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Assessment of HAM and PEM to Find Analytical Solution for Calculating Displacement
Functions of Geometrically Nonlinear Prestressed Cable Structures with Concentrated Mass
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Abstract: In this study, two powerful analytical methods, called He’s Parameter-Expanding Methods (PEM) and
Homotopy Analysis Method (HAM) are used to calculating displacement functions of geometrically nonlinear
prestressed cable structures. In this study, the results of two methods are compared and it is shown that one
term in series expansions is sufficient to obtain a solution by using the PEM. Comparison of the obtained
solutions with those obtained using numerical method shows that two methods are effective and converient
for solving this problem. These two methods introduce a capable tool for solving this kind of nonlinear

problems.
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INTRODUCTION

Liao (1992) employed the basic ideas of the
homotopy in topology to propose a general analytic
method for nonlinear problems, namely the homotopy
analysis method and then modified it, step by step
(Liao, 2003, 2004). This method does not need small/large
parameters and has been successfully applied to solve
many types of nonlinear problems in solid and fluid
mechanics (Cheng et al., 2005; Ralumpour et af., 2008;
Kimiaeifar, 2008, and Saidai, 2008,
Sajid et al., 2008).

Recently, considerable attention has been directed
towards analytical solutions for nonlinear equations
based on homotopy techmque. Homotopy theory
becomes a powerful mathematical tool, when it is
successfully coupled with the pertwbation theory
(He, 1998, 2000; Hillermeier, 2001 ;, Kimiaeifar, 2008). He’s
Parameter-Expanding Method (PEM) 1s one of the most
effective and convenient method for analytical solving of
nonlinear differential equations. PEM has been shown to
effectively, easily and accurately solve a large class of
linear and nonlinear problems with components
converging rapidly to accurate solutions. PEM was first
proposed by He (2006) and was successfully applied to
various engineening problems. It 1s worth mentiomng that
there are a few works on using parameter-expanding
method in the literature, Xu (2007) suggested He’s
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parameter-expanding methods for strongly nonlinear
oscillators. Tao (2008) proposed frequency-amplitude
relationship of nonlimear oscillators using PEM.

Prestressed cable structures and their continuous
counterparts in membrane or fabric structures, are often
perceived as architecturally elegant structural forms;
particularly for large clear span coverings. The extremely
low weight to plan area ratio of such structures and the
associated curved surfaces, often resent cable and fabric
structures as refreshing alternatives to the more common
bulky rectangular forms. The use of prestressed
mechanisms as structural forms also tends to give clients
and the general public the impression of utilizing the most
modern of available technology. However, the same three
properties of low-weight, unusual curved surfaces and
nonlinear response to load, combine to form challenging
problems to the structural engineer charged with ensuring
a cable or fabric structure has safe dynamic
characteristics, especially under wind loading. Nonlinear
vibration has several phenomena not found in linear
vibration and, in particular, any displacement-time
relationship 15 dependent on imitial conditions. Thus
different values of so-called natural frequencies can be
obtained for a given system simply by altering the initial
velocity or displacement.

In this study He’s parameter-expanding method and
homotopy analysis method are used to calculate the
displacement  functions of geometrically nonlinear
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prestressed cable structures. Tt is shown that the HAM
solution 1s very accurate for whole domain and for all
effective parameters by usmng lugh number of series
solutions. In PEM solution only one term in series
expansions is sufficient to obtain an accurate solution but
increasing the coefficients of nonlinear term, the error of
PEM solution increases.

GOVERNING EQUATION OF VIBRATION OF
TWO-LINK STRUCTURE

The symmetrical prestressed two-link structure is
shown in Fig. 1 which has a single degree of freedom. Tt
can be shown (Kwan, 1998) that a central load P for this
structure 1s related to its coresponding static deflection
x by:

E—Ax(t)JthDLDx(t)—pL =0 )]

1}

where, EA 1s the axial stiffness, t; 1s the mitial pretension
and L, is the original undeformed length, of the two-links.

Consider now the vibration of the two links such that
they remain straight throughout in which case the
acceleration of a small element of length dx at a distance
x from the support 1s xy/L,, where, v 13 the acceleration of
joint B. The D’Alembert forces D for one link are thus
given by:

D:ﬁ”de(lea)):% )

where, p 15 the mass per unit length of the links. If we
isolate the portion BC and take free body moment of the
portion BC about B, it 15 obtained:

[} pay L R0, -y) =Ry (3)
and
pﬁ(é) Ly “R (4

where, R is the vertical dynamic reaction at the supports.
Substitution of Eq. 1-3 into the overall vertical
equilibrium relationship,

R=24D
2
leads to:
. 3t 3EA
RO+ x(0) + X1 =0 (5)
{t) Lo (t) 2oL (ty

F 3
h 4

|~ »

Fig. 1: Geometry of problem: The symmetrical two-link
structure (Bars AB and BC Joint at point B)

which is the equation describing the free undamped
vibration of the prestressed two-link If the two-link
structure had a concentrated mass M at B, then Eq. 5
would be altered slightly to:

6t, 3EA

x(t) + ()’ =0 (6)
ML, +pLa? ® 3MLY +2pL,* ®

X(t)+ 3

By defimtion:

61, 3EA
o= - and f= = 3
IML, +pLo IMLL + 2pL,

Eq. 6 reduce to:
#(O+ ox(t) + Pr(DF = 0 (7
APPLICATION OF HAM
The governing equation for the nonlinear prestressed
cable structures is expressed by Eq. 7. Nonlinear operator

1s defined as follow:

*x(t;q)
ot*

NIx(l:q)]= T ax(tqy+ Bt gy (&)

where, ge[0,1] is the embedding parameter. As the

embedding parameter increases from O to 1, Ult; ), varies

from the initial guess, 1;(t), to the exact solution, U(t):
XG0 =U, @),  xtl)=U 9

Expanding x(t;q) in Taylor series with respect to q
results i

x(q)= Uy (0 + DU, (0" (10)
Where:
U, ) _ 1 @t (11)
m! oq"

q=0
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Homotopy analysis method can be expressed by
many different base functions (Liao, 2003), according to
the governing equations; it is straightforward to use a
base function in the form of:

Ut = 3, Fbiyntcos (0“0 (12)

=1 p=1

where, by, are the coefficients to be determined. When
the base function is selected, the auxiliary functions H(t),
mitial approximations Uyt) and the auxiliary linear
operators 1. must be chosen in such a way that the
corresponding high-order deformation equations have
solutions with the functional form similar to the base
functions. This method referred to as the rule of solution
expression (Liao, 2003).
The linear operator L. is chosen as:

*x(t;q)
ot*

L[x(tq]= +x(tq) (13)

From Eq. 15 and 16 results in:
L[c, sindt) + ¢, cos(t)]=0 a4

where, ¢, to ¢, are the integral constants. According to the
rule of solution expression and the mutial conditions, the
initial approximations, Uyt) as well as the integral
constants, ¢, to ¢, are formed as:

U, (t)= ¢ sin + ¢ cost), ¢ =0,¢c,=A (15

The zeroth order deformation equation for T(t) is:

(1- QL [x{t:q) — Uy(t)] = gfH{ON[x (5 )] (16)

X0 q)=A, wzo (17

According to the rule of solution expression and from
Eq. 12, the auxiliary function H(t) can be chosen as
follows:

Hit=1 (18)

Differentiating Eq. 16, m times, with respect to
the embedding parameter q and then setting q= 0 in
the final expression and dividing it by m!, it is reduced
to:

U, y=x,U, . (O+ h(sin(t)f tH(t)Rm (U, _costydi+
’ (19)

cos(t)_[;H(t)Rrh (U, _)sin{t)dt )+ ¢, sin(t) + ¢, cos(t)

U (m=0, UL ©=0 (20)

Equation 19 1s the mth order deformation equation for
x(t), where:

R,(U, )= dZUd*;; Oy o, m+ B{Z U, 03U, (t)Uz(t)}
(21)
and
0 m<1
_ 22
Hn = {1, mx1 (22)

As a result, the first and second terms of the
solution’s series are as follows:

U= 4 cos(t) (23)

Uty = %sin(t)h?u(—dlt + 4ot + 3Rt + sin(t) cos(HAP) (24)

The solution’s series U(t) is developed up to
12th order of approximation.

CONVERGENCE OF HAM SOLUTION

The analytical solution should converge. It should be
noted that the auxiliary parameter h controls the
convergence and accuracy of the solution series
(Liao, 2003). The analytical solution represented by Eq. 12
contains the auxiliary parameter h, which gives the
convergence region and rate of approximation for the
homotopy analysis method In order to define a region
such that the solution series is independent on h, a
multiple of h-curves are plotted. The region where the
distribution of x' and x versus h 1s a horizontal lme 1s
known as the convergence region for the corresponding
function. The common region among the x(t) and its
derivatives are known as the overall convergence region.

To study the influence of h on the convergence of
solution, the h-curves of x' and x(1) are plotted for
different values of constant parameters, as shown in
Fig. 2. Moreover, increasing the order of approximation
increases the range of the convergence region (Fig. 3).
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Fig. 2: The h curves to indicate the convergence region, EA=556kN,1,=1.143m, p=4.6416x10"kgm™ and
M=100kg m™ and M = 100kg: (a)t, = 3558.6 N, (b) t, = 4448 N

& ——— 3rd order
Gth order

0.8

x(1)

0.6

-0.84

()]

®

-1.24

164

h

Fig. 3: The effect of order of approximation on convergence region, EA = 556 kN, L, = 1.143 m, p = 4.6416x10 " kg m ™
and M =100 kg m™" and t, = 4448 N: (a) x (1), (b)x' (1)

PEM FOR SOLVING THE PROBLEM

According to the PEM (He, 2006), Eq. 7 can be

rewritten as:

d;’igt) +ax(D+Bx{)’ =0 (23)
and the initial conditions are as follows:
x(0) A, X0 =0 (26)

The form of solution and the constants one in Eq. 25

can be expanded as:

X(1) = %, (D) + P, (8 + P (0) - 27

(28)

w=o’ +pb +p'b, +--

B=pg +pe, +-- (29)

Substituting Eq. 27-29 mto Eq. 25 and processing as
the standard perturbation method, we have:
(30)

Xp(0 + 0%, (£) = 0, x,{0)=2, X, (0)=0

d’x, (1)

Lot O b 06X’ =0, X, 0)=0, X{(0)= 031)

The solution of Eq. 30:

X,(t) = Acos{mt) (32)

Substituting xt) from the above equation into Eq. 31
results i

+ w’x, (£) + b, cos{wt) — ¢ A’ cos’ (i) = 0 (33)

d’x, (1)
dt?
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But from Eq. 28 and 29:

blzoc—w ’ ¢ —p (34)

Based on trigonometric functions properties we have:
cos’(mt) =1/4 cos(3mt) + 3/ 4 cos(mt) (35)

Replacing Eq. 32 into 31 and eliminating the secular
terms yields:

2
97 pai=0 (36)
P

Set p = 1 then two roots of this particular equation
can be obtained as:

w=to—w? +pA? (37)

Replacing w from Eq. 37 into 32 yields:

X(8) = X, (t) = Acos(tafo— o + PA° 1) (38)
Finally, x(t) is the answer of above problem.
RESULTS AND DISCUSSION

In this study, the usefulness of the presented
parameter-expanding method and homotopy analysis

method are investigated by considering above problem.
To validate the results, convergence studies are carried
out and the results are compared with those obtained
using numerical results base on fourth order Runge Kutta
method (Hoffman, 1992) and shown in Table 1 and 2 in the
case of EA =556 kN, 1,,=1.143m, p=4.6416x10" kg m™,
M =500kg and t, = 3558.6 N. It 1s worth mentioning that
the relative error 1s defined as follows:

_ Results of HAM or PEM‘ (40)

E,, =100l :
Numerical results ‘

The effect of constant parameters has been studied
in Fig. 4 and 5 that are compared with the numerical
results. Also, in the Fig. 7 the percentage of relative error
has been shown to indicate the accuracy of the
procedure. In addition in the Fig. 7 it has been shown that
the maximum error is about 2.5%, that it is very small error
for PEM solution.

Table 1: Compression between results of x(t) predicted by PEM, HAM and
numerical method

()
t PEM HAM Numerical E, (PEM) E, (HAM)
0.1 0995287 0.995392 0.995085 0.02026 0.03083
0.2 0980982 0.980799 0.980483 0.05082 0.03216
0.3 0957212 0.956978 0.956609 0.06305 0.03857
0.4 0924889 0.924523 0.924115 0.08372 0.04413
0.5 0.884983 0.884456 0.883838 0.12953 0.06992
1 0.605643 0.600543 0.600170 091176 0.06207
2 -988E-02 -9.72E-02 -9.71E-02 1.73499 0.07446
5  -0421876 -0.413786 -0.413404 2.04952 0.09253

15
- —p——— HAM
. = ==&~ = PEM
=" ™@= = Numerical
o L 3
1.0
05 |-
R
0.0 |-
0.5 |-
-1.0 |-
I T T T N TR T N | [t - R N R T R [ - R
0 2 6 8 10

Fig. 4: Displacement-time plot for the two-lnk structure, predicted by PEM and HAM, EA =556 kN, L; = 1.143 m,

p=4.6416x10"kg m™, M =100 kg and t, = 4448 N
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Fig. 5. Velocity-time plot for the two-link structure, predicted by PEM and HAM, E

()

J. Applied Sci., 9 (12): 2264-2271, 2009

—P— HAM
=i = PEM

—-—0—-— Numerical

p=4.6416x10"kgm ', M =100 kg and t, = 4448 N
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Fig. 6 Displacement-time plot for the two-link structure, predicted by PEM and HAM, EA =556 kN, L, =1.143 m,
p=4.6416x10"kgm ', M =100 kg and t, = 4448 N

Table 2: Compression between results of X'(t) predicted by PEM, HAM and numerical method

%'
t PEM HAM Numerical E, (PEM) E. (HAM)
0.1 -9.81E-02 -9.81E-02 -9.81E-02 0.01759 0.05949
0.2 -0.193323 -0.193323 -0.193282 0.02120 0.02113
0.3 -0.283202 -0.283233 -0.283101 0.03553 0.04650
0.4 -0.365505 -0.365588 -0.365374 0.03584 0.05849
0.5 -0.441956 -0.438796 -0.438549 0.77691 0.05641
1 -0.667986 -0.656323 -0.656728 1.71430 0.06179
2 -0.726554 -0.706434 -0.706209 2.88086 0.03186
5 T.16E-01 6.95E-01 6.95E-01 3.00881 0.03078
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——— Error HAM for x(t)
=i Error PEM for x(t)
41 — — — Emor HAM for x'(f)
= Brror PEM for x'(t)
g P
———
E o -
--"—’“
§ " / —
0
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T 1 !
0.5 1.0 1.5 2.0

Fig. 7: The percentage of relative error for the two-
link structure, predicted by PEM and HAM,
BA=556kN, L;=1.143m, p=4.6416x10"kgm ",
M=100kg and t, = 4448 N

Based on Table 1, 2 and Fig. 4-6, it can be concluded
that only one term in series expansions 1s sufficient to
obtain a highly accurate solution, which 1s valid for the
whole solution domain.

CONCLUSION

In this study, homotopy analysis method and a
new method called He’s parameter-expanding
method has been studied. In the numerical methods,
stability and convergence should be considered so as
to avoid divergence or inappropriate results. Tn the
analytical perturbation method, we should exert the
small parameter in the equation. Therefore, finding the
small parameter and exerting it into the equation are
deficiencies of these methods. Two of the semi-exact
methods which don’t need small/large parameters are
Homotopy Analysis Method and Parameter Expanding
method. In addition, to comprise the obtained results, the
governing equation was solved numerically by authors
based on fourth order Runge Kutta method. Some
remarkable virtues of the methods were studied and their
applications for obtamning the displacement functions of
geometrically nonlinear prestressed cable structures
analytically, have been illustrated. The obtained results
have a good agreement with those obtained using
numerical method. It 1s clear HAM 1s a generalized Taylor
series method, searching for an infinite series solution,
PEM is clearly a new perturbation method, searching an
asymptotic solution with only one term and no
convergence theory 1s needed. Moreover, increasing
the domain of independent parameter or increasing the

Table 3: Compression between results of x(t) predicted by PEM, HAM and

Maple software
x(t)

t PEM HAM Numerical E., (PEM) E. (HAM)
0.1 -0.935133 -0.934539221 -0.9343988 0.078574314 0.0150277
0.2 0.756481 0.757211 0.758731978 0296676277 0.20046312
03 -0.517793 -0.517801 -0.5180807 0.055532695 0.05398853
0.4 024998 0.250792 0250861791 0351504746 0.02782054
05 234E-02 2.32E-02 2.33E-02 0472828174 0.19342971

1  -1.01164078 -0.99473848 -0.9981 8848 134767133 034562611

2 9.68E-01 9.99E-01 9.94E-01 2579573407  0.54349186

coefficients of nonlinear term, increases the error of PEM
solution, whereas, the HAM solution 1s very accurate for
whole domamn of solution, as shown in Table 1-2. Also, as
shown in Table 3 the equation was solved by Maple
software to be convincing about authors' numeric
solution. The results show that the methods are promising
for solving this type of problems and might find wide
applications.

NOMENCLATURE

: D’ Alembert forces

o Axaal stiffness

o Auxiliary function

: Linear operator

: Original undeformed length

: Nonlinear operator

: Embedding parameter

. Vertical dynamic

(U..): Reminder term

: Time (Independent dimension less parameter)
. Initial pretension

: Mass per unit length of the links
. Auxiliary parameter

e lw!
Z5

I -l
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