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Abstract: This study considers the problem of multi-product multi-level capacitated lotsizing and sequencing
problem with sequence-dependent setups. A Mixed Integer Programming (MIP) formulation of the problem is
proposed which is impractical to selve in reasonable computing time for non-small instances. Redueing the
dimensionality of the problem and allowing to solve larger mstances, a modified mathematical model 1s
developed which ighores majority of combinations. The ability to quickly find integer-feasible solutions for
non-small instances is another aspect of this paper. Hybrid methods that mixes rolling-horizon approach and
heuristic are developed. Heuristic 18 used to determine binary variables of current period. To test the accuracy
of hybrid methods, a procedure for obtaming a lower bound on the optimal solution 1s developed. The trade-
offs between objective values and computing times are also provided.
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INTRODUCTION

Lotsizing and scheduling problems have been an area
of active research starting from the seminal study of
Wagner and Whithin (1958). Since then there has been a
considerable amount of investigation in order to
mcorporate other important features.

Among the characteristic features of the models for
lotsizing and scheduling are the segmentation of the
planning horizon, the tune dependence of the model
parameters, the information degree of the model
parameters, the number of products and production
stages, the production structure and the capacity
restrictions (Fandel and Stammen-Hegene, 2006; Merece
and Fonton, 2003; Karimi ef al., 2003).

Models of lotsizing and scheduling are divided m the
literature into small bucket and big bucket problems
(Eppen and Martin, 1987). Small bucket problems break
the planning horizon m small time periods such that at
most one product can be manufactured in a single period.
Consequently, if a setup is performed, the entire time
interval must be devoted to the setup. That is, setups and
production runs comprise of an integer number of time
mtervals. Small bucket problems for multi-level multi-
product production are the Multi-Level Discrete Lotsizing
and Scheduling Problem (MLDLSP) and the Multi-Level

Proportional Lotsizing and Scheduling Problem (MILPLSP)
(Kimms, 1996). Both models enable simultaneous lotsizing
and scheduling, but limit the number of products to be
manufactured n a period.

The Multi-Level Capacitated Lotsizing Problem
(MLCLSP), a big bucket problem, does not have this
disadvantage, but it can not fix lotsizes and schedules
simultaneously. To attempt to unite the advantages of the
MLPLSP and MLCT.SP, Fandel and Stammen-Hegene
(2006) have made a model formulation based on two-level
time structure (Fleischmann and Meyr, 1997) which
enables simultaneous lotsizing and scheduling for multi-
product multi-level job shop production.

This study deals with the deterministic dynamic
models with a fimte planning horizon, where the
production of several different products on serially-
arranged capacitated machines is concerned. The
challenging problem of efficient lotsizing on a flow shop
with sequence-dependent setups 15 modeled using a
new Mixed Integer Programming (MIP) formulation
Simultaneous lotsizing and scheduling is essential if
sequence-dependent setup costs and setup times occur
during production.

Solving the single-level multi-period CLSP with
sequence-dependent setups is equivalent to solving
multiple dependent TSPs (Gupta and Magnusson, 2005).
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Hence, like the TSP, the CLSP with sequence-dependent
setups also belongs to a set of problems that are called
NP-hard That means it is very difficult to optimally solve
large instances of the problem. In fact, the solution time
rises exponentially as either the number of variables and
constraints increase. The mtroduction of multi-level
production makes the problem even more complicated.
Therefore, it 13 necessary to find reasonable heuristic
solutions for medium and large instances. Also it is
umnportant to develop a computable lower bound mn order
to test the accuracy of the heuristics.

In this study, mathematical model and solution
approaches for multi-product multi-level capacitated
lotsizing problem with sequence-dependent setups have
been proposed.

PROBLEM DEFINITION AND MATHEMATICAL
MODEL

Assumptions: Following assumptions are made for the
problem of multi-product multi-level capacitated lotsizing
with sequence-dependent setups:

*  Several products are produced on senally-arranged
machines in flow shop structure. There are M stages
of processimg which occur in a linear fashion from
1,....M

*  Each machine 1s constrained n capacity

¢ When the machines are setup, sequence-dependent
setup costs and times accrue

¢ The setting-up of a machine must be completed in a
period

¢  There must be precisely N (number of products)
setups in each period on each machine, even if a
setup 18 jJust from a product to itself. Since a setup
time (and cost) from a product to itself 13 zero, note
that the model does not force a machine to have
exactly N positive-time (and cost) setups but rather
up to N such setups. The remaining zero-time (cost)
setups are modeling phantoms and do not exist n
reality (Clark and Clark, 2000; Clark, 2003). This
feature makes possible for a lotsize, or preduction
mn, to continue over consecutive time periods
without incuwrring real setup for latter period (setup
carry over)

*  The required resources and parts must be ready for
production

* External demand exists for final products and is
satisfied at the end of each period

* There are no lead times between the different
production levels for transportation or cooling the
products

+  Shortages are not permitted

A component can not be produced earlier in a period
than the production of its required component 1s
finished. In other words, production on a production
level can only start if a sufficient amount of the
product from the previous production level is
available; this 1s called vertical mteraction

To guarantee the vertical interaction, idleness before
each production 1s defined with the help of shadow
product (Fandel and Stammen-Hegene, 2006)

There are no demand and no storage costs for
shadow products

At the beginming of the planning horizon each
machine is setup for a defined product. The starting
setup configuration on all machines are the same
The triangle inequality holds, i.e., it is never faster to
change over from one product to another by means
of a third product. Tn other words, a direct
changeover 1s at least as capacity efficient as going
via another product

Setup cost has the form w,,= £.S;, where, f, is
opportunity cost per unit of setup time

Infimte buffers exist between stages and before the
first stage and after the last stage

Mathematical model

Indices

L1,k Product type

n,n', n' Designation for a specific setup No.
m Level of production

t Period

Parameters

T Planning horizon

N No. of different products

M No. of production levels

bigM A large real No.

Ciat Available capacity of machine m in period t

diy

297

(in time urnits)

External demand for product j at the end of
period t (in urnits of quantity)

Storage costs unit rate for product j in level m
Capacity of machine m required to produce a
unit of product (or shadow product) j (in time
units per quantity units)

Production costs to produce one unit of
product j on machine m mn period t (in money
unit per quantity unit)

Sequence-dependent setup tune for the setup
of the machine m from production of product
1 to production of product j (in time units); for
i#], Sz0andfori=j, S, =0

i = i
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Wi : Sequence-dependent setup cost for the setup i=L..Nn=1.. Nn"=1..Nm=1,. MI1t=1_..T
of the machine m from production of product (4)
1 to production of product j (in money units);
. . . _ H N N n N N
_ ortzh W 0andfori =) Win =0 S33Y.,Su 2 3b. xk+ 22b.4),5C.
Jum : The starting setup configuration on machine 2l isl 3= 2= =1
m
m=1,..Mt=1,.T (5)
Decision variables
N
| XWECo/b) Y YL
L : Stock of product j at level m at the end of il ik forn>1)
period t _
y“ : Binary variable, which indicates whether the n=1,..N,j=1L. . Nm=-1. Mt=1..T (6
o nth setup on machine m n period t 13 from
product 1 to product j (yumf 13 or not qm (/D) EYW
(yj,m
thm. © Quantity of product j produced between nth n=1,..Nj=1.Nm=1_ Mt=1..T (7)
and (n+1)th setups on machine m in period t
q“ : Shadow product: idle time (in quantity units) y' =0
" before production of product j on machine m o
m period t n order to ensure that.dlrect PFimi=l Nom=1,. M )
predecessor of this product (production of
product j on machine m-1 in period t) has g
been completed. In other words, the gap Zzyjum,l,m,lzl
between nth setup and its production (in
quantity units), in order to guarantee vertical m=1. M (9)
interaction
i n i n+l
M M MM T N HoH oM T N HoM T ym: ymt
wn$$38 5w, v S8 88, o EEEn L, 2V
n=l =1 i=l m=l t= =l j=1 m=1 t= =1 m=1 t=
) n=1,. . N-1,i=1,.. Nm=1,. . Mt=1,..T (10
Subject to: N N
N =
d],|= Ij,M,|—1+ EX?M(_ I],M,l ngyj bt éy‘k ot
i1 Nt=1..T (2) i=1,..Nm=1,. . Mt=2,.T (an
v noo " Zoorl (1 2)
I],m,H * ZIX]mt - Ijmt+ ;X],mﬂ,t qu
: x.q 20 (13)
i=l..Nm=1.. MIt=1..T (3) L X
) N a NN j=1,...,N,m=1,...,M (14)
bight.( 9 (Ef 5 gmt71)+ Elglgy‘km 'l<m+22bkm qkm!.
i=li=j(forn's| n=| i=|
Tn this model, Eq. 1 represents the objective function
2, R y o which mimmizes the sum of the sequence-dependent
+22bm Kians™ bigM.(1- E Yy fm b I .
ol kel oL ey Y PEMHL setup costs, the storage costs and the production costs.

Equation 2 ensures the demand supply in each period.

n N n" N n'-1

. ) : )
n n n Equation 3 shows that i a network, total of in-flows to
+ 22 kit ikm+1+22bkm+l'qkm+“+ZlEbka'kaﬂt 4

=

n=1 i=1 k=1 o ' n=1 k=1 ' ' n=1 k=

eachnode (j, m, t) is equal to out-flows from that node. In
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other words, the sum of stock on hand of product j on
machine m at the beginming of period t and production
volume of product j on machine m during peried t 1s equal
to the sum of the stock on hand of product j on machine
m at the end of period t and production volume of product
j on machine m+1 during period t.

Equation 4 guarantees within one period that product
7 on machine m is produced before its direct successor
(preduct j on machine m+1).

Left side of Eq. 4 18 equal to the time between the
beginning of period t and the end of production of
product j on machine m if production of product | on
machine m can take place between n'th and (n'+1)th
setups in period t, else it is a negative number. Right side
of Eq. 4 13 equal to the time between the beginning of
period t and the beginning of production of product j on
machine m+1 if production of product j on machine m+1
can take place between n"th and (n"+1 )th setups in period
t, else it is a big number.

Equation 5 represents the capacity constramts of
machines during periods.

Equation 6 indicates that setup is considered n
production process.

Equation 7 indicates the relationship between
shadow products and setups.

Equations & and 9 guarantee that for each machine,
the first setup at the beginning of the planning horizon 1s
from a defined product.

Equation 10 and 11 represent the relationship
between successive setups.

Equation 12 and 13 represent the type of variables.

Equation 14 mdicates that at the begimning of
planning horizon there 1s no on-hand mventory.

DEVELOPMENT OF LOWER BOUNDS

So far, we have successfully formulated the problem.
However, the formulation presented in the earlier section
1s not a practical approach to solve large instances of the
problem. Present experiments show that computation time
grows exponentially with the number of products, the
number of machines and the number of perieds in the
planning horizon. Therefore, it is necessary to develop a
computable lower bound m order to test the accuracy of
the heuristics. Note that the heuristic solution is by
definition an upper bound on the optimal solution.

Here, we obtain two lower bounds on the problem.
First lower bound is achieved by relaxing all binary
variables and relaxing Eq. 4. The latter is made by adding
the following equation to the first lower bound.

oo NN
;yxjmt+ 2 Ey,j,m:a,mt

i=lizjn=1

(15
A -00rl
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Table 1: Comparison of lower bounds and exact optimal solutions. The
values inside the brackets are the computational time in seconds
and the percentage values are the difference between the objective
values of the lower bound and the original model

No. Original problem  First lower bound Second lower bound

305512 2731.28 2946.14

1 10.6% 3.57%

(157.24) {0.019) {0.441)
3424.44 2825.16 3295.62
2 17.5% 3.76%
(180.71) (0.029) (0.539)
3105.71 2708.18 3008.53
3 12.8% 3.13%
(202.27) (0.031) (0.37)
3287.53 2743.30 3156.03

4 16.55% 4%

(140.23) (0.027) {0.491)

3279.95 2755.21 3129.95
5 16% 4.57%

(163.94) {0.029) {0.397)

Equation 15 is similar to the right hand side of Eq. 6,
N
fn by

fmt

y“ . In Eq. 15, we aggregate

1
il imjcfornsny © I

i=1 i forn1)
summing over all n. Therefore second relaxation 1s a lower
bound on the original problem.

In order to ascertamn the accuracy of these lower
bounds, we performed many numerical tests. Table 1
shows the results of such tests in some nstances of the
problem with N =3, M =2and T = 3.

To apply the Optimal Enumeration Method (OEM) on
original problem and lower bounds, GAMS models are
provided using GAMS TDE (Ver. 2.0.19.0) and solved
using OSL 2. GAMS models are run on a personal
computer with a Pentium 4 processor running at 3.4 GHz.
The required parameters for these problems are extracted
from the following uniform distributions:

b,,#U(1.5.2), d =1(0,180), h .=11(0.2,0.4), p,..,=U(1.5,2),
W, = 5,2 U(35,70), C,,,=U(200,300).

Table 1 confirms the advantages of the second lower
bound, it 18 therefore used.

SOLUTION METHOD

Solving the original model

Solution procedure: Rolling-horizon heuristics have been
used to overcome computational infeasibility for large
MIP problems by substituting most of the binary
variables and constramnts with continuous variables and
constramnts (Beraldi ef al., 2008, Araujo ef al, 2007,
Araujo et al., 2008; Merce and Fontan, 2003; Clark, 2003;
Clark and Clark, 2000). The approach imtially adopted
decomposes the model into a succession of smaller MIPs,
each with a more tractable number of binary variables.
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Relaxing all binary variables and determining the
setup pattern of current period by a heuristic mstead of
solving a MIP 1s our approach to solve this hard-to-solve
MIP problem.

Present rolling-horizon approach decomposes the
planning horizon into three sections. For a given iteration
k:

The first section (beginning section) 1s composed of
the (k-1) first periods. Within this section, setup
pattern have been frozen by the previous iterations
The second section (central section) includes the kth
period. In this section the whole relaxed problem is
considered and setup pattern of this period is
determined by heuristic

The third section (ending section) includes the last
periods (from period l+1 to period T). There, the

model is simplified according to a selected
simplification strategy.
Each iteration consists of solving a linear

programming problem. At the end of iteration k, all
sections roll one period and a new iteration can then be
performed. The procedure stops when there is no longer
any ending section. The last iteration defines decision
variables over the entire horizon.

Setup state selection rule for current period: According
to this method, all binary variables of current period
would be determined. Note that according to Eq. 8-11 for
each triple (n, m, t) there is exactly one pair (i, j) for

Whichy“ =1 and for (1, 1)=(1, ]), y" — ¢. In other words,
it mt

fimt
for each triple (n, m, t) of current period, this heuristic
specifies a pair (i, j) which y“ =1

fimt

According to our method, if there is sufficient amount
of inventory to satisfy demand of current period
(L oy d ), product j in stage m would not be produced in
current period.

The part of heuristic that 15 used to determine
ordering of products in current period 1s sumilar to
(g/2.2/2) Johnson's rull-based heuristic has been used by
Kurz and Askin (2003, 2004) to schedule flexible flow lines
with sequence-dependent setups.

To order products in stages of current period, it is
necessary to define job duration. Duration of a job 1 each
stage 18, by defimition, the mimmum time to produce
demand of current period. These job durations only are
used to determine secquences of products in current
period and would not be used as lotsizes.

Let [i] indicates the ith job in an ordered sequence in
the following. In the following heuristic, a job duration 1s
used. For product j in stage m and period t it 18 specified
by D (j, m, t) and is defined as:

300

D {j, m, t) =D(, m-1, t)+d (j, t).b(j, m)}+min {S;,}

Simplification strategy: More computatinal time is

economized by eliminating the majority of variables.
yn (>D: ¢\ @ and q are eliminated. Except
ijmt ot

jmt
Eq. 2, 3 and 5, other constraints are ignored for ending
section. All setup costs (and times) for ending section are
assumed to be 0.

b, and p,,, should be modified to estimate the
capacity consumption of future setups. We assume A, is
the objective value of the second lower bound and A, 1s
the objective value of the original problem by relaxing all
binary variables, ignoring Eq. 4 and all setup costs and
times equal to 0. we would replace b, and p,,,, with b im
and p']:m‘t as follows:

b, =(A/ADD, .
p,..=(A/AJP

Lt
A simplified representation for latter perieds in the

rolling horizon is less difficult to solve and hence permits
the solution of larger problems.

The whole algorithm (H1)
All binary variables are relaxed
Begin:

ends = J,.

t-1

while t<T loop

for tt>t

relax Eq. 4, 10and 11
for (n>1), " for (n>1)and q“

it

n

Y

p,,m,u
tt>t)

are equal to O

jrat

and 1, are used instead of pj,,, and by, (for
i

In current period (t)

Create job durations D(], m, t) as follows:

I .>d:DGmt)=0

elseif j#end®, . DG, m, t) =D, m-1, t)+d. by, +ming,;,
{8yts

else D (j,m, t) =D (G, m-1, t)+d . b ;

+ t ) [M42] ]
Create Ty and ) as follows: D!=3 Dimu-: D=
m=1

)

m=[M/2]+

D(j.m,t) >

LetU=3| plepl and V=7| DIzl - The set Uis
the set of jobs that moves through stages 1 to [M/2]
faster than they move through stages [M/2]+1 to M. The
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set V is the set of jobs that moves through stages [M/2]+1
to M faster than they move through stages 1 to [M/2].

Arrange jobs in U mn non-decreasing order of 1) and
arrange jobs in V in non-increasing order of 1)) . Append
the ordered list V to the end of U, creating an ordered list
to use in the next step. Delete jobs which I;, >d,,. Repeat
the last member of the list unless the list contains N
members.

Iflzl,y |

end, it

-1, else,
! Y

[1—1],[1],l,t:

m-2
while m<M loop

Order the jobs m non-decreasmg order (SPT) of
D(j. m, t). Delete jobs which I, ,>d,.. Instead of deleted
jobs, we replace the last true job.

ifi=1, o
[i-1][i].m.t

y 71, else, y

end:. !
m ~m+1

end loop

Solve LP and fix y"

fmt

for current period (t).

Fort=>1,1 gp s the last sequenced job in stage m and
period t.

t- t+1

end loop.

Solving the modified model

The modified model: Reducing the dimensionality of the

problem and allowing to solve larger instances, a modified

mathematical model is developed which ignores the

majority of combinations. In this model, in each period,

products have the same sequence and size in all stages.
Following proposes the modified model:

T

SShol..

=

. N N N M T n N N M n
UDDRRRRIRAED N BN HEE

n=l j=1 i=1 m=1t=1 n=l j=1 m=1t=1 j=1 m=1 t=1
(16)
Subject to:
Jt Jtl EXJI it
j=L...Nt=1,....T (17
. N n' N N n' N
L A ED D WRUETED )Y

it
i=li#i(forn'>1) al isl j “ nel j=L

4 3b.x= 333y

n=l i=l j=1

n.
ST 22D, 0
n=l j=1

n'l

ut fn

3y X

q]m+1t bj,m+1 X
n=l j=1

n=1,.. . Nm=1,. . M-1,t=1,..T
N N N n H N . H N
555y 8,.+ 33, x5t 23,4’ <C...
g g o
m=1,... . Mt=1,..T
n . Ll
X, = (bigh). y _
islisjFarnsy ~ O
n=1,.Nj=1,.. . Nt=1..T
q]m( - (Cm t be m) zyul
n=1,. . Nj=1,. . Nm=1,.. Mt=1,.T
1
V=0
] #JD= - 1:-- ;N
i
2 g™
Ll 1 Ll 1+l
NN
=1 k=1
n=1,.N-1,1=1,, N t=1..T
L d
DAL
=1 k=l
1=1,. . N,t=2,...,T
Yy =0orl
IJJ’X;’qut
L,=0
1=1,....N
The whole algorithm (H2)
All binary variables are relaxed
Begin:
end, =],
t-1
while t<T loop
for tt >t
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(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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relax Eq. 18, 24 and 25
y;’t for (n>>1), <) for (n>=1) and

n

q;..

and b, are used mnstead of P; ., and by, (for
im

are equal to 0

p],m,tt
ttt)

In current period (t)

Create job durations D (j, m, t) as follows:

T, >d.D(g,mt)=0

elseil j« end , Dm0y =D, m-1,tHd  +b Fmin., {S.}
Else D{j, m, t) =D, m-1, t+d . b . ;

Create T and ), as follows:

M2
o)
=

m=1

1 L
D(mt), Dn= > D@Gmb

m=[ M/2]+1

LetU=j| pDi«Dland V=j| p'>pk. The set Uis
the set of jobs that moves through stages 1 to [M/2]
faster than they move through stages [M/2]+1 to M. The
set V 1s the set of jobs that moves through stages [M/2]+1
to M faster than they move through stages 1 to [M/2].

Arrange jobs in U mn non-decreasing order of 1) and
arrange jobs in V in non-increasing order of Ty . Append
the ordered list V to the end of U, creating an ordered list
to use m the next step. Delete jobs which I, >d . Repeat
the last member of the list unless the list contains N
members.

Ifi=1

-1, else, <
1 ¥

i
b =1
yendw [t [i-13 (i}t

Solve LP and fix y" for current period (t).

it

For t=1, end,_, 1s the last sequenced job in period t.
t-t+l1

end loop.

NUMERICAL EXPERIMENTS

To evaluate and compare the performance of
developed heuristics, 20 problems with different sizes are
selected to test. For each problem size, 5 problem
mstances are randomly generated and the required
parameters for these problems are extracted from the
following Umform distributions:

b, ,=U(1.5,2), d,=U(0,180), h; = 1(0.2,0.4), p, . =1U(1.5,2),
Woim™ 8= U(35,70)

C..: 15 calculated in accordance to satisfy demand of
each period on a just-in-time basis with average setups.

The heuristics are coded in Matlab programming
language and are run on a personal computer with a
Pentium IV, with a 3.4 GHz processor and a 4 GB of RAM.
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Table 2: Comparison between objective functions of the second lower
bound and heuristics

Problem No. of The second

size (NMT)  problemsolved  lowerbound HI H2
3x3x3 5 4677.76 5587.17 5757.65
5x3x3 5 T796.25 9335.91 9728.32
3x5x%3 5 T725.37 9282.13 9547.97
3x3x5 5 T902.56 9473.04 9833.63
5x5x%5 5 21956.29 26799.36 27905.79
Tx5%5 5 29318.73 35542.56 36354.41
5xT%5 5 28167.51 34387.49 35743.21
S5x5%7 5 29370.11 35121.41 36892.78
TxTT 5 57964.97 -- 71471.95
10%5%5 5 42312.54 -- 52061.98
5%10%5 5 41025.09 49776.03 52390.31
5x5%10 5 42493.76 52033.48 53999.85
10x7=7 5 90294.74 -- 112773.44
Tx10x7 5 88313.43 -- 111876.61
TxTx10 5 88207.71 -- 113353.46
10x10=10 5 181125.19 -- -
15x10=10 5 285862.42 -- -
10%15%10 5 276412.35 -- -
10%10=15 5 26932531 -- -
15%15%15 5 664453.13 - -

---: Indicates that there is not enough memory to solve this instance

Table 3: Comparison between CPU times of the second lower bound and
heuristics. The values inside the brackets are the computational
times in seconds

Problem No. of The second

size (NMT)  problem solved  lower bound Hl H2
3x3x3 5 2.33 0.21 0.08
5x3x3 5 46.36 5.35 0.89
3x5x%3 5 18.22 0.87 0.24
3x3x5 5 8.11 1.09 0.43
5x5x%5 5 117.73 37.11 5.61
Tx5%5 5 481.77 479.17 51.79
5xT%5 5 21812 72.98 13.42
S5x5%7 5 165.12 74.39 8.35
TxTT 5 3413.14 -- 375.67
10%5%5 5 2190.52 -- 811.27
5x10%5 5 1616.31 211.46 2391
5%5%10 5 365.11 188.47 81.37
10x7%7 5 >7200% -- 5886.47
Tx10x7 5 =T200% -- 501.86
TxTx10 5 =T200% -- 1538.37
10x10=10 5 =200 -- -
15x10=10 5 =200 -- -
10%15%10 5 >7200% -- -
10%10=15 5 >7200% -- -
15%15%15 5 >7200% - -

*: Indicates that finding the optimum wvalue for the second lower bound
requires more than 7200 seconds and the objective function at this time has
been considered, ---: Indicates that there is not enough memory to solve this
instance

Table 2 and 3 compare the objective functions
and cpu times of heuristics and the second lower
bound.

In accordance to the experiments there 1s not enough
memory to solve instances with more than 3 products
through the first algorithm (H1). The second algorithm
(H2) 15 also able to solve instances with 10 products.
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CONCLUSIONS AND
RECOMMENDATION FOR FUTURE STUDIES

The contribution of the study has been to derive and
test two models and two heuristics for multi-product
multi-level capacitated lotsizing problem with sequence-
dependent setups.

Heuristic H1 1s based on the original model and 1s
able to solve only small size problems. Heuristic H2 is
based on the modified model that assumes similar
sequences and sizes of products in all machmes. H2 1s
able to solve medium size problems.

According to the experiments H1 is superior for small
size problems. For larger problems that H1 is not able to
solve, H2 1s used.

Because of the expanding role of meta-heuristic
approaches to solve complicated lotsizing problem (Jans
and Degraves, 2007, Defersha and Chen, 2008), the
application of meta-heuristic approaches to face this hard
to solve problem 1s recommended as an area for future
research.
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