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Abstract: This study presents a new geospatial information system-based solution that assists people in trip
planning to reach multiple destinations considering opening hours of points of interest and duration needed
to perform multiple activities using multimodel public transportation media. People encounter with complexities
mn finding optimum paths n a multimodel public transportation system as they need to consider interactions
of different modes of transportations in a more specific and constrained spatio-temporal structure. In this
situation people’s context in the form of their activities diary becomes an important issue affecting trip planning
and selecting mode of transportation. Activities diary constrains the spatio-temporal order of activities and
enables us to study the effect of activities in transportation planming. In this study, the impact of activity diaries
and spatio-temporal dimensions of activities in trip planning and optimum path findings are discussed. A new
algorithm is proposed for planning itinerary considering network, time and duration constraints. The algorithm
assumes that the activities are mandatory and the locations and duration of each activity are fixed. The
travelers’ destinations, time and duration constraints provide the input of the algorithm. Using connectivity
rules and policies, Dikstra algorithm for finding the shortest paths 1s selected. The results determine the
possible order of activities and their start and end time. The possible sequences of activities optimized based
on minimizing waiting time during the activities i.e., time that person neither is doing an activity nor is traveling
between activity locations and must wait till activity can be undertaken according to the time constraints.
Finally, efficiency of the algorithm is determined according to the time complexity as a function of number of
activity locations in the worst and normal cases. Tt has been proved that the time complexity of the algorithm
depends on the third power of number of activity locations.

Key words: Ttinerary planning, time constrained travel salesman problem, multimodel public transportation
network, activity-based modeling, GIS

INTRODUCTION

This study presents a new geospatial information
system-based solution that assists people in trip planning
to reach multiple destinations considering opening hours
of pomts of interest and duration needed te perform
multiple activities using multimodel public transportation
media. Decision making and planning to visit some
locations in limited time is a problem that people
encounter mn different situations (Kolyaie ef af., 2008c). In
itinerary plamming for performing daily activities,
determining how and when to reach activity locations in

an efficient way considering constraints of decision
making 15 an mmportant issue people are faced. Tourism 1s
a typical application of this problem.

There are many situations that using a classic
optimum path finding algorithm does not provide useful
solution. For example in case, three places must be
reached for performing activities, constramed shortest
path problem is solved and routes passing through these
locations by minimizing a cost function are determined.
However time to reach the locations and duration to
perform activities are not considered. For example,
reaching an activity location may happen not at opening
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Fig. 1: Daily itinerary components

hours of the service. It 1s clear that reaching locations
must ocecur in a time that performing activity is possible,
for example opening hours of a museum or official hours
of a bank or an office. It means reaching activity locations
must be in a meaningful time which 1s a time constraint
issue. An activity needs duration of time to be performed
which can be fixed or dynamic. In computing the
accessing tune to an activity location, duration must
be considered as reaching time plus time needed for
performing the activity should not exceed the opening
hours of the service intended, which is called duration
constramt. Optimum path finding considering activities
have some constramts such as sequential constramts. As
an example, one has to get money from an ATM and then
go to a restaurant to have lunch (Kolyaie et al., 2008a, b).

Daily activity program consists of going to one or a
number of locations to perform the activities. Performing
each activity needs time duration that results waiting in
activity’s locations (Wang and Cheng, 2001). Therefore,
daily itinerary includes number of activities that travel 1s
necessary to reach given locations and stay there for
performing the activities (Fig. 1).

All  human activities have spatio-temporal
dimensions (Miller, 2004). Conventionally, travel is
considered a derived demand issue from the desire to
engage in activities at certain locations (Bowman, 1998).
Hence, considering activities for trip planning is an
essential 1ssue. Existence of a trip planning system
considering activities helps people for optimum use of
their time and money and also helps in understanding
travel behavior (individual travel behavior includes route,
mode and destination choices, travel frequency, activity
scheduling and pre-travel decision making in an urban
area (Krygsman, 2004) and daily activities that affect
estimation of individual responses to policy measures
and changes because of environmental constramnts
(Burns, 1979). In addition trip planning system can be
implemented to encourage people to use public
transportation media.

Information plays a significant role mn the traveling
decisions of mdividuals which has been mvestigated in
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several contexts (Vaughna et al., 1999) including route
guidance (Bonsall et al, 1997), provision of transit
wnformation (Tan et al., 2004) and highway congestion
and incident related mformation (Casas, 2003). Few
researches have been reported on trip planning using
public transportation system based on activities that
consider time constraints which 1s the focus of thus study.
Travel itmerary planning which includes scheduling daily
activities and travel, is a complex problem and it seems no
analytical solution is reported so far. The matter may be
viewed as a version of the Travel Salesman Problem (TSP)
where a given number of destination locations have to
be visited with a minimum travel cost. The problem of
daily activity-travel scheduling is much more complicated
than TSP because of considering more constraints
(Vaughna et al., 1999) such as time {opening hour of each
activity location), travel mode, time duration, activity
sequencing and activity location.

In this study the impact of activity diaries and spatio-
temporal dimensions of activities in trip planmng and
optimum path finding are discussed. The proposed
algorithm can be used for planning itinerary, considering
network, time and duration constraints. Using the
proposed algorithm, it 18 possible that origin and final
destination coincide that makes the situation more
realistic because people usually stay in a place
(for example: home, hotel) and leave it to perform multiple
activities in different locations and finally back there.

The proposed algorithm assumes that activities are
mandatory and the locations of each activity are fixed.
The modes of transportation considered here are metro
and walking. The algorithm 1s implemented as a TSP using
Dijkstra algorithm for finding the shortest paths. The
results determme the possible options including order of
activities and their start and end time. The possible
sequences of activities optimized based on minimizing the
waiting time i.e., time that person neither is doing an
activity nor is traveling between activity locations.
Finally, efficiency of the algorithm is determined
according to time complexity depending on number of
activity locations in both the worst and normal cases.

MATERIALS AND METHODS
Here, basic components of the research are
introduced. Hence, path finding on multimodel network

and activity-based modeling are described. A sample data
of Paris urban network has been used in the case study.

Path finding on multimodel networks: Urban
transportation networks are increasingly characterized by
traffic jam and its corresponding impact on individual
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accessibility, air pollution and the development of urban
economic activities. Tndividual business and government
search the ways to relieve congested roadways and to
save travel time and mimimize transportation conflicts
(Lozano and Storchi, 2001). Tt is realized that travel
demand would never be satisfied with new infrastructure
development. Also, the oil crisis and economic recession
n the early 1970s encouraged the improvement of public
transport (Huang, 2003).

Multimodel transportation network is a system
that  uses  different transportation
networks simultanecusly to solve network analysis
problems (Kolyaie et af., 2008a). Different modes in a

modes of

multimodel transportation network are integrated as
follow:
M=M_ M M _OM o

metrn

Multimodel transportation systems can be modeled
using graphs adding new lines between nodes of different
networks for defimtion of connectivity among them. Node
i a multimodel network 1s a decision pomnt where one
must select either to keep on with the current mode or to
change to another. A change of mode or moedal transfer 1s
represented by an arc called a transfer arc. In contrast, an
arc connecting two nodes with the same travel mode 1s
called a travel arc (Lozano and Storchi, 2001). These
properties using graph theory are represented as follow
(Lozano and Storchi, 2001):

v :{(v,m),me M}

OB e fum o Teve v ma mm e

ifm, =m; then E=Travel arc

ifm #m, then E=Transfer arc

Where:

G = A graph representing multimodel network
V = Vertices or nodes of G

E = Edges or arcs of G

m, = Modes of G

There have been a number of researches on path
finding example,
Fernandez et al. (1994) developed a path finding on
bi-modal networks. Pallottino and Scutella (1997) used
mumber of transfer as the attribute of shortest path.
Battista et al (1995) removed unviable paths using

in multimodel networks. For

combinations of paths.
One of the main approaches to find reasonable
optimum path on a multimodel network is specifying

appropriate costs to different types of arcs and nodes
(travel and transfer) and then using connectivity rules.
Connectivity rules define constramts for finding optimum
path. A path consists of consequence of edges that
belong to the same connectivity group.

Activity-based modeling: Activity-based modeling is very
useful for investigating, planmng and feasibility study of
travel patterns (Krygsman, 2004). Planning and feasibility
study of travel patterns can be done under spatio-
temporal constramts and opening hours for performing
activities. Time geography investigates human activities
in spatio-temporal dimensions as it determines when and
where a person does his’her activities. Time-space path
tracks a person m different locations in different tumes
(Miller, 2004). In other words, according to activities that
one must be engaged with in different possible locations,
activity-based modeling helps in determination of where
and when one must perform his/her activities to include
mandatory activities and maximize number of optional
activities (Miller, 2004).

Reaching time to each activity location and duration
of the activity are needed to perform each activity just in
opening time of the corresponding activity for example
opening hours of a museum or official hours of a bank or
an office. A sequential constraint means sequences of
performing activities which can be pre-determined for
some or all activities according to specific spatio-temporal
constraints. Location and time to perform an activity can
be hard or soft. The location of an activity is considered
as hard, if it 1s the only place where the activity can take
place. The location 1s considered as soft, if it 1s one of a
set of alternative locations where the activity can be
pursued (Vaughna ef al., 1999). In the same way, activities
with hard and soft time are defined. Activities itinerary
can include optional and mandatory activities. An
individual’s activity schedule is usually constrained by
the mandatory activities (Wu and Miller, 2001). On the
other hand, optional activities such as sport or shopping
must happen between mandatory activities to maximize
number of optional activities.

Time, duration and sequential constraints are
temporal constramnts of the travel. Location of activities
and public transportation supply spatial constraints of the
itinerary planning problem. These constraints can be
considered using time geography and activity-based
meoedeling.

In recent vears, methods for analysis of travel
behavior in spatio-temporal dimensions are necessary for
Travel Demand Management (TDM) and Intelligent
Transport System (ITS). Geo-spatial Information System
(GIS) 1s very useful for management, analysis and
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visualization of spatial and temporal components of
transportation systems and in trip patterns (Thill, 2000;
Duker and Ten, 2001). Miller (1999), Kwan (1997) are
among the researchers who used GIS to study travel
activity patterns under spatial and temporal constraints.
GIS has high capability for visualization, simulation and
analysis of trip patterns in urban areas and transportation
systems. 3D visualization of trip patterns in GIS
environment increases the capabilities to study travel
behaviour patterns investigated by Kwan (2003) and
Ohmori et al. (2005).

Methods: The
planning

proposed algerithm  for itinerary
considering user constraints using public
transportation network described here. Activity-
based modeling used for planning the system.
Activity-based modeling and space-time path are shown
in Fig. 2.

is
is

3D GIS visualization capabilities are used to illustrate
activity based modeling (Fig. 3).

The intended activities are classified first according
to different dimensions.
activity described in above are shown in Table 1. The
activities are classified into 16 different classes according
to their dimensions (Table 2). The algorithm supports
activity class A, E, I and M determined in Table 2
according to user input i.e., if the opening hour of each
location iz equal to the duration time needed in that
location, its time is considered as hard, otherwise it is
considered as soft, in the same way sequences are
determined.

The flowchart of the proposed algorithm for trip
planning is shown in Fig. 4. Assumptions of the algorithm
include: (1) activity locations are considered fixed and
mandatory;
include metro and walking.

Different dimensions of an

(2) modes of transportation considered

Opening hour

T

Time

}

Performing activity

R

. A
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Fig. 2: Visualizing activity-based modeling
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Fig. 3: Visualizing activity-based modeling using GIS
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Optimization of possible
itinerary based on
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Fig. 4: Flowchart of the proposed algorithm for itinerary plamming

Table 1: Dimensions of activities considering available options

Options Dimension of activities
Hard/soft Location
Hard/soft Time

Hard/soft Sequence
Optional/mandatory Obligation

Table 2: Classification of activities

Activity class Tocation Time Sequence Obligation
A Hard Hard Soft Mandatory
B Hard Hard Soft Optional

c Satt Hard Soft Mandatory
D Soft Hard Soft Optional
E Hard Satt Soft Mandatory
F Hard Soft Soft Optional
G Satt Satt Soft Mandatory
H Soft Soft Soft Optional

I Hard Hard Hard Mandatory
J Hard Hard Hard Optional
K Satt Hard Hard Mandatory
L Soft Hard Hard Optional
M Hard Satt Hard Mandatory
N Hard Soft Hard Optional

0 Satt Satt Hard Mandatory
P Soft Soft Hard Optional

The overall algorithm has the following features:

Allows activity destinations as user input

Considers time and duration constraints according to
user input

Performs on a multimodel network

Multiple trip planning 1s managed

Waiting time minimization in each possible sequence
is maintained

A number of possible options are provided to
user with different start and end time and order of
visits
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Algorithm

' *

* * * Aok e deafe dfe 24

Determine all routes between each pair of locations
Determine all sequences fact (No. of activities)
Compute arrival departure time

Optimize possible sequences

Create output

Fig. 5: Pseudo code of the itinerary planning

Pseudo code of the algorithm for itinerary plamming
1s presented in Fig. 5.

The proposed algorithm manages a number of
possible options under brute force search solution for
itinerary planning. In the proposed algorithm at first, all
paths between each pair of locations are determined.
Assume a person wants to leave home to go to n different
locations and finally back home. In this situation, number
of all routes is equal to:

Zx[g—nx(n—l)

Tt multiplies by 2 if route from location A to location
B differs from that of from location B to location A. After
determiming routes, all sequences using permutation
function are calculated. For visiting n locations, all
sequences are equal to n!. This n! sequences are shown
mFig. 6.
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<B
A — B

A »
Home B < Home
— A

Fig. 6: n! sequences forn =3

Compute Arrival Departure Time
el oS s oo ok o o o A
For i=0 To No. of activities
For j=0ToNo. of seq - 1
If 8equence is Possible Then
"Origin= i Activity AND Destination= (i+1)* Activity
duration = duration need to perform activity of destination
ST = Start Time of opening hour of (i+1)* activity location
ET = End Time of opening hour of (i+1)" activity location
CostTime = Time need to travel between i* and (i+1)" activity
Tfi is first activity Then
startTime = ST - CostTime
ArriveTof(i+1)®Activity =ST
DepartTof(i+1)*Activity = ST + duration
Elselfi > 0 And i <NoOfActivities Then
ArriveT of(it1)"Activity =DepartTofithActivity + CostTime
If ArriveT < ST Then
WaitT = ST-ArmriveT
DepartT = 8T + duration
Elself ArriveT > (ET - duration) Then
WaitT =0
Sequence is not possible
Else
WaitT =0
DepartT = ArriveT + duration
End If
Elself i = NoOfA ctivities Then
ArriveT = DepartTofPreviousActivity+ CostTime
EndTime = ArriveT
End If
End If
Next
Next

Fig. 7: Pseudo code of Compute Arrival Departure Time function

To reduce time complexity of the algorithm, no extra  needed to move from home (origin) to the destination,
calculation is done in this part because of high complexity start time of each sequence is determined. Then duration

of permutation function and just sequences of names are time of this activity is added and departure time of the
created. Possibility of each sequence as well as departure location 1s calculated. Arrival time of the following activity
and amrival time of each location in each possible 1s calculated according to the earlier activity’s departure
sequence are calculated separately using Compute Arrival time adding time necessary to move from the earlier
Departure Time function which its Pseudo code is activity location to this location and the same calculation
presented in Fig. 7. for other activities will be undertaken. For each sequence

Time i1s continuous and as a result there are if arrival time of each activity plus duration over the
uncountable solutions for one status. To find reasonable opening hour of each location are marked as an
solution an algorithm has been suggested as follow. impossible sequence, they will be omitted from the next

First for each sequence according to the first  calculations. This method reduces time complexity of the
destination using its opemng hours and considering time algorithm.
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OptimizePossibleSequences

Input: Possible Sequences
For i =0 To NoOfPossibl eSequences
For j = 0 To NoOfActivities
If WaitT <> 0 Then
Offset = WaitT
k=j
While k <=0

If DepartT < ET Then
If (ET- DepartT) < Offset Then
Offset = ET- DepartT
End If
End If
k=k-1
Wend
If Offset <=0 Then
Fors=j Tol Step -1
WaitT=Wait T-Offset
ArriveTof PreviousActivities +=Offset
DepartTof Previ ousActiviti est=0ffset
Next
ArriveT+=0ffset
End If
End If
Next
EndIf
Next

ET =End time of openning hour of previous activity
DepartT = depart time of previous activity

Fig. 8: Pseudo code of Optimize Possible Sequences function

In addition, if arrival time to each activity location be
smaller than start time of opening howr of the activity
location, the algorithm considers waiting time till the
activity location commence. To minimize waiting time i.e.,
the time that a traveler neither performs activity nor
travels between activity locations, optimize possible
sequences function is used whose pseudo code is given
m Fig. 8.

In optimize possible sequences function all possible
sequences are checked in order to find locations that a
traveler must wait till the location opens. For each
possible sequence if it finds a location that its waiting
time 1s greater than zero, its previous activity arrival and
departure time will be checked. First the offset is assumed
equal to waiting time and then earlier activity 1s checked
according to end time of opening hour subtracted by its
departure time. If this value 1s smaller than the offset, then
offset is set as the smaller value. Finally, offset value will
be added to start time of the sequence and arrival and
departure time of the earlier activity locations and also to
arrival time to the activity location and will be subtracted
from waiting time of the location. This function is a shift
according to the determined offset value with reference to
the earlier part of space-time path of each sequence. Then
the marker goes through the following activity and 1if it
finds another location with non zero waiting time, the
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algorithm will be repeated and then checked for the next
possible sequence.

New generation of simulators has been suggested
based on new technological developments and further
understanding of what people want and expect from their
travel environment. According to Kwan (2006), these new
systems should include at least some of the following
characteristics:

¢ Consider decisions made under particular scenarios
on a daily basis

s Be able to adapt to people’s preferences

»  Be able to analyze a set of alternatives and make the
best choice

»  Combine all/some of these characteristics resulting in
a faster decision-making process with limited user
nteraction

The proposed algorithm includes all of the above
options.

RESULTS AND DISCUSSION

Here, first an example of itinerary planning results
using the proposed algorithim 1s shows and then
efficiency of the algorithm is discussed.
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Fig. 10: The user’s home and his/her activity locations (not to scale)

User first introduce histher home location and then
specify his/her multiple activity locations and their
opening hours and time durations. Figure 9 shows
interface of the developed program in VBA of AreGIS 9.2
software environment using AreObject.

Figure 10 shows activity locations of the user on a
map.

After determination of the activity locations and
user’s home, the algorithm is executed whose output is
shows in Fig. 11 in graphical and text formats.

As already mentioned, the overall concept of the
proposed algorithm is TSP on a multimodel network under
specific time constraints. No analytical solution seems to
be reported for this problem so far. Since, the time
dimension is continuous, there are infinitely a number of
alternative solutions with trip and activity start time. The
problem of travel itinerary planning is, in fact, extremely
complex (Vaughna & af., 1999),

The number of activity locations visited in one day
is limited. Therefore, a deterministic solution for TSP is
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Fig 11: 3howrs of routes and schedie (notto scae)

used in this study, which is simply to generae all
possible sequences, evaluate each and pick the best
(W anghma ef of , 19997, A sit iz the ondy way that prowdes
optimized solution. Hewistic methods such as genetic
algorithn (Freisleben and Merz, 19980 and ant colomgy
(Drotigo and Gambardella 1997 ; Ving and Hargring, 200070
have beern uged to solwve T3P, These methods prowde
guasi-optithize soluticn that prefers more efficiency in
cotittast to the best solution. For o greater than 15, it 15
suggested to use a heuristic solution Howewer, it is clear
that they do fiot provide the optithized solutic.

Time complexity of the proposed al gorithim depetids
oty the munber of the activity locations and vset’s titme
cotstrairds. In notmal sitoations, activity locations have
differerd opening hows atd impose tme constraints
therefore, mamber of possible sequences is smaller than
tmanber of all secuences that reduce time complexity of
the al gorithon . However, it the worst case 1.6, when all the
sequences are possible, tim e complexity of the & gorithem
igincreased Therefore, time complexity of the & gorithem
depetids on constraints of the inguts. Different titme
constrairds (1.e., operdng hows and durationn have been
tested to encourter with the worst and norm cases and
algo for differerd values of n (ie, mamber of activity
locationg). To simudate the worst case situation, same
opering hows of all locations are considered (from
2:00 atm till 2:00 pem). For oot al case, comsmon time for
cifferert activity types are used for example officid howrs
of a bank o operdng howr for a coffes shop.

The agorittan is executed for both the worst and
nottn situations for different vawes of nfrom 2 to 7) to
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Table 3: Tome complezdte of the algrilen i both the worst and noon
cage s for differsrdt wrabae of n

Tine [sec])
I Nhoret cace Moo case
2 1 1
E 2 2
4 4 4
5 10 7
L 44 ¥
7 326 X

determine the overall trend of increasing time complexity
of the algorithm according to the increase of n. The
tesults are elaborated in Table 3 in which it is clear that
with increasing of 1o, time complexity of the agorithm
increases too and also difference between the worst and
north cases becomes moore sigrificant.

For determination of the overall trend of time
cotmplexity of the algorithen, different functions such as
polynomial (degree 1, 2 and 30, power atnd exponertisl
functi ons were tested tofit to this walue. F or investi gating
the trend of the corresponding value, E-square (Eq. 1) and
T1Eq &) values are calol dted.

The best fitted curve 15 selected where, J is minimum,
R-squared value is a mamber bebrreen 0 and 1 that reveas
how closely the estimated walues for the trend line
cottespotds to the actual data A trend line is most
reliable when its B-squared walue is 1 or near 1. B- squared
is dso known as the coefficient of determination
Table 4 and 5 are summary of results to find the most
fitted tretud.
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Table 4: Equations used to find the most fitted trend for the norm case (y is t and x is number of activity location)

Trends Equations R? J

Norm case

Linear ¥ =20.743x - 65.01 0.5589 5941.68
Poly(2) ¥ = 74048 - 43.238x + 49.143 0.8315 1541.66
Power ¥ = 0.0493:5 7 0.8591 737407
Exponential v =0.1166e"724 0.9497 3421.28
Poly(3) v =4.6380% - 51.893x% + 182.54x —196.29 0.9816 247.214

Table 5: Equations used to find the most fitted trend for the worst case (y is t and x is number of activity location)

Trends Equations R? J
Worst case
Linear ¥ =502x-161.4 0.529 39270.8
Poly(2) y=18786¢ - 112x + 127.57 0.8131 11293.6
Power 0.0244x4 5% 0.8486 53461.8
Exponential y = 0.0669¢! 1178x 0.9481 25288.1
Poly(3) y=12102¢ - 136 + 477.9x - 514.67 0.9781 1803.28
3507 —o— Worst case congestion and air pollution One approach 1s to
3001 Norm case develop system that help people mn path finding and
P 8y P peop P g
. 20 itinerary  planning using multimodel networks.
g 2004 Travel itiner lanni system 18 necessary, not
ary p ng sy ary
E 1501 just  for one trip, but also for all travels for
£ 1004 / performing  daily activities. The system should
" pr—. consider time constraints of wuser and activity
L e e e e . : : : :
500 1 3 3 4 5 6 7 8 locations. Tt is useful for users, in planning daily
i No. of points itinerary by arranging the sequence of stops,

Fig. 12: Tune complexity of the algorithm fitted to
polynomial degree 3

. >[v.-v] o

xw-EE

=YY -V (2)
i=1
Where:
Y = ObservedT
Y = Estimated T
n = No. of observation

According to the I and R-squared values achieved
the third power of polynomial function is the best fit for
the trend of increasing time complexity achieved from the
proposed algorithm depending on the number of activity
locations (n) (Fig. 12). This function results in the
minimum value for J and its corresponding R-squared is
near 1.

CONCLUSIONS

There is a need to explore ways to encourage people
to use transit and share ride system to reduce traffic
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suggesting stop locations and routes and providing
schedule information.

In this study an algorithm is proposed and
successfully tested for planning itinerary considering
network and time constraints of users and activity
locations. The proposed algorithm that
activities are mandatory and the locations of each activity

AssUInes

are fixed. The travelers’ destinations, time and duration
constramts provide the user mput of the algorithm. The
algorithm 15 mmplemented as a type of TSP using
constrained Dijkstra algorithm for finding the shortest
paths on the multimodel network. The results determine
the possible options with different orders on activities
and their start and end time. The possible sequences of
activities optimized based on minimizing waiting time
defined, time that a person neither undertake an activity
nor travel between activity locations. Finally, efficiency of
the algorithm 1s determined according to the time
complexity based on the number of activity locations in
the worst and normal cases. Time complexity of the
algorithm depends on the third power of the number of
activity locations.

This study presents the results of an ongomg
activity-based itinerary planning on
multimodel networks. We tend to develop systems which
support solutions for daily queries on multimodel
networks. We are currently working on extension of the

research on

proposed approach to include soft destinations and
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maximize optional activities. The system can be further
developed to mclude buses and taxis.
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