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Abstract: This study proposes a Gaussian Radial Basis Adaptive Backstepping Control (GRBABC) system for
a class of n-order nonlinear systems. In the neural backstepping controller, a Gaussian radial basis function 1s
utilized to on-line estimate of the system dynamic function. The adaptation laws of the control system are
derived in the sense of Lyapunov function, thus the system can be guaranteed to be asymptotically stable. The
proposed GRBABC is applied to two nonlinear chaotic systems which have the different order to i1llustrate its
effectiveness. Simulation results verify that the proposed GRBABC can achieve favorable tracking performance
by incorporating of GRBF,,,; identification, adaptive backstepping control techniques.
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INTRODUCTION

Recently, the adaptive neural control approach based
on backstepping design has been developed for nonlinear
uncertain systems without the requirement of matching
conditions. In Kwan and Lewis (2000), Lewis e ai. (2000)
and Zhang et al. (2000a), stable neural controller design
schemes were proposed for unknown nonlinear SISO
systems via backstepping design technique. With the
backstepping design technique, neural networks were
mostly applied to approximate the unmatched and
unknown nonlinearities and then to implement adaptive
control methods using the conventional control
technology.

The advantage of adaptive neural control based on
backstepping methodology is that both the parameters
and the nonlinear functions can be unknown and the
uncertainties n systems need not satisfy the matching
conditions (Chen et al., 2007).

Excellent contributions for backstepping control,
using NNs, are presented by He and Jagammathan (2005),
Jagannathan (1996, 2001), Jagannathan and Lewis,
(19964, b), Jagarmathan ef af. (1998), Jagarmathan (2001),
Lewis et al. (1998), Hsu et al. (2006), Alams et al. (2007),
Polycarpou (1996), Lin et al (1998), Wang and
Wang (1999) and Lin and Hs (2002, 2003). There, a
multilayer NN controller 15 designed to deliver a
desired tracking performance for the control of a
class of partially unknown nonlinear system in
discrete time; 1t includes a modified delta rule weight
tuning.

In the past decade, backstepping design procedures
have been intensively introduced by Choi and Farrell
(2001}, Kuljaca et al. (2003) and Lin and Hsu (2005a, b).
The backstepping control is a systematic and recursive
design methodology for nonlinear systems to offer a
choice to accommodate the unmodeled nonlinear effects
and the parameter uncertainties. The essence of
backstepping design 18 to select recursively some
appropriate functions of state varables as pseudocontrol
inputs for lower dimension subsystems of the overall
system. Hach backstepping stage results in a new
pseudocontrol design, expressed in terms of the
pseudocontrol designs from preceding design stages.
When the procedure is terminated, a feedback design for
the true control input results, which achieves the original
design objective by virtue of a final Lyapunov function,
which 13 formed by summing up the Lyapunov
functions associated with each mdividual design stage
(Zhang et al., 2000b).

This study proposes a GRBABC system for a class of
n-order nonlmear systems. This control system combines
the Gaussian Radial Basis Function Neural Network
{(GRBF ) 1identification and adaptive backstepping control
techniques.

The neural backstepping controller containing a
GRBF,,, 1dentifier 15 designed in the sense of the
backstepping control technique and the GRBF,,, identifier
is utilized to online estimate the system dynamic function.
The adaptive laws of the GRBABC system are derived in
the sense of Lyapunov function. Thus, the system can be
guaranteed to be asymptotically stable.
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Finally, two chaotic systems (Duffing Oscillator
system and li system) are provided as the simulation
examples to verify that the proposed GRBABC scheme
can achieve favorable tracking performance with regard to
unknown dynamic function.

MATERIALS AND METHODS

Design of ideal backstepping controller: Congider a class
of n-order nonlinear systems:

P =g x" M+ (1)

where, x is the state trajectory of the system, which is
assumed to be available for measurement, f(x.%.,...x"™")
15 an unknown real continuous function and u 1s the 1nput
of the system. The control objective is to find a control
law so that the state trajectory x can track a trajectory
command closely.

The Eq. 1 can be rewritten as the following state Eq.

X, =X,

X, = X,

, (2)
X = Xpu

X, =X, x,,%,,...X ) +u
Assuming that the parameters of the system Eq. 2 are
known, the design of ideal backstepping controller is
described step-by-step as follows.
Step 1: Define the tracking error:
& =X, — X, 3
and the derivative of tracking error 1s defined as:

¢ =%, %, =, (x)—%, 4

The ¢, can be viewed as a virtual control in the Eq. 4
Define a Lyapunov function as:

v, :lef (3
2

Differentiating Eq. 5 with respect to time and using
Eq. 4, it 13 obtamed that:

Vi =e € =¢l0—%,) (6)

Let:

o (X)) = —¢e +X, (M

Then,
V= -cel (8)

where, ¢, is a positive constant.

Step k: (2<k<n-1)
Define

e =X, —0, (9
and the derivative of e,is defined as:

6, =%, 0, =0, — 0 (10)

* x ko k-1

where, The ¢, can be viewed as a virtual control in the
Eq. 10
Define a Lyapunov function as:

v, = i‘,VH + %ei (1)

i=2

Differentiating Eq. 11 with respect to time and using
Eq. 10, 1t 1s obtained that:

v, = ivﬂ +e8 =§k)\',3,1 +e, (o — 0y ,) (12)
= =
Let
O (X} Xy, Xy ) = —€,€, + Oy (13)
Then,
v, = —gckei (14)

where, ¢, ¢,,..., ¢, are positive constant.

Step n:
Define
e, =X, — 0, (15)
and the derivative of e, 1s defined as:
€, =X, — 6 =I(X. X, %, nX )t U—C (16)

Define a Lyapunov function as:
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(17)

v, = i‘{‘v’l,1 + %ei

i=2

Differentiating Eq. 17 with respect to time and using
Eq. 16, it is obtained that

v, = g‘\?‘_, +e,8, :ZV‘_, +ef+u—c, ) (18)
Let:
u=-ce -f+a,, (19)
Then,
V= Yed (20)

where, ¢, ¢,.,..., ¢, are positive constant.

Therefore, the 1deal backstepping controller m Eq. 19 will
asymptotically stabilize the system.

Design of Gaussian radial basis adaptive
backstepping controller: Since the system dynamic
funetion fix,, x;, x5,..., %,) may be inknown or perturbed in
practical application, the ideal backstepping controller
Eq. 19 cannot be precisely obtained To solve this
problem, a GRBF,, identifier 1s utilized to approxiumate the
system dynamic function. The descriptions of the GRBF
identifier and the design steps of the control system are

described as follows.

GRBF, Identifier: The network structure of the GRBF,,
identifier 1s shown m Fig. 1, which can be considered as
one layer feed forward neural network with nonlinear
element. The GRBF,,,, output can perform the mappimng
according to:

Fig. 1: Structure of GRBF neural network
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f(Z):iWJGJ(ZJ,mJ,OJ) (21)

where, z=[z, 7,..., 7| €R"is the input vector, Gi(z, m;, 0;)
€R", 7 = 12,..., n are the Gaussian radial basis function,
o;€R is the spread of Gaussian function, n is the number
of neurons. Each Gaussian radial basis function can be
represented by:
2
Z; —my
1

V2o

G](zj,m],cj)cxp[ (22)

For ease notation, Eq. 21 can be expressed in

compact vector forms as:

(23)

f(z,w,m,c)=w'G{z,m, o)

where:

W= W W, Wa”
G = [G,G,..., G
m = [m,m,,.. m]
0 = [0,0,.,0.]

By the universal approximation theorem, there exists
an 1deal GRBF,y 1dentifier £* such that:

f=f"@+A=w"G(z.m".c") 24

where, A denotes the approximation error and is assumed
to be bounded. w*, m™ and o* are the optimal parameter
vectors of w, m and o, respectively. In fact the optimal
parameter vectors that are needed to best approximate a
given nonlinear function are difficult to determine. Thus,
an estimate function 1s defined as:

(25)

fz,w. &) = W G(z,0. &)

where, W, and & are the estimated of w*, m* and o*,

respectively. For  notational convenience, denote
G* =G(z m*, 0%) and G=G(zM,85).
Define

WEW W (26)

Note that ™ and & are assumed to be m* and o*,
respectively.

GRBABC System: The proposed GRBABC system is
shown in Fig. 2.

The control law of the GRBABC is developed as
follows:
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& P Adaptive law
‘s
e, —»]
' GRBF,,
e, —
y i
& =" Neursl backstepping x
. : controller Yemeare | Nonlinear systems |,

Fig. 2: GRBABC for nonlinear system

Ugppape = Uy (27)
The neural backstepping controller is chosen as:
u, = T+ C, , —C.e, (28)

where, the GRBF,,, identifier f is designed to omline
estimate the system dynamic function f. Then, Theorems
1 and 2 show the properties of the proposed GRBABC
systerm.

Theorem 1: Consider a nonlinear system represented
by Eq. 1.The control system is designed as Eq. 27 where
the newral backstepping controller is designed as Eq. 28,

in which the adaptation law of the GRBF,,, identifier is
designed as:

W=-W=¢G (29)

Proof 1:
Define a Lyapunov function as:

V= z}%ez + %WTW (30)
Differentiating Eq. 30 with respect to time:
V.= Yee 9w (31)
Let:
Yee, =ni 66 e (32)
A it
From Eq. 14 and 16, we have:

n n-1
Mg =—yee+e,fru-a,,) (33)
i=1 i=1

Substituting the Eq. 28 mto Eq. 33,

Ses ==Yl +o,0-F-ce)=-Feel e (- 34)
Let f=w*Tand f =&"G
Then,
e F-D=e (WTG-WGze (W™ -WG=e @G (33
Substituting the Eq. 35 into Eq. 34,
Yee = Ycel +e,w'G (36)
a a
Substituting the Eq. 36 into Eqg. 31
v, = —gclef +e WG+ W W= —2} cel +w (e, G+w) (37)

TF the adaption law is obtained as follows:
ﬁ' = —v;v = enG (38)

Then the differentiation of Lyapunov function will be
negative.

Vo= el (39)

Therefore, the backstepping controller in Eq. 28 will
asymptotically stabilize the system. Also the GRBF,
weights will converge to optimal values.

Theorem 2: Consider a nonlinear system represented
by Eq. 1. The control system 1s designed as Eq. 27 where
the neural backstepping controller is designed as Eq. 28,

in which the adaptation law of the GRBF,,, identifier is
designed as:

W= e, G+kw (40)
where, k)30,

Proof 2:
Define a Lyapunov function as:

v, = ile? + W (41)
Differentiating Eq. 41 with respect to time:

v, = zn:e‘éi + W (42)
pcy
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Substituting the Eq. 34 into Eq. 42,

A :—zn:clef +e (F-By+w™w (43)
i=l

Let f=#TG
Then,
v, = 75‘{(:‘65 +ef—e W G+iW= 7icie‘2 +ef—W e G—W)
B : (44)
The adaption law is obtained as:
W= e, G+kw (45)
Then,
V=Yool k|| +e,f (46)
=

Therefore, if sup|je,f|<k|w| , Then V(0.

The backstepping controller m Eq. 28 will
asymptotically stabilize the system. Also the weights of
GRBF,,would not diverge to infinity and we have a stable
controller.

In general, the neural backstepping controller of
Theorem 1 is same as Theorem 2, but the adaption law for
GRBF,,,, weights traimng in Theorem 1 1s different from
Theorem 2.

In Theorem 1, the GRBF,,, weights will converge to
optimal values. Although, in Theorem 2, the weights of
GRBF,,, would not diverge to infinity and we have a stable
controller.

Note that Theorem 2 is more generalized than
Theorem 1 and provided both theorems properties.

RESULTS AND DISCUSSION

Description of chaotic systems: Dynamic chaos is a very
mteresting nonlinear effect which has been mtensively
studied during the last three decades.

Chaos control can be mainly divided into two
categories (Chen and Dong, 1998; Feng et al., 2007,
Zhang et al., 2004, Xiau and Tun 2003). one is the
suppression of the chaotic dynamical behavior and the
other 1s to generate or enhance chaos in nonlinear system.
Nowadays, different techniques and methods have been
proposed to achieve chaos control. For instance,
entramment and migration control, optimal control
method, stochastic control method, robust control
method, adaptive control method, variable structure
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method, neural network control method and so on
{(Ueta and Yet, 1999, Chen and Lu, 2002, Wang and Ge,
2002; Lu and Zhang, 2001; Chen et al., 2002; Liu et al.,
2003; Feng et al., 2007; Harb et al., 2007).

Chaotic phenomena can be found in many scientific
and engineering fields such as biological systems,
electronic circuits, power converters, chemical systems
and so on (Chen, 1999). Since the pioneering study of
Ott et al (1990), Park (2006) and Yongguang and
Suochun (2003) proposed the well-known OGY control
method, the control of chaotic systems has been widely
studied. Recently, numerous backstepping control design
procedures have been proposed to achieve chaotic
control (Hsu et al, 2006, Guan and Chen, 2003;
Yassen, 2006). The key idea of backstepping design is to
select recursively some appropriate functions of state
variables as virtual control inputs for lower dimension
subsystems of the overall system (Krstic et al., 1995;
Wai et ol , 2002, Linetal., 2005).

Chaotic systems have been known to exhibit complex
dynamical behavior. The interest in chaotic systems lies
mostly upon their complex, unpredictable behavior and
extreme sensitivity to mitial conditions as well as
parameter variations.

For some chaotic systems, since the dynamic
characteristics of the control system are nonlinear and the
precise models are difficult to obtain, the model-based
control approaches are difficult to be implemented
(Peng et al., 2007).

Simulation results: In this section, the proposed
GRBABC techmque 1s applied to control two nonlinear
chaotic systems: a Duffing Oscillator system (Example 1)
and a LG system (Example 2). It should be emphasized that
development of the GRBABC does not require the
knowledge of the system dynamic function.

Chaotic systems have been known to exhibit complex
dynamical behavior. Several control techmques have been
proposed for the chaotic systems (Lian et al, 2002).
However, some of them cannot achieve favorable control
performance and some of them require system dynamic
function.

Duffing oscillator system: Consider a second-order
chaotic system such as well known Duffing's equation
describing a special nonlinear circuit or a pendulum
moving 1n a viscous medium under control (Lian et af.,
2002).

(47)

¥=-pX-px-px° +qcos(wt) +u=Ff{x,¥)+u

where, p, P, P, and q are real constants. t is the time
variable and © is the frequency. f(x.x) is the system
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a0
-2 T L) L] T T T L] T ¥ T 1
1 2 3 4 5 6 7 8 9 10
Time {sec)
10
o0
-lc T L) T T T T L] T L] T 1
0 1 2 3 4 5 [ 7 8 9 10
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1000+
= 0
-1000 L] T 1 T T L) T r L 1
1 2 3 4 5 6 7 8 9 10
Time {sec)
10
i
5
z
0 T T T 1 T T L) L} T T 1
1 2 3 4 5 6 7 8 9 10

Time {sec)

Fig. 3: Simulation results of Duffing Oscillator system,
Theorem 1, g = 0.62

dynamic function where p = 04, p, = -1.1, p, = 1.0,
w=18and q=0.62,q=195andq= 7. uis the control
effort.

The system dynamic function would be online
estimated by the GRBF,, identifier. The structure of
GRBF,,, 18 shown inFig. 1. A GRBF,y, identifier with five
hidden nodes is utilized to approach the system dynamic
function of the chaotic system.

In addition, the control parameters are selected as
¢; = 5 and ¢, = 60. The trajectory command 1s set as
X, = cos(t) .

The simulation results of the GRBABC with
consider Eq. 29 for  =0.62, q = 1.95 and q = 7 are shown
mn Fig. 3-5.

The simulation results of the GRBABC with
consider Eq. 40 for q =0.62, ¢ = 1.95 and g = 7 are shown
i Fig. 6-8, respectively.

The performance index I is defined as 1= f& +¢2 . The
performance index T is shown that the proposed GRBABC
can achieve favorable tracking performance.

Figure 5-8 are shown that the results have good
performance compare to other papers like (Lian ef al.,
2002). These results are converged to desirable
trajectory command in 1 sec; however, the results of other
papers are converged to that desirable trajectory
command m 4 sec. Consider that the control effort is
limited.

These results are shown that the better tracking
performance can be achieved by using Theorem 1
compare to Theorem 2.
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Time (sec)
10
0
-IGI T T T L) T L] L] T T 1
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
1000+
= 0
-1000 T T T L) T L) L] Li T 1
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
10
g
5
k
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 4. Simulation results of Duffing Oscillator system,
Theorem 1,q=1.95
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10
g
9 1 2 3 4 S5 6 7 8 8 10
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Fig. 5 Simulation results of Duffing Oscillator system,
Theorem 1, q="7

Lii system: Consider a third -order chaotic system such as
well known Lii equation describing (Tan et af., 2003).

=2 (X, - %)
X, =X X; 1 €X, (48)
X, = XX, —bx;+u

where, a = 36, b= 3, ¢ = 20 and u 1s the control effort.
The system Eq. 48 can be rewritten as the following:
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2
w0
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Fig. 6 Simulation results of Duffing oscillator system,
Theorem 1, g = 0.62
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Fig.7: Simulation results of Duffing oscillator system,
Theorem 2, q=1.95

X =X,
X, =X, (49)
%, =f(x,,x,, %)+ U

And

2
F8,,%,,%,) = 4%, +8,%, + 8%, X, +2,X,X, +8,XX, (50)

2
“o0
-2 1 T 1 1 L] 1 L) 1 T T 1
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
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Time (sec)
1000+
2 0
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0 1 2 3 4 5 6 7 8 9 10
Time (sec)
10

Index
th

(=]

Time (sec)

Fig. 8 Simulation results of Duffing oscillator system,
Theorem 2, q=7

where, a, = -46656, a, = 35136, a,= 1980, a, = -1296 and
a; = -36. U is as the following:

U=axu (51)

The system dynamic function would be online
estimated by the GRBF,, identifier. The structure of
GRBF,, is shown in Fig. 1. A GRBF, identifier with five
hidden nodes 1s utilized to approach the system dynamic
function of the chaotic system.

In addition, the control parameters are selected as
¢, = 5,¢,= 5and ¢; = 5. The trajectory command 1s set as:
X, = cos(t).
results of the GRBABC with
consider Eq. 29 are shown in Fig. 9.
results of the GRBABC with
consider Eq. 40 and k = 5 are shown in Fig.10.

The performance index T is defined as 1= m .
The performance shown that the
proposed GRBABC can achieve favorable tracking

The simulation

The simulation

mdex I 1s

performance.

Figure 9 and 10 are shown that the results have
good performance compare to other papers like that
(Tan et al., 2003). Consider that the control effort is
limited.

These results are shown that the better tracking
performance can be achieved by using Theorem 1
compare to Theorem 2.
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Fig. 9: Simulation results of Lii system, Theorem 1
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Fig. 10: Simulation results of L system, Theorem 2
CONCLUSIONS

For some systems, since the dynamic characteristics
of the control system are nonlinear and the precise models

are difficult to obtam, the model-based control

approaches are difficult to be implemented. To overcome
this drawback, a novel GRBABC system has been
proposed.

In the newral backstepping controller, a GRBF,,
identifier is utilized to online estimate the system dynamic
function. The two adaptive laws of the GRBABC system
are synthesized using the two type Lyapunov functions
so that the asymptotic stability of the control system can
be guaranteed.

Finally, two chaotic systems (Duffing Oscillator and
L1 systems) are simulated to illustrate the effectiveness of
the proposed design method. Simulation results verified
that the proposed GRBABC system with adaption law
Eq. 29 can achieve favorable tracking performance of
these nonlinear systems.
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