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Abstract: This study presents a new technique based on back-propagation algorithm and Adaptive Neural
Networks (ANN) to compute a compressible flow represented by velocity profiles through symmetrical double
steps channels, The technique adopts a new clustering algorithm named a Dual-level Clustering (IDC), which
is based on the speed of flow, the flow deflection and the average of false diffusion error (T,....). A learning
system of three stages 1s employed, whose first two stages are run simultaneously while the third works as an
optimizer stage. The first stage constructs a finite element analysis employing adaptive incremental loading to
select appropriate patterns effectively. The second stage concerns an ANN with Modified Adaptive Smoothing
Error (MASE), whereas the third stage is to classify a set of patterns into DC to reduce the effect of errors. The
proposed training algorithm is fast enough and the simulation results of the learning system are in harmony
with the available previous works. The success of such algorithm can be attributed to three reasons. The first
is the employment of ANN that is an excellent approximator, especially if training starts from laminar flow
patterns. The second reason 1s the speed of training due to the use of ANN with learning rate & = (0.7 on the
few number of selected patterns equal to 464 and the third reason is satisfying the stability and the accuracy
for high range of Reynolds numbers (Re) Re = 4500 due to the use of MASE and DC based on false diffusion
erTor,
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networks

INTRODUCTION

A computer simulation of compressible fluid flow is
of particular importance in designing pipe networks,
channels, diffuser and aerodynamic using Navier-Stokes
Equations (NSE), which are non-linear Partial Differential
Equations (PDE). These equations have widest
applications as they govern the motion of every fluid,
being a gas or liquid or a plasticized solid material acted
upon by forces causing it to change the shape. The
popular methods for the numerical solution of PDE's
are Finite Difference Analysis (FDA), Finite Element
Analysis (FEA), Boundary Element Analysis (BEA)
and Finite Volume Analysis (FVA) (Glowinski and
Neittaanmaki, 2008).

The earliest solution of (NSE) used non-simultaneous
solver through FEA to implement velocity-vorticity
(u-v-t) formulation (Singh and Li, 2003). In recent years,
the FEA has been employed quite expensively in
predicating laminar, transition and turbulent flow
(Glowinskl and Neittaanmaki, 2008). It 1s also costly and

not easy to solve specially for high range of Reynolds
numbers (Re) due to the long processing time required to
attain convergence. Moreover, it 15 very expensive with
respect to the storage for the refinement mesh points
(EL-Emam, 2006; EL-Emam and Shaheed, 2008).

Recently, many researchers have demonstrated a
neural network approach that 15 fast and reliable for
predicting complex problem solving (Vodinh et al., 2005).
This approach is based on many types of architectures,
such as an artificial neural network with single/mult
hidden layer(s) (Lefik and Wojciechowski, 2005;
Meybod and Beigy, 2002). Developing neural models in
fluid applications was implemented by Golci (2006) to
study the Head-flow curves of deep well pump impellers
with splitter blades.

Neural networks with a clustering approach were
developed by many researches. Some methods are
classified as Agglomerative hierarchical methods such as:
Single Linkage, Complete Linkage, Average Linkage,
Median Linkage. Centroid, Ward and others (He et al.,
20035). Frossyniotis er al. (2005) apphied a multi-clustering
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method based on combining several runs of a clustering
algorithm to obtain a distinct partition of the data which
is not affected by the initialization,

In this study, a Dual-level Clustering (DC) technique
based on back-propagation algorithm and Adaptive
Neural Network (ANN) with Modified Adaptive
Smoothing Error (MASE) is proposed to compute a
compressible flow represented by velocity profiles
through symmetrical double steps channels. The
clustering is based on the speed of flow, the flow
deflection and the average of false diffusion error (I 1.
The clusters and their sub-clusters are fixed to three
according 1o flow regime (laminar, transition and
turbulent) while the number of patterns for each sub-
cluster is changing according o DC. The proposed
training algorithm overcomes a large amount of training
time, instability and inaccuracy of results and a large
number of patterns for each cluster.

PROBLEM DEFINITION

Fluid agitation and mixing can be generated by the
fluid flowing from one step to another in symmetrical
double steps channels when sudden expansion of flow
diameter occurs (Fig. 1). This, however, increases the main
velocity of the separating flow that is produced by the
other step. Such problem presents an even greater
challenge on the stability and convergence capability of
solution procedure. Our motivation is to enhance the
stability and convergence criteria through implementing
DC algorithm with ANN approach.

PROBLEM FORMULATIONS

Equation 1-3 shown represent the governing
equations (NSEs) for two-dimensional steady state of
compressible flow in terms of the primitive variables u-v-p
(Glowinski and Neittaanmaki, 2008; Vodinh, er al., 20035;
Eker and Serhat, 2006), where u-v are velocity functions,
p is the pressure function, p is fluid dynamic viscosity, p
is the fluid density and Re is defined as pVd/p, with d
being a charactenistic length chosen to be the width of
channel and V is the inlet velocity.

(pu) +(pv) =0 (1)

¥

Rtrl[puulﬂh'm ] =
(2)

¥

~Re uﬁ[imu - %u[[nu}ﬁ{p*—']}. }] Huu, +pv, )

Re (puv, +pvv,) =
2 . - (3)
~Rep,+ [Euv_, ~ Eu{{pu}ﬁfpv}j]J +H{pw, +uv, )

The second order velocity equations are obtained by
manipulating the vorticity w and continuity equation

(Eqg. 4, 5):

Viuto, _I{ up, +vp, 1=IJ (4)
' P
vl?—m\ﬁ[up‘ +vp, ] -0 (5)
I:, L)

The vorticity transport equation (Eq. 6) is obtained
by taking the curl of the momentum equations and
eliminating the pressure term.

V{no)-Re(puo, +pvo +T, ) (T, ) +[T, ) =0  (6)

HE Ty
where

Tr=- =u{pt u,—p,u, ]+v[p~ v, —p, '-"]I
T.. =2{|.I.lu_1—j.1} u1]| (7

T, =2(n, v, -, v

NUMERICAL SOLUTION OF FLUID FLOW USING
FEA WITH ADAPTIVE INCREMENTAL LOADING

FEA requires that the domain under consideration is
to be partitioned into a number of elements which are
defined by a certain fixed topology in terms of nodes.
Breaking the original domain into a set of elements is
not an easy job, especially for problems with moving
boundaries,  free  sworface, or complex boundary
(Glowinski and Neittaanmaki, 2008) as in Fig. la-c.

Obviously, numerical formulas of Eq.4-6 are always
subject to evaluation with unsatisfactory accuracy and
possible errors, An approximate solution of numerical
formula vsing FEA gives the high accuracy and stability
when adaptive mesh points are considered as in Fig. | o
overcome the problem of discretization error. The amount
of this error depends on four factors: order of shape
function, size of elements, shape of elements and
arrangement of elements in the domain (ElI-Emam, 2006;
El-Emam and Abdul Shaheed, 2008).

The numerical solution is highly confident in
comparison  with experimental results introduced by
(Glowinski and Neittaanmaki, 2008). Unfortunately, this
solution needs more time regarding the amount of
computation for Eq. 4-6 to find fluid flow behavior
(patterns) for all ranges of Re (0-4500). Consequently, the
adaptive incremental loading is effectively introduced in
this study to reduce the number of patterns.
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Fig. 1: (a-c) Three types of symmetrical double steps channels with mesh points

The numerical solution of u-v-w functions on
channels such as those shown in Fig. | requires the
following boundary conditions:

Condition 1: vix, v) £ AB (inlet), Dirichlet (C"- BC) is used
to find u (x, yv) and v (X, v) as Tollows:

uil,y) =8y -4y’ =3
vil,yh=0 (8)
wi(l,y) =8y -8

Condition 2: ¥ (x, yv) € BCICDIDEIEFIFG (Lower solid
boundaries) and by using Dirichlet (C" - BC), we have:

i, y)=1 (9)
vix,vi=1(

where, w (X, v ) is not specified at this side of boundary.
FEM is used to find its approximation value,

Condition 3: ¥ (x, v) € GH and by using C' B.C and C" B.C
foru (6, v) and v (6, v), respectively, we obtain:

u,(6,y) =
vib,y) =10 (10)
wib, vy} =10

where, (n) refers to the normal boundary direction.

Condition 4: ¥ (X, v) € AH and by using C' B.C and C"B.C

foru(x, 1) and v (x, 1), respectively, we have:

u (x. 1y =0
vix,) =0 (1)
wmix, 1) =10

Equations 12-14 are obtained from Eq. 4-6 with the
use of Galerkin weighted residual method based on
adaptive incremental loading (Glowinski and Neittaanmaki,
2008; Kaczmarczuk and Waszczyszyn, 2005), where, N,;,
N,, and N, are linear Lagrange polynomials (weighted
functions) for the gquadrilateral elements (Vodinh er al.,
2005) in the channel's domain £2,

”H,{‘F’u+m} +[“P‘;m* J ]dIL:{] (12)

‘F:v+ml+[“p‘;m3 1 ]aﬂ::] (13)

[N (o) (Re+ SRe)(puw, +pve, +T,) +(T,, ) +(T,, ],)dﬂ =0
il

I

(14)

FEA with modified Newton’s method are used to find
the variation-vectors du, 6v and 6w (Eq. 15-17). The dRe
15 the adaptive ncremental loading and its value 1s
changed from pattern to next patterns according to the

value of I',..., where, R,,, R, and R, are the residuals at
node 1.

”[H"‘ [Eu}'- +N'r.~ |:E”'l]:. +N,, {E“}L + N

p,du+p,Bv ]}m .

3 P
(15)
H LBv) +N, (8v) +N, (So) + Ng..[M]}Jﬂ=—R:.
| p
(16)

[J(N (1 8), +N,, (1 8a), + N, (Re+ 8Re)pu(Sw), +pv(da), +

pw, dutpw dv+p, (udu+vdv) —p (udu+vdv) } dQ=-R,,
(17)

Substituting the shape functions to obtain the
following:

EF. Bu, +EK By, +El{ B, = (18)

K, =_Lj[r~1,h[r~:j

+p—‘]"-]}']+]"~1,h["~[; ]dn (19)
o v N

= Py (20)
K., _LJ[H," . N ]dﬂ

where
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Fig. 2: Cooperation between FEA and ANN

K= H -N,, N |d& (21) In this study, simultaneous solvers on the numerical

model represented by Eq. 18, 22 and 26 are implemented to

. find the fluid flow behavior as an input pattern to the
E K, 8v,+ El-imﬁu +E|{n”hm =R, (22)  proposed three stages (Fig. 2).

and

NEURAL NETWORKS MODELING

where

For nonlinear rheological phenomena, neural
K, =H [N:_}_[h—; +&I~;'J'}+r~;:"1~;;; }m (23) networks approach 1s promising as an alternative
f P technique, where a neural network might consists of a
large number of highly interconnected neurons. A fully
K. H(” P ] i (24) connected multi-layvered neural network 1s presented in
a this study. Basically, there are four key-parameters that
characterize a neural net architecture: the first is the
= H[ N, N" |d (25) number of layers, the second 1s the number of neurons at
each laver, the third is the kKind of connectivity among
and layers and the fourth is the kind of activation function
used within each neuron (Goleii, 2006; Kaczmarczyk and
):p;, 3o, + }:KH.EH +E“u--5" =-R, (26) Waszczyszyn, 2005; Payne, 2006). Neural network can in
il principle have any number of layers: each consists of
various number of neurons. The most common neural
where network architecture which is comprised of 3 layers
(Hovakimyan et al., 2002) (Input, Hidden and Output) is

Koy = [N (e, N7+ 0N N (0 NY Nz ) used in this study.
. (27) Figure 3 shows simple 3-layers (n-p-m) neural
network architecture with (n) neurons in the input layer,
(p) neurons in the hidden layer and (m) neurons in the

_Hu (Re+&Redpa, N +p, (u, N +u N ) —p (u N!+uN:)|d2  output layer.

Usually, the number of neurons in the input layer is
equal to the number of the available features. The present
training algorithm uses Re*' and the velocity functions
u-v for Re* as an input features, where, k is the current
(29) iteration index. The number of neurons in the output layer

N, (Re+ 8Re)p[uN + WN* }]dn

H|_|

(28)

K =[N, (Rer ReNp@, N +p, (v, N2 v N3 ) -p, v, N2 49, )}
Ll
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Fig. 4: Neural network layers with BPA

equals to the output features represented by the velocity
profile for Re*'. On the other hand, the number of
neurons in the hidden layer needs to be adjusted during
training. Usually, there is a trade-off between accuracy of
the output and number of neurons in the hidden layer.
Complex problems require a large number of neurons at
the hidden layer and the kind of connectivity among
layers can be full or partial (Frean er al., 2006). In the
proposed training algorithm, a fully connected
architecture is applied where each neuron in a layer is

connected to all neurons in the next layer as shown in
Fig. 4.

TRAINING OF COMPRESSIBLE FLUID FLOW

The training process presented in this paper employs
back-propagation with ANN through three steps: the
feedforward of the input training pattern, the back-
propagation of the associated error (BP) and the
adjustment of the weights (ADJ). Figure 4 shows the
(n-p-m) neural network, where the solid arrow refers to
many-to-one or one-to-many transitions, the doted arrow
refers 1o one-to-one transition and the dashed arrow
refers to send action for adjustment process.

During feedforward step, each input neuron I, 1=1...n
receives an input signal and broadcasts this signal to
each of the hidden neurons H,, j =1... p, as in Eq. 30.

H,=®V, + YLV, (30)

Each hidden neuron computes its activation and
sends 1ts signal to each of the output neurons O, for
k = 1...m. Each output neuron O, computes its activation
as in Eq. 31 to form the output signal of the network.

0, =®(W, + Y} HW,) (31)
j=I

The type of activation function implemented in this
work 1s bipolar sigmoid working in the range [1, -1]. This
function is given in Eq. 32 and its first derivative is shown

in Eqg. 33.
:#_ 32
(%) r—— ] (32)
¢Jx3=%{l+¢m}{1—¢m] (33)

The first derivative of the error factor represented
by A, k = 1...m (Eq. 34) is computed to show the
associated error for the specific pattern at the output
layer (Meybod and Beigy, 2002; Hovakimyan et al., 2002).
This error is used to adjust the weight W, between the
hidden neuron H; and the output neuron O, as illustrated
in Eq. 35, where Be[0, 1] is the damping parameter,

A =(1, -0 @ (W, + Y HW,) (34)

=1
AW =B AH |+ (1= B).AWEE (35)

Similarly, the first derivative of the error factor A,
1= 1..... p (Eq. 36) is computed to show the associated
error for the specific pattern at the hidden layer. The
adjustment to the weight ¥V between input neuron I; and
hidden neuron H; is based on the factor A, and the
activation of the output neuron as illustrated in Eq. 37.

A =D (Y, +i LV.) iahw“ (36)

raew 2l
AVI™ = Bod L+ (1-BIAV; (37)

The adjustment on the weight function is defined in

Eq. 38-39.

W = WL AW, (38)
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Vi =V + AV, (39)
In this study, f = 0.1 is assumed and the Adaptive
Learning rate AL is used to improve the speed of training

by changing the rate of learning @ during training process
as shown in Eq. 40a (EL-Emam, 2006; Lefik and

Wojciechowski, 2005 Meybod and Beigy, 2002,
Giledl, 2006; Maira er al., 2002).
K AW AW 50
ot = (- i AWTAWE <0 40,
Vi otherwise

The training 1s repeated several times to update the
old values of the two dimensional arrays V and W until
convergence criteria given in Eq. 40b 1s satisfied.

Max (t, =0, ) <107* k=1,...m (40b)

In addition, the present study introduces a new
technique to improve the training process. This technique
is implemented to reduce the effect of errors and speed up
training by using DC. The proposed algorithm performs
two clustering levels, the first level includes three clusters
depending on the type of flow (laminar, transition and
turbulent) while the second level (sub-clusters) depends
on the following:

»  The average of all angles 6, for all elements in the
specific pattern (Eq. 45), where 0, angle represents an
inclination of velocity from the element's direction as
in Fig. 5

* The patterns ordered in ascending order within
each sub-cluster according to the value of I'...
(Eq. 42a-b). In the next section. this point is
discussed to show the effect of sorted patterns on
the performance of the training algorithm

Figure 5 shows inclination of an element represented
by £-1 axis with respect to the X-Y axis and velocity
direction V, where 0, is the angle between E-axis and
X- axis, 0, is the angle between velocity vector V and X-
axis and 0,is the angle between £-axis and velocity vector
V.

Figure 6a shows a finite state automata transition
graph to describe formally the first phase of the present
training algorithm, where, T is the transition, S 1s the
smoothing error and N is moving to the next pattern.

In this study, three clusters denoted by Ci=1, 2, 3
are proposed. Each cluster includes a number of selective
appropriate patterns corresponding to diverse Re, which

b=

Fig. 5: Velocity inclination for one element

Table 1: Clusters' intervals
Cluster name

Clusier interval

Laminar Re e [0, 500]
Transition Re € [550, 1500]
Turbulent Re e [1550, 4500]

is equal to m', m" and m™ patterns for laminar, transition
and turbulent clusters, respectively. These patterns are
selected by using FEA with adaptive incremental loading
on specific type of double steps channel. In the next
section, we discuss that a few number of patterns is
enough to produce an effective learning system for
compressible flow. The proposed intervals for each
cluster used in this work are shown in Table 1.

Figure 6b shows the finite state automata transition
eraph for the second phase of the training algorithm,
where the dashed state refers to the final state of
transition graph. In addition, the transition label MCE
refers to maximum error of clusters (Eq. 44a, b), the label
ME refers to the maximum error of neurons (Eq. 44¢)
and NF refers to the next value of T, (Eq. 42b).
Additionally, the pattern P in Fig. 6b represents the j”
pattern in the i" cluster and s"
Jand s =1, 2, 3. The numbers of patterns in sub-cluster |
for laminar, transition and turbulent clusters are equal to
N', N" and N, respectively; M', M" and M", respectively
for sub-cluster 2 and K', K" and K", respectively for sub-
cluster 3., where:

sub-cluster for alli1 =1, 2,

m' =MN+M + K’
m'=N"+M"+K" (41)
m =N"+M"+K"

Equation 42a is used to compute the error I, for each
element in the channel domain, where this error depends
on Re, mesh size, channel shape and inclination of
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velocity direction to the grid. The maximum value of I', is
reached when the angle between velocity vector V and
X-coordinate axis is equal to 7/4,

I" = g Hin{g+ﬂ_¥}|‘-’ L sin(26,)

L4

(42a)

1Kl

. I .
l—l' i = rl,
AvErape 100 E It

e=l

(42b)

THE TRAINING ALGORITHM

The training algorithm is implemented through two
phases. The first phase is to find appropriate patterns
with their training process and the second phase is to
reduce the effect of errors. The second phase requires DC
sub-algorithm to apply hierarchical clustering (He et al.,
20035; Silvestre er al., 2008) tor each cluster. This kind of
clustering is worked iteratively to agglomerate patterns
into three sub-clusters and 1t 1s based on two steps: the
first is used to find the amount of flow deflection for each
pattern while the second i1s to sort patterns in ascending
order at each sub-cluster according to T.... The two
phases of the training algorithm and the sub-algorithm are
presented below:

First phase of the training algorithm: Find appropriate
patterns with their training process as the following
steps:

Step 1: Let g, be the index of external iterations for
training clusters

Let ¢, be the index of internal iterations for

training patterns

Let u be the size of the current cluster

Let p be iteration's index for training patterns

Let ¢ be the maximum number of iterations for

training patterns, which is large enough

Let IT__, be maximum number of iterations for the

external loop (from cluster to next cluster)

Let IT .. be maximum number of iterations for the

internal loop (from pattern to next pattern)

Let m'=m"=m" = I// the initial setting of the
number of patterns for each
cluster
/fthe initial value of the
incremental loading

Let 6Re' = 50;

Step 2:  For(q,=0: q, <II,,,: nextq,)

Step 2-1: i=(q,+1) mod 3; /f we have 3 clusters

Step 2-2: If(i=1)thenu=m"
elseif (1= 2)thenu=m'";
elseif (1=0) thenu=m";

Step 2-3: For (q.=0; q. <II ..: next q.)

Step 2-3-1: j = (q.+1) mod u; /I since there are u

patterns in the cluster

Step 2-3-2: Implement FEA to find P, for Re™

(Eq. 26-29) Af it is not calculated before

Step 2-3-3: For (p =1; p == 0; next p)

Step 2-3-3-1:  Apply training on P} ;

Step 2-3-3-2:  Update the value of weight functions
(Eq. 38-39), with the smoothing (Eq. 35,
A7) for the cluster C..

Step 2-3-3-3:  Using Eq. 40b to check the convergence
of the training process for the pattern P

Step 2-3-3-3-1: I convergence is satishied then break
training.
Step 2-3-4: Implement  the

proposed

adaptive
incremental loading:

if(p=a)
if (6Re<50)
dRe = 50;
else
oRe = 6Re /2;
else if (p<o)
if (6Re=250)
GRe = 250
else

ORe = dRe * 2;

Step 2-3-5: Increment by one the number of patterns for
the current C, {m',m", or m"}

Step 3: Set the final number of patterns to each

cluster, m’, m", m", (Eq. 41).
Second phase of the training algorithm: Using DC
sub-algorithm to reduce the effect of errors as the

following steps:

Step 1: Call DC sub-algorithm (It is presented below).
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Step 2:

From clusters domain. select the ith cluster C,
that has a maximum sum of sub-cluster's error
(MSE) (Eq. 43-44)

MCE = Max (MSE), i=1...3 (43)

Step 2-1:  From sub-cluster SC at cluster i, select sub-

cluster indexed s that has a maximum sum of
neuron's error (Eq. 44a.b).

MSE = Max (ME), s=1...3

WAL,

(44a)

Step 2-1-1: For each pattern P at the sub-cluster SC,
find the maximum sum of neurons' errors

Eq. 44b.
ME = h-:lax Z [Hrmr’ o ]‘ j=1.3 (44b)

Where:
ElTurl'n.'ullll'\- =|DIIE’|.II'UI'I'\| _ tl'n.'ullll'\- {'44‘:]

Step 2-1-2: Apply training on the jth pattern F;
Step J: If clusters' errors are not flat then go to step 2.

DC Sub-algorithm: Apply hierarchical clustering for each
cluster as the following steps:

Step 1:  For each cluster C, 1 = 1, 2, 3 and their sub-
cluster 5C,s=1,2,3
Put SC,={ } ¥s

Step 1-1: For every pattern P,

Step 1-1-1: For every elementein P, e=1...100

Step 1-1-1-1: Find the angle 0, (Eq. 45).

;
6, -8, for ;%59,,935?::”;1159,.9:5%)
vit< st &0<0 2)
2= 2
6= - v (<o sn & Feo <om)
' 27 3
|6, +8,| otherwise
(45)

Step 1-1-2: Find Av (0.) (Eq. 46).

111

1
AV(B,) = m“ga,{e; (46)

Step 1-1-3: if (0=AviB)=1/2) then
if (40 < AviB,) =50} then
SC,=8Cu P}
else if (202 AviB, )< 40w (50 < AviB, ) =T then
SC,=8C,u { P}
else if (0= AviB,)<20)v(70< AviB,) = /2) then

SC,=SC.u [P}

Step 1-1-4: if (n/2<Av (B,)< ) then
if (m-50<Av (0,)<m-40) then
SC,=58C,u (P, ]
else if (m-40< Av (B)<n-20V
-70<Av (0,)<m-50) then
SC,=SCu (P
else if (m-20<Av(0,)=m v
m/2<Av (0,)<m-70) then
SC,=SC,u [P}

Step 1-1-5: if (m<Av (0,)= 37/2) then
if 3m/2-40=Av (8,)= 3m/2-50 then
SC,=8C,u (P, ]
else if (3m/2-40<Av (8.)<3m/2-20
(3m/2-T0<Av (0,)<3m/2-50 then
SC,=8C,u [P, ]
else if (3m/2-20<Av (0,)<3n/2 W
m=Av (0,)<n/2-70) then
SC,=8C,u [P} ]

Step 1-1-6: if (37/2=Av (08,)=2m) then
if (2m-50<Av (0,)=27-40 then
SC, =S8SC,u{PF}
else if (2m-40<Av (0.)<27-20V (27-T0< Av (0,)<21-50)
then
SC,=S8C,u {P,}]
else il (2m-20<Av (02 V 3n/2<Av (0,)<21-70) then
SC.,=SC.u{P}

Step 2: Using TI'.... Eq. 42a-b to sort patterns for each
sub-cluster s.

RESULTS AND DISCUSSION

To construct a learning system for compressible fluid
flow on two-dimensional channels as shown in Fig. 1. it is
necessary o find number of patterns for each cluster and
sub-cluster for those channels. These patterns are
selected through the tramming system stages (Fig. 2). The
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numerical model using FEA with adaptive incremental
loading is constructed from Eq. 18, 22 and 26 and executed
them simultaneously o achieve these patterns.

The symmetrical double steps channel's domain is
divided into finite elements vsing adaptive mesh point
technique (El-Emam, 2006; EI-Emam and Shaheed, 2008) as
shown in Fig. 1. This technique 15 used to provide an
adequate mesh point refinement at the critical region of
the specific channel. We suggest that the suofficient
number of elements used in this study 1s equal to 100
elements.

Inlelf ———» Ot et

Fig. 7a: Symmetrical double backward step channel with
expansion ratio = 2/3

# —
2 —— Present work  —8 Expriment

—i— Finite element -®@Finite difference

Recirculation zone length (x'h)
=
1

n I I I ; I L] ¥ ] 1

Re* 100

Fig. 7b: Recirculation length in a single step channel vs
Reynold No.

Mo, of iterafions

It is important to check if the proposed numerical
simulation using FEM with adaptive incremental loading
leads to physically coherent and accurate results. As a
consequence, the proposed approach is compared with
the existing experimental and numerical literatures
(Glowinski and Neittaanmaki, 2008; Vodinh er al., 2005).
This comparison is implemented on steps channel with
expansion ratio equal to 2/3 (Fig. 7a) to show the variation
of the length of the separated region as function of Re
numbers, The agreement appears to be fairly zood over all
Re numbers as shown in Fig. 7b.

In addition, the dependence of the recirculation
length (normalized with respect to the step height) on Re
15 shown in Fig. 7b and it is apparent that the ratio X/h
increases almost linearly with Re, reaches a peak value
(~7) at laminar regime conditions and reaches a constant
value (~14) at transiton/turbulent conditions.

This study concentrates on the training system and
percept the essential problems that are playing basic role
on the training efficiency. Such problems are evaluated
and removed eventually through AL with DC technique.
In this section, we define a set of factors to speed up
training system and to reduce the effects of errors,

Channel geometry factor: The training system is applied
on three types of channels that were shown in Fig. 1. The
channel geometry affects the speed of training as shown
in Fig. 8, in which we observe that channel 3 consumes a
minimum number of iterations due to the fully slopped
enlargements of the channel shape. This type of channel
makes two vortices near the steps are slipped to the outlet
with minimum mixing, whereas channel 2 consumes a
maximum number of iterations due to the partially slopped
the channel's steps which generates higher velocities near
the wall and push vortex region into the center of channel
to generate the maximum mixing. Reduction of errors is
achieved when the training 1s forwarded through clusters
starting from the laminar regime.

== Channel | - Chammel 2 <= Channel 2

T T T T T L] L] ! J L I ¥ ¥ 1 | 1 |
FiIL P31 FSE BETL P’ PI2 P32 P32 PT2 PmMT2 P13 P33 P53 OPFTY Pm™3
Patterns of Patiemns of Pattems of
calesier | caluster 2 calusier 3

Fig. 8: Speed of training on three types of channels
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Fig. 9: Speed of training with /without AL on (a) channel 1, (b) channel 2 and (c) channel 3

Rate of learning factor: For training process, two
approaches are proposed. The first is based on using
adaptive learning rate (AL) on the learning factor o
according to Eq. 40a, where, the values of parameters
K and vy are estimated to 0.015 and (.8, respectively.
The second concept is to fix the value of learning rate .
Figure 9a-c¢ show that the speed of training process with
AL 1s more stable and faster than the training without
Al

The initial rate of learning factor: This factor is very
important to speed up training process and to get high
accuracy too. Accordingly, we study the behavior of the
present training process with respect to the number of
iterations and errors distribution. Figure 10 shows the
speed of training process with respect to different values
of learning rate (&) on three channels. The maximum peak
is appeared at (e = 0.1) while the minimum peak appears at
(ee = (0.8). The best result is reached when (o = (0.7) is
selected due to the minimum error distribution (Fig. 11).

Using DC factor: In the second phase of the proposed
training algorithm, DC is used effectively to reduce the
effects of errors and the order of patterns for each
sub-cluster. These are playing basic roles on the amount
of damping error, so that it is necessary to sort patterns in
ascending order according to I, for each sub-cluster,
On the other hand, DC is not promising when patterns are
selected randomly or sorted according to Euclidean
distance presented in Eq. 47a, where, I" and O" are the
input and output signals of the pattern P.

D, (L0 =Jiq1f‘ —0"y (47a)

Figure 12a-c show the comparison between sum of
pattern’s errors and rate of learning with/without DC and
with/without sorting patterns for each sub-cluster in the
three channels.

In addition, the learning process with DC i1s worked
well when a pattern with a maximum total error (Eq. 43, 44)
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is selected rather than selecting the one that includes
neuron with maximum error (Eq. 47a-c).

MCE"=Max (MSE'), i =1..3 (47b)

MSE’= Max (ME). s =1.3 (47¢)

600 —— Channal | -~ Channal 2 —&— Channal 3
3001
400
3001
200
100

N of lerations

1 2 k) 4 5 [ 7 8 5
Fate of learning *{1/110)

Fig. 10: Speed of training process with respect to the rate
of learning

—— Channal 1 —8— Channal 2 ele=Channal 3

L 4= L 2
L L L ]

Sum of efrors
—_—
I

Rate of leming *(1/110)

Fig. 11: Sum of pattern’s errors with respect to the rate of

(47d)

ME" =Max || Error™™ | L P=1.3
5P

T Ewnn

Figure 13a-c show the level of error if the pattern is
selected according to Eq. 43, 44 and Eq. 47b-d for the
three channels. It appears that the error factor 1s oscillated
through the steps of dapping error, whereas training
process is more stable if pattern is selected according to
Eq. 43, 44. In addition, the error remains the same for all
types of channels when Eqg. 43, 44 are implemented on the
contrary to that implementing Eq. 47b-d. which show
instability and changes from channel to another. It is
obwious that the maximum error occurs at channel 2 while
the minimum error occurs at channel 3.

Fluid flow behavior and number of patterns factor: The
behavior of the fluid flow is also affected when patterns
are selected by using adaptive incremental loading yRe.
Figure 14a shows the number of patterns for each cluster
at each channel and Fig. 14b-d show the number of
patterns for each sub-cluster at the three channels. It
appears that channel 2 needs a maximum number of
patterns equal to 223 that are apportioned on three
clusters C, C, and C; with 140, 43 and 40 patterns,
respectively. While channel 1 needs 137 patterns: these
patterns are apportioned on three clusters C, C, C, with
70, 37 and 30 patterns, respectively. Finally, channel 3
needs a minimum number of patterns equal to 104; these
patterns are apportioned on three clusters C, C, C, with

learning 43, 31 and 30 patterns, respectively.
(a)
= With C and sorting hased on false diffiusion ermor
35, —'|—1Jui1:1h I‘.IE: and ﬂn.-m'hg hat%n:-f'l oy e lidean distames 6= (b)
A With DC and without sorting
= Without 3¢ 5
2.0 Y
[ £ 4
E 1.5 5
" S 3
4 E
E .0 Z 5]
03 14 ‘\.__‘__ﬂ‘i——-—‘-_“ﬂ
I:] T L] T L L L] L 1 {b T ] r T T L} r T 1
I 2 i i 5 & 7 f qQ | 2 3 4 5 f f) b o
Rate of Learning™® {1710} Rate of Learning™® {1/11)
209 ()
= 1.5
'I_"I_
=
= 1.0
=
i
(.57
U L] i Li T r L i
1 2 3 4 5 [ f) .

Rate of Learning® ( 1/1()

Fig. 12: Comparison between sums of pattern’s errors vs. rate of learning for (a) channel 1, (b) channel 2 and

(c) channel 3
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Fig. 13: Comparison between methods of selecting patterns for (a) channel 1, (b) channel 2 and (c) channel 3
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COMPUTER SIMULATION RESULTS

The proposed learning system calculates the velocity
of the compressible flow through double steps channels
for various values of Re in the interval {100-4000).
Figure 15a-d-17a-d show these results. It appears that

small vortexes exist at the steps of channels. As Re
increases, the vortices region extends in length and the
upper vortex spins over the lower vortex, The interaction
of two vortices diverts both of them slightly upward into
the center of channel especially for channel 2. Strong
interaction has appeared when the wvalue of Re is
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Fig. 15; (a-d) Velocity profile for compressible flow through channel 1 (Re = 100-4000)
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increased. In addition, the new small wvortices are
generated between two main vortices especially  for
channel 1 and channel 2.

CONCLUSION

The present study demonstrates a new training
algorithm based on two phases through a successful
ANN with DC. The proposed algorithm is used to predict
compressible fluid flow through specific type of channels
seometry (Fig. 1). FEA with a new approach named
adaptive incremental loading is utilized at the first phase
of the training algorithm to prepare appropriate patterns.
This studies simultaneously beside a training system
using ANN with DC. The proposed structure of the neural
network, which works through back propagation
algorithm, includes one input, one hidden and one output
lavers. It has been shown that it is possible to use few
patterns to simulate data with reasonable accuracy for
three clusters (laminar, transition and turbulent) that are
represented by velocity profile function and it gives
encouraging results in many fields of applications
(Muid mixing, Tuid agitation, etc.) (Y u and Morales, 20035;
Rajkumar and Bardina, 2002; Creusé and Mortazavi, 2004).
The success of the proposed training algorithm can be
attributed to three factors. The first is the employment of
neural network that is an excellent approximator to any
type of flow through any type of channel geometry
(regular or irregular shapes) specially, if training process
starts from laminar flow patterns (cluster 1). The second
factor is the speed of training due to the use of ANN with
proper value of AL on the minimum number of selected
patterns and the third factor is satistving the stability and
the accuracy for high range of Re due to the use of MASE
and DC based on [, _,.. Finally, a channel's shape is
playving basic role on the speed of training, accuracy of
results and the number of patterns.
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