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Prediction of Bubble Size in Bubble Columns using Artificial Neural Network
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Abstract: In the literature, several correlations have been proposed for bubble size pre-diction in bubble
columns. However, these correlations fail to predict bubble di-ameter over a wide range of conditions. Based
ona data bark of around 230 measurements collected from the open literature, a correlation for bubble sizes in
the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The
bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice,
liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed
correlation has an Average Absolute Relative Error (AARFE) of 7.3% and correlation coefficient of 92.2%. A
comparison with selected correlations in the literature showed that the developed ANN correlation noticeably
improved the prediction of bubble sizes. The developed correlation also shows better prediction over a wide

range of operation parameters in bubble columns.
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INTRODUCTION

The design and scale-up of bubble columns have
gained considerable attention in recent years due to
complex hydrodynamics and its mfluence on transport
characteristics. Although, the construction of these
columns 15 simple, accurate and successful design and
scale-up require an improved understanding of multiphase
fluid dynamics and its nfluences. The design and scale-
up of bubble column reactors generally depend on the
quantification of three main phenomena; (1) heat and
mass transfer characteristics, (2) mixing characteristics
and (3) chemical kinetics of the reacting system. Thus the
reported studies emphasize the requiement of the
multiphase fluid dynamics and its influence on phase hold
up, mixing and transport properties (Degaleesan et al.,
2001). Scale-up problems basically stem from the scale
dependency on the aforementioned phenomena. Scale -up
methods used m biotechnology and chemical industry
range from know-how based methods that are in turn
based on empirical guidelines, scale-up rules and
dimensional analysis to know why based approaches that
begin with regime analysis. This analysis 1s then followed
by setting-up appropriate models that may be simplified
to deal with the complex hydrodynamics (Deckwer and
Schumpe, 1993). More specifically, in order to design
bubble column reactors the following hydrodynamic
parameters are required: specific gas-liquid interfacial area,
axial dispersion coefficients of the gas and liquid, sauter
mean bubble diameter, heat and mass transfer coefficient,

gas hold up, physicochemical properties of the liquid
medium. In order to estimate these design parameters for
the system, experimental studies benefit from specialized
measuring devices and accessories. The fluid dynamic
characterization of bubble column reactors has a
significant effect on thewr operation and performance.
Bubble populations, their hold up contributions and rise
velocities have significant impact on altering the
hydrodynamics, as well as heat and mass transfer
coefficients. Many literature correlations are proposed to
predict sizes of bubbles and most important ones are
presented in Table 1. The average bubble size in a bubble
column has been found to be affected by gas velocity,
liquid properties, gas distribution, operating pressure and
column diameter (Kantarci ef al., 2005). Since, the early
80s, Artificial Neural Networks (ANNs) have been wed
extensively in chemical engineering for such various
applications as adaptive control, model based control,
process monitoring, fault detection, dynamic modeling
and parameter (Bhat and McAvoy, 1990). The ANN

Table 1: Correlations for bubble size
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provides a non-linear mapping between input and output
variables and 1s also useful in providing cross-correlation
among these variables. The mapping is performed by the
use of processing elements and connection weights. The
neural network 1s a useful tool in rapid predictions such as
steady-state or transient process flow sheet.

MATERIALS AND METHODS

ANNSs are being applied to an increasing number of
real-world problems of considerable complexity. It 1s a
massively parallel distributed processor that has a natural
propensity for storing experimental knowledge and
making it available. In this study, a multilayer neural
network has been used, as it is effective in finding
complex non- linear relationships. Training was
accomplished using NeuwroSolutions by Mathlab
version 7.

The MLP (Multi-layer perceptron) is known as a
supervised network because it requires a desired output
in order to learn. The goal of this type of network is to
create a model that correctly maps the input to the output
using historical data so that the model can then be used
to produce the output when the desired output is
unknown. This type was used which is multilayered Feed
Forward Network (MLFF), trained with static back
propagation (Bp) of error using the generalized Delta rule.
Bp was one of the first general techniques developed to
train multi-layer networks, which does not have many of
the inherent limitations of the earlier, single -layer neural
nets. The Bp algorithm is an iterative gradient algorithm
designed to minimize the mean-squared error between the
desired output and the actual output for a particular input
to the network (Lendaris, 2004). Basically, Bp learning
consists of two passes through the different layers of the
network: a forward pass and bacleward pass. During the
forward pass the synaptic weights of the network are all
fixed During the backward pass, on the other hand, the
synaptic weights are all adjusted in accordance with an
error-correction rule (Lippmann, 1987). This algorithm may
be found elsewhere (Lendaris, 2004). Bp 1s easy to
implement and has been shown to produce relatively
good results in many applications. Tt is capable of
approximating arbitrary non-linear mappings. The success
of Bp methods very much depends on problem specific
parameter settings and on the topology of the networlk
(Leonard and Kramer, 1990).

Training a Back-Propagation Network The steps for
back- propagation training can be shown as follows
(Leonard and Kramer, 1990):

¢ TInitialize the weights with small, random values
* FEach mput umt broadcasts its value to all of the
hidden units

¢ Each hidden unit sums its input signals and applies
its activation function to compute its output signal

»  Each luidden umt sends its signal to the output umnits

»  Each output unit sums its input signals and applies
its activation function (hyperbolic tan in the present
simulation)to compute its output signal

»  Each-output umt updates its weights and bias

Therefore after careful training of the networle,
testing showed that ANN structure of Alkhtar et al. (2007),
Cai ef al. (1994) and Lippmean (1987) using the activation
function of (tanh), momentumn rate of 0.7 and after 5000
iterations, had correlated the bubble diameter in the
homegenous region in bubble columns successfully. The
result of prediction 1s plotted with experimental values as
shown in Fig 1 and 2. Statistical analysis based on the test
data is calculated to validate the accuracy of the output
for pervious correlation model based on ANN. The
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Fig. 1: Deswed (measured) and the actual (predicted)
values vs. testing exemplars
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Fig. 2: Predicted bubble diameter versus desired values
for ANN structure of Akhtar et af. (2007), Cai et al.
(1994) and Lippman (1987)
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Table 2: Statistical analysis for the proposed model

Performance Error
Min Abs Error 9.19866E-06
Max Abs Error 0.001536108

structure for each model should give the best output
prediction, which 1s checked by using statistical analysis.
Results are given in Table 2.

CONCLUSION

From the present study of using ANN in
predicting the bubble size in the homogenous region in
bubble columns. Tt is concluded that ANN structure of
(Alkhtar et al., 2007, Cai et al., 1994 and Lippman, 1987)
was chosen as the best to implement the target of the
present study. MLP architecture of six inputs in the first
layer (gas velocity, column diameter, diameter of orifice,
liquad density, liquid viscosity and liquid surface tension)
with 12 PEs in the 1st hidden layer and 12 Pes in the 2nd
hidden layer and one output in the third layer which is the
desired output of bubble size. Momentum rule was 0.7,
hyperbolic tan activation function and 5000 numbers of
iterations were used. Artificial neural network predicted
well the diameter of bubbles which 1s better than those,
obtained for the selected literature correlations; it yielded
a mimmum AARE of 7.3% and a correlation coefficient
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