

Journal of Applied Sciences

ISSN 1812-5654

Production and Characterization of Biosurfactant from Bacillus subtilis YB7

¹J. Arutchelvi, ²S. Bhaduri, ²P.V. Uppara and ¹M. Doble

¹Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600 036, India ²Polymer Research and Technology Center, Reliance Industries Limited, Chembur, Mumbai-71, India

Abstract: Biosurfactants (BS) are of recent interest due to their unique properties including structural diversity, higher biodegradability, lower toxicity and exhibit stable activity at extreme conditions including pH, temperature and ionic strength. They are found to have applications in medical and environmental fields. Some of the BS are potential antimicrobial agents and are suitable alternatives to synthetic antibiotics. In this perspective, a surfactant producing microorganism has been screened and isolated from a polymer dump site, which was characterized as *Bacillus subtilis* YB7. This microorganism was capable of producing 0.5 g L⁻¹ of crude extract (dry weight) in the mineral salt medium. The FTIR and LC/MS analysis of the crude extract showed the presence of similar functional groups and six isoforms, respectively as that of the commercially available Sigma surfactin. However, the proportions of the peaks vary from sigma surfactin. Molecular mass of the major peak in the crude extract is 1023 (M+H)⁺ which is equivalent to C₁₄ surfactin analog, whereas it is 1035 (C₁₅ surfactin) in case of sigma surfactin. The crude extract reduced the surface tension of water from 72 to 30 mN m⁻¹ at the CMC of 40 μM. This particular strain produced unique type of cycliclipopeptide analogs.

Key words: Surfactin, Bacillus subtilis YB7, drop collapse test, oil spreading test, cyclic lipopeptide, wilhelmy plate method

INTRODUCTION

Bisurfactants (BS) or microbial surface active compounds are amphiphiles with polar and non polar moieties that tend to preferentially partition at interfaces and thus reduce the interfacial/surface tension (Desai and Banat, 1997). Growing interest in the field of BS can be attributed to their lower critical micelle concentration; toxicity and higher biodegradability compared with their chemical counterparts (Van-Hamme et al., 2006; Ron and Rosenberg, 2001; Neu, 1996; Rosenberg and Ron, 1999). These molecules can be synthesized by microorganisms by using renewable resources including oil and food industrial wastes (Maneerat, 2005). Hence, they are called as green alternatives. There are five main classes of BS, namely lipopeptides; glycolipids; fatty acids including neutral lipids and phospholipids; polymeric and particulate (Neu, 1996; Rosrnberg and Ron, 1999). Among these, the first two classes show wide range of applications in food, cosmetics and pharmaceutical industries (Cameotra and Makkar, 2004; Rodrigues et al., 2006; Singh and Cameotra, 2004; Singh et al., 2007). They are used in removing soil contaminants including heavy metals, oils and other toxic pollutants (Van-Hamme et al., 2006; Mulligan, 2005; Neu, 1996; Singh et al., 2007). Some

of the BS are potential antimicrobial agents and are suitable alternatives to synthetic antibiotics (Cameotra and Makkar, 2004; Rodrigues *et al.*, 2006; Singh and Cameotra, 2004).

Except for a few, the physiological roles of BS in general are not yet completely characterized. BS are essential for the motility (swarming and gliding) of the microorganisms. For example, surfactin production and flagellar biosynthesis are crucial for swarming motility in B. subtilis (Van-Hamme et al., 2006; Kearns and Losick, 2003). Similarly, Serratia marcescens depends on serrawettin for surface locomotion and access to water repelling surfaces (Van-Hamme et al., 2006; Matsuyama and Nakagawa, 1996) 3-(3-Hydroxyalkanoyloxy). This author kit is designed to alkanoic acid (HAA), the intermediate in the rhamnolipid biosynthesis pathway, plays an essential role in swarming motility et al., 2006; Deziel et al., 2003). (Van-Hamme Bisurfactants (BS) regulate the attachment and detachment of the microorganisms to or from solid substrates (Van-Hamme et al., 2006; Ron and Rosenberg, 2001; Neu, 1996). Rhamnolipids are essential to maintain the architecture of the biofilm (Van-Hamme et al., 2006; Neu, 1996) and are considered as one of the virulence factors in Pseudomonas sp. (Van-Hamme et al., 2006;

Ron and Rosenberg, 2001; Neu, 1996). Rhamnolipids, mannosylerythritol lipid (Arutchelvi et al., 2008) and surfactin show antimicrobial properties. Thus they confer a competitive advantage to the organism during colonization and cell-cell competition (Van-Hamme et al., 2006; Ron and Rosenberg, 2001). BS enhance the accessibility of hydrocarbon substrates by forming small emulsion droplets and increase the surface area of the insoluble substrates (Van-Hamme et al., 2006; Ron and Rosenberg, 2001; Neu, 1996).

Current world wide production of surfactants is around 12.5 M tones per year, worth approximately US\$28 billion, growing at the rate of about 5,00,000 t year⁻¹ (Edser, 2006). They have application in study, perfume, fragrance, food and pulp industries, metal processing and environmental remediation (Cameotra and Makkar, 2004; Rodrigues *et al.*, 2006; Singh and Cameotra, 2004; Singh *et al.*, 2007). It is expected that biosurfactants may take up a part of this market share also.

In this study, a biosurfactant producing microorganism was isolated and the biosurfactant was partially characterized as cycliclipopeptide using FTIR and LC/MS analysis. This crude extract was capable of reducing the surface tension of water from 72-30 mN m⁻¹. Eventhough, it showed similarity in functional groups and number of cyclic lipopeptide isoforms, the amount of each isoform is different from the well characterized commercially available Sigma surfactin. The major isoform of the crude extract is C₁₄ surfactin. The isolated microorganism was characterized as *Bacillus subtilis* using 16S rDNA.

MATERIALS AND METHODS

All the chemicals used for the following experiments were purchased from Sigma, Himedia and SRL. Soil samples were collected from plastic dump site located at Pallikaranai, Chennai, India.

Isolation of biosurfactants producing microorganisms: In order to isolate biosurfactant producing microorganisms, soil from plastic dump site was taken. One milliliter of the soil suspension was inoculated in the Minimal Medium (MM) (Cacciari *et al.*, 1993) (solution A (g L⁻¹) contains KH₂PO₄-3; Na₂HPO₄-6; NH₄Cl-2; NaCl-5 and solution B (g L⁻¹) contains glucose-0.5; MgSO₄.7H₂O- 0.1; pH 7.0±0.2) and mineral salt medium (MSM) (contains (g L⁻¹) NaNO₃-2.5; K₂HPO₄-1.0; KH₂PO₄-0.5; MgSO₄-0.5; KCl-0.1; FeSO₄-0.01; CaCl₂-0.01; Glucose-0.5; pH-6.8-7.0) (Nair *et al.*, 2007). In this medium sterilized polypropylene or hexadecane was added along with the glucose. After 10 days of inoculation, spread plating of serially diluted

culture suspension was done on nutrient agar plates. Isolated single colonies were inoculated into the 3 mL of MM/MSM and incubated in the temperature control shaker at 37°C and 180 rpm. The culture supernatant was collected from the above cultures after 24 h and checked for the production of biosurfactants by using drop collapse method and oil spreading method (Youssef *et al.*, 2004). The microorganisms that showed positive results with drop collapse and oil spreading were further taken for the large scale production and characterisation.

Characterisation of the isolated biosurfactant producing microorganisms: A bacterium was isolated from the above experiments was named as YB7. This was further characterized based upon the 16S rDNA analysis. Genomic DNA was isolated from the pure culture and 16S rDNA fragment was amplified using consensus primers and high fidelity PCR polymerase. The PCR product was cloned and plasmid DNA was bi-directionally sequenced using the forward, reverse and an internal primer. Sequence data was aligned and analyzed for finding the closest homolog for the microbe.

Isolation of biosurfactants from the microorganisms: YB7 was inoculated in 1 L of MM and MSM, respectively. Crude extract was isolated from the culture supernatant as described by Copper *et al.* (1981).

FTIR analysis: A Jasco N4200 spectrometer at a resolution of 2 cm⁻¹, in the frequency range of 4000-400 cm⁻¹, calibrated with polystyrene standards was used for the identification of functional groups and type of bonds present in the crude extract.

HPLC analysis: The crude extract was separated using reverse phase HPLC (Agilent) with C18 (5 μm pore size; Purospher column) column and 80% acetonitrile with 0.1% trifluoroacetic acid as the mobile phase. Flow rate was kept at 1 mL min⁻¹. UV detector was used.

ESI-MS analysis: The lipopeptide was analyzed by mass spectrometry in positive electrospray mode. Applied ion spray voltage and ion source temperature were 5000 V and 450°C, respectively.

Surface tension measurement: Surface tension of the crude extract solution was measured at 25°C using the surface tensiometer (NIMA technology model DST9005) which works based upon the principle of wilhelmy plate method. Crude extract was dissolved in alkaline water (pH 9.0) and prepared in 0 to 280 μM concentration range. The surface tension versus concentration curve was used to determine Critical Micelle Concentration (CMC).

RESULTS AND DISCUSSION

Isolation and characterisation of biosurfactants producing microorganisms: Gram staining of YB7 showed that it is a gram positive and rod shaped microorganism. Based upon the 16S rDNA sequence homology and phylogenetic analysis, YB7 was detected as *Bacillus subtilis* and the nearest homolog was found to be *Bacillus axarquiensis* which is known to produce biosurfactants. Phylogenetic tree is shown in Fig. 1.

Isolation and characterisation of biosurfactants: We have used two different medium (MM and MSM) for the production of biosurfactant by *Bacillus subtilis* YB7. YB7 produced 0.072 g L⁻¹ of crude extract in MM whereas 0.5 g L⁻¹ in MSM.

FTIR analysis of the crude extract from YB7: From Fig. 2, we can conclude that the crude biosurfactant from YB7 is a cyclic lipopeptide since the spectrum of the commercially available surfactin and isolated crude extract is superimposable and showed the presence of lactone ring, C-N bond, Amide II bond, aliphatic chain and -OH/-NH groups. These results confirm that it is a cyclic lipopeptide.

Reverse phase HPLC analysis of crude extract: Figure 3 shows the HPLC chromatogram of commercially available surfactin (purchased from sigma) and the isolated crude extract (Fig. 4) was similar. Commercially available and isolated cyclic lipopeptide showed six peaks with almost same retention time except the area under 3 peaks which are indicated by the black arrows. This shows that the polarity of the isoforms of crude extract is similar but the amount of the isoforms is different from that of the commercially available surfactin.

ESI-MS analysis of surfactin: Figure 5 shows the molecular masses corresponding to each peak in HPLC chromatogram. The masses are equivalent to the masses of C₁₂-, C₁₃- and C₁₄-surfactin analogs. However, C₁₅-surfactin analog is absent in crude extract which is reported as a major isoforms in commercially available surfactin. C₁₂-surfactin surfctin analog is present which is not there with sigma surfactin. The report on the presence of C₁₂ is very few (Kowall *et al.*, 1998; Yakimov *et al.*, 1996; Oka *et al.*, 1993).

Surface tension analysis: Figure 6 shows the variation of surface tension versus concentration of the crude extract. The Critical Micelle Concentration (CMC) value was estimated to be around 40 µM, while the minimum surface

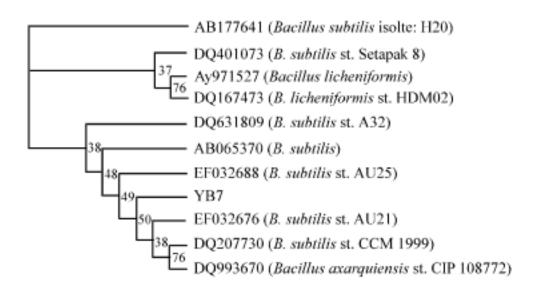


Fig. 1: Phylogenetic tree

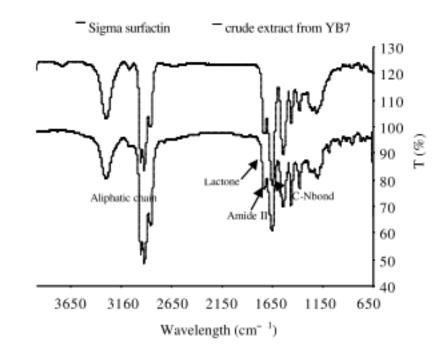


Fig. 2: Comparison of FTIR of sigma surfactin and crude extract of YB7

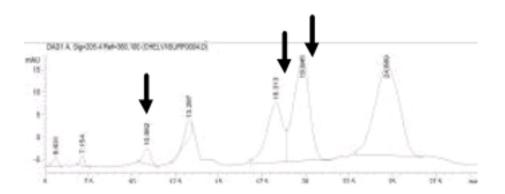


Fig. 3: HPLC chromatogram of sigma surfactin

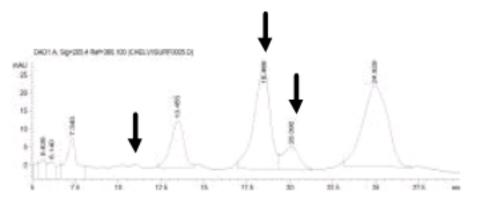


Fig. 4: HPLC chromatogram of crude extract

tension value was 30 mN m⁻¹, which was almost similar to (27 mN m⁻¹ for sigma surfactin) (Cooper *et al.*, 1981; Kowall *et al.*, 1998; Yakimov *et al.*, 1996) providing

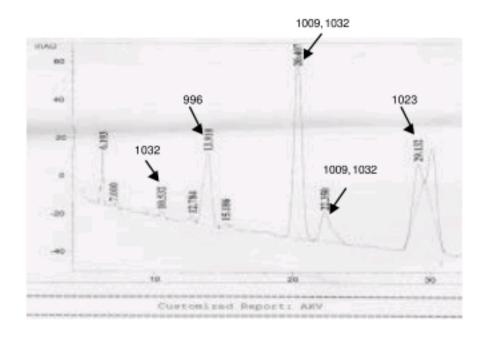


Fig. 5: LC/ESI MS analysis of crude extract

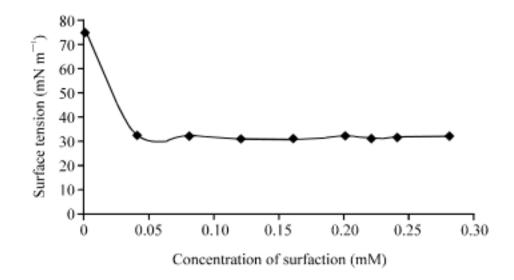


Fig. 6: Surface tension versus concentration of crude extract plot

further evidence to validate that these lipopeptides were surfactin analogs with minor variations in the molecular structure.

CONCLUSION

A Biosurfactant producing microorganism was isolated from plastic dump site and characterized as Bacillus subtilis YB7. This microorganism produced 0.5 g L⁻¹ of biosurfactant (crude extract dry weight) in mineral salt medium. Crude extract of biosurfactant was isolated from the medium by acid precipitation and characterized as cyclic lipopeptide from FTIR analysis. This showed the presence of aliphatic chain and cyclic ester group. LC/MS analysis of the crude extract showed the molecular mass equivalent to C₁₄-surfactin analog which is a major component in the crude extract. This particular strain of *Baillus subtilis* YB7 did not produce C₁₅-surfactin and at the same time produced a rare C₁₂ surfactin analog. This reduced the surface tension of water from 72 to 30 mN m⁻¹. All these differences confirm the uniqueness of this particular strain and the isolated crude extract which is partially characterized as cyclic lipopeptide. Amino acid sequencing and determination of the fatty acid chain length are crucial in order to eliminate the ambiguity in molecular identification which is under progress.

ACKNOWLEDGMENT

We thank Department of Science and Technology, India for the financial support.

REFERENCES

- Arutchelvi, J.I., S. Bhaduri, P.V. Uppara and M. Doble, 2008. Mannosylerythritol lipids: A review. J. Ind. Microbiol. Biotechnol., 35: 1559-1570.
- Cacciari, I., P. Quatrini, G. Zirletta, E. Mincione, V. Vinciguerra, P. Lupattelli and G.G. Sermanni, 1993. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Applied Environ. Microbiol., 59: 3695-3700.
- Cameotra, S.S. and R.S. Makkar, 2004. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol., 7: 262-266.
- Cooper, D.G., C.R. Macdonald, S.J.B. Duff and N. Kosaric, 1981. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied Environ. Microbiol., 42: 408-412.
- Desai, J.D. and I.M. Banat, 1997. Microbial production of surfactants and their and their commercial potential. Microbiol. Mol. Biol. Rev., 61: 47-64.
- Deziel, E., F. Lepine, S. Milot and R. Villemur, 2003. rhlA is required for the production of a novel biosurfactant promoting swarming motility in *Pseudomonas* aeruginosa: 3-(3-hydroyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149: 2005-2013.
- Edser, C., 2006. Latest market analysis. Focus Surfactants, 5: 1-2.
- Kearns, D.B. and R. Losick, 2003. Swarming motility in undomesticated *Bacillus subtilis*. Mol. Microbiol., 49: 581-590.
- Kowall, M., J. Vater, B. Kluge, T. Stein, P. Franke and D. Ziessowm, 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Collloid Interface Sci., 204: 1-8.
- Maneerat, S., 2005. Production of biosurfactants using substrates from renewable-resources. Songklanakarin J. Sci. Technol., 27: 675-683.

- Matsuyama, T. and Y. Nakagawa, 1996. Bacterial wetting agents working in colonization of bacteria on surface environments. Colloids Surfaces B: Biointerfaces, 7: 207-214.
- Mulligan, C.N., 2005. Environmental applications for biosurfactants. Environ. Pollut., 133: 183-198.
- Nair, A., A.A. Juwarkar and S.K. Singh, 2007. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut., 180: 199-212.
- Neu, T.R., 1996. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev., 60: 151-166.
- Oka, K., T. Hirano, M. Homma, H. Ishii and K. Murakami et al., 1993. Satisfactory seperation and MS-MS spectrometry of six surfactin isolated from Bacillus subtilis natto. Chemical Pharmaceut. Bull., 41: 1000-1002.
- Rodrigues, L., I.M. Banat, J. Teixeira and R. Oliveira, 2006. Biosurfactants: Potential applications in medicine. J. Antimicrobial Chemotherapy, 57: 609-618.
- Ron, E.Z. and E. Rosenberg, 2001. Natural roles of biosurfactants. Environ. Microbiol., 3: 229-236.

- Rosrnberg, E. and E.Z. Ron, 1999. High-and low-molecular-mass microbial surfactants. Applied Microbiol. Biotechnol., 52: 154-162.
- Singh, P. and S.S. Cameotra, 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol., 22: 142-146.
- Singh, A., J.D. Hamme and O.P. Ward, 2007. Surfactants in microbiology and biotechnology. Part 2. Application aspects. Biotechnol. Adv., 25: 99-121.
- Van-Hamme, J.D., A. Singh and O.P. Ward, 2006. Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv., 24: 604-620.
- Yakimov, M.M., H.L. Fredrickson and K.N. Timmis, 1996.
 Effect of hydrophobic moieties on surface activity of Lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol. Applied Biochem., 23: 13-18.
- Youssef, N.H., K.E. Duncan, D.D. Nagle, K.H. Savage, R.M. Knapp and M.J. McInerney, 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods, 56: 339-347.