that the GENCOs' profits in
imperfect competition in which the GENCO 7 reaches to its
maximum capacity are more than perfect competition, as

strategies and the pessimistic,

given in Table 2, m which there aren't any himitations on
the GENCOs productions and the thermal capacity of
network lmes.

Probabilistic approach: Here, it was detailed how the
ordinal deterministic optimization is used to solve this
stochastic optimization. Table 4 gives the strategy and
the threshold profit of each GENCO at the Nash point
when all players are using probabilities of 0.9 and 0.7 in
their CCPs. Also, GENCO 7 produces its maximum
capacity.

Table 4: GENCOs strategies and profits value

Strategies Threshold profit($)
GENCONo.  o;=0.9 =07 =09 o, =0.7
Gy 0.9593 0.9602 242.5704 230.6113
Gy 0.9726 0.9736 93.0510 85.8860
Gy 0.9471 0.9480 358.8010 344.6464
Gy 0.9766 0.9777 54.3450 49,1250
Gs 0.9696 0.9706 94.8474 87.8877
Gy 0.9709 0.9719 96.2880 89.1253
Gy 0.0010 0.0010 368.6386 357.2312
Gy 0.9671 0.9681 116.0115 108.2357
Gy 0.9670 0.9680 109.2575 101.8205

Comparison: These two approaches for modeling the load
forecast uncertainty calculate an optimal bidding strategy
for each GENCO and the solutions of them are close to
each other but aren't exactly the same. Tn probabilistic
approach, accurate estimation of the ¢ (or 1;) values for
each GENCO are needed which is not possible. In
addition, normal distribution lacks the flexibility of fuzzy
{(possibility) distributions. Thus the result of probabilistic
approach may be inferior to the optimal strategies
obtained by fuzzy approach.

CONCLUSION

In a fully competitive electricity market, each
participant should bid at its marginal cost in order to
maximize its revenue. However, a practical electricity
market, like Tranian market, is not a perfectly competitive
one because of the particular characteristics such as the
severe generation and transmission capacity limitations.
So, 1t 18 critical for a GENCO to devise a good bidding
strategy in order to maximize its potential profit.

It is proved in this study that the bilevel optimization
problem, or equivalently, the MPEC program, are used for
determming the optimal bidding strategies of GENCOs,
can be converted to an ordinal one-level optimization
problem. Furthermore, the NE is calculated by solving
simultaneously this optimization problem for all GENCOs.

One of the usual uncertainties in this game-based
problem is the uncertainty of load forecast. There are two
approaches (fuzzy and probabilistic) for modeling this
uncertanty in the literature. In this study, a fuzzy
approach 13 developed for modeling the load forecast
uncertainty and compared with the probabilistic one. Test
results show that the fuzzy approach 1s more general than
the probabilistic approach.

APPENDIX

Fu and Ti (2006) has shown that the LMP
components in a lossless DC network model include
marginal energy and congestion cost as:
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LMP=A-SFT. 7 (29)

where, & and T are the dual variables from Eq. 7 and SF 1s
the shift factor which is the sensitivity of a line flow to a
bus generation increment (injection) (Wood and
Wollenberg, 1996).

Let us consider a transmission-unconstrained case
(thus T = 0) and further assume that GENCOs in cap’ set
are limited in their maximum capacity. So, the inequality
constraint Eq. 5 13 active for all GENCOs m cap set (that 1s
the union of cap” and cap™ sets). Under these conditions
the subproblem Eq. 2-6 is simplified to:

min >k (2-3,-B+b) B

iel

P ER =0 (A) (30)

iel

™ <P Wie cap” (p")

P <B™ VWiecap® (ul*)

For calculating the dual variable, we have to setup
the Lagrange equation for the problem as:

L=¥k (2:2,-B+b)-P, +l-(P,_oad —EP‘JHL;-(Pl“““—Pl)+p:'-(P1—P‘m)
1EG EG

(3D

Using the KKT conditions, the following expressions
will be calculated:

aL:kj-(4-a]-P‘er‘)f)»=0 Yig cap =
P,
p - L b (32)
4-a,-k; 4.3
aL_:P‘"““—P]:O Viccap =
;]
P =P" Wie cap” (33)
. =P-P™=0 Viecap® =
ap;

P =P" Vie cap® (34

JdL
a:PLuaa’ERZO =

ieG

EPi =P (35)

ieQ

Solving the Eq. 33-35 in terms of P; and substituting
in Eq. 32, yields the LMP expressions as:

P~ 2 Pmin.] - E Pmu.J * E 4

i< cap” i vap® jeG

LMP. = i oo (36)

' y !
= 4ok
% cap

bJ
8,

Moreover, with the assumption of bidding the
transmission inequalities, the LMP expression can be
calculated the same and are the form of Eq. 8 but in which
the A, B and LD, parameters have different expressions.

NOTATION

The notations used m this study are as follows. For
a dummy variable x, the notationx; fori=1...n, is used
to refer to each element of vector x. The lower and
upper bound on the value of x is represented by
x™ and x™, respectively. u L v is used to represent the
relation u’. v = 0 . diag(w) is used for the square matrix
whose diagonal elements are the elements of w and whose
other elements are zero.

The electrical networl is composed of N nodes with
G GENCOs, indexed by 1 or j. A demand at node 1 1s
represented by Q. Total demand of this network is
represented by Py ,.;. The set of arcs 1s shown by A and if
1] € A there 1s an arc between 1 and J. The power flow
between nodes i and j is represented by T, . T is the
capacity limit of the line connecting nodes 1 and j. L 1s the
set of Kirchhoff loops in the networls, indexed by m such
that L, is the ordered set of arcs associated with Kirchhoff
loop m . z; is the reactance on arc ij € L and s, = £1,
depending on the orientation of arc ij in loop m. R denotes
the (arc, loop) incidence matrix which is equal to s, z; if
ij € L and is zero otherwise. A denotes the (node, arc)
incidence matrix of the electrical network whose entries
Ajare+1if 1=14jand -1if1= ji and are zero otherwise
(1) € set of arcs and j € set of network nodes).

Cap” and cap ™ are the sets of generating companies
that should produce their maximum and minimum capacity,
respectively. cap 1s the umion of these two sets.

The marginal cost curve of every single supplier is
assumed to be affine in the form MC, = 2.a, . P, + b, where,
a, and b, are the coefficients of cost function that is in the
form (cost), =a, P} +1,-P, +¢, . For each player i in the game,
k; and II(k) denote its strategy and payoff, respectively
and k; denotes its rivals strategies.
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