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Abstract: In this study, two different techniques for adaptive control of nonlinear chemical processes based
on feedback linearization method are presented. The first technique utilizes a black-box modeling approach to
completely model an unknown plant by an adaptive neural network whereas, the second technique focuses
only on the difficult-to-model part or complicated part of the plant to identify a semi-mechanistic or grey-box
model using an adaptive neural network. The remaimng parts of the plant dynamics are obtained online using
the combined first-principle model and special measuring methods. The performances of both adaptive control
techniques have been demonstrated on a well-known Continuous Stirred Tank Reactor (CSTR) benchmark

process to mvestigate their comparative capabilities.
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INTRODUCTION
Many chemical processes exhibit significant
nonlinear behavior dynamic. If these processes are
operated at a nominal steady state, the effects of the
nonlinearities may not be severe and hence traditional
control schemes based on local linearized models can
provide satisfactory control performance. However, if the
processes are required to work over a wide range of
conditions, comventional linear control approaches
cannot handle the system nonlinearities. Under such
situations, closed-loop stability can be guaranteed only
when the controllers are sufficiently detuned, leading to
degradation i closed-loop performance (Henson and
Seborg, 1997; Zhang and Guay, 2005; Fourati et al., 2008).

A reasonable mathematical model with good
estimated parameters 1s essential for designing a high-
performance control system. However, n modeling a
chemical process, there unavoidably exist uncertainties
poor process lknowledge, nonlinearities,
unmodeled dynamics, unknown internal or external
noises, environmental influence and time varying
parameters. The presence of uncertainties and parameters
changes can make a mismatch between the formulated
mathematical model and the true process. This degrades
Serious

due to

the control performance and may lead to
stability problems especially when the process is
nonlinear. Therefore, it is a great challenge and of highly

importance for control engmeers to design robust and
adaptive controllers for nonlinear processes subject to
model uncertainties and parameters changes (Chen and
Dai, 2001).

Control schemes based on feedback lmearization
technique provide larger dynamic operation range than
the conventional Jacobian linearization method which is
based upon an operating point. Furthermore, the benefits
of linear control techmques can be utilized via feedback
linearization (Chen and Dai, 2001).

In recent years, many interesting results for chemical
process control have been reported in the literature on the
basis of feedback linearization scheme (Zhang and Guay,
2005; Henson and Seborg, 1990; Lee and Sullivan, 1988,
Kravaris and Chung, 1987). These feedback linearization
strategies often require exact mathematical models of the
plant dynamics. However, it 1s generally difficult in
practice to obtamn an accurate model because of the
inherent complexity of the chemical processes or the lack
of a priori informative process knowledge. Adaptive
control scheme 1s a viable choice to deal with such
uncertainties which has drawn a great deal of mterest. The
conventional adaptive control, however, is limited to
linearly parameterized model uncertainty. The limitation
can be overcome by mtroducing neural network as a black
box modeling tool to tackle with nonlinear parameterizing
uncertainty (Zhang and Guay, 2005; Henson and Seborg,
1994; Marino and Tomei, 1995; Kar and Behera, 2009).
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The study presents two different techniques for
adaptive control of nonlinear chemical processes via
combining feedback linearization and a Neural Network
(NN) methodology to cope with nonlinearity and
uncertainty. The first techmque utilizes an adaptive NN
as a black box to completely model an unknown
While, the second techmque
incorporates both a priori process knowledge and an
adaptive NN to identify the difficult-to-model part of the
process dynamic, leading to a semi-mechanistic or grey-
box model representation.

For this purpose, a Globally Linearizing Control (GL.C)
approach based on an input-output lnearization
technique 13 derived for a CSTR benchmark process and
the resulting control structure 1s mcorporated with some
adaptation mechamsms includng NN to evaluate its

chemical process.

performances under different conditions. The final section
gives the concluding remarks derived from this study.

CONVENTIONAL FEEDBACK LINEARIZATION
SCHEME

In the case of continuous-time processes, there is a
vast amount of theory for developing feedback
linearization of affine processes, where the process input
(u) appears m linear form in the state space equation as

follows:
x=fx)+gxu (1)
y=hx)

where, x = [x,,...%]" is the state vector, u is the

manipulated input and y is the controlled output of the
process. In general, f, g and h are assumed to represent
smooth vector fields.

The objective of mnput-output linearization is to
obtain a nonlinear control law in the following form:

u=pE+q@v 2

m such a way that the resulting controlled process,
shown m Fig. 1, be lmear. So, the mput-output
linearization results in a linear transfer function between
v and y:

yeo_ o1 (3)
v(s) PBs'+...+PBs+B

where, 1 denotes the relative degree of the nonlinear
system. This relative degree at the operating point x; is
defined by the integer r which satisfies:

e ]
1 1
1 1
Yo i 1
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Fig. 1: Schematic block diagram of a GL.C scheme
L.L7'h(x) =0 ¥Vi<r and x near X, )
L Lihix) = 0 ¥ x near x,
where, L, and L are Lie derivatives defined as:
L) = 36002 ) (5)
i=1 ax,
n dL.h
LLeh()= 28,60 2 () )
i=1

i

While, the higher-order Lie derivatives can be
written as:

Lthi(x) =L (L7 'h) (M

The time derivatives of the system output can be
expressed as algebraic functions of these Lie derivatives:

d

o =Lho

ey (®)
= Lihe

% ~LLh(0 + L L hou

The preceding equations show that the relative
degree (or relative order) represents how many times the
output must be differentiated with respect to the time to
recover explicitly the input u.

The GLC is an input-output linearization technique
for processes of arbitrary relative degree. From the Eq. 8,
the feedback control law can be expressed as:

V-Zi: B.LEh(x) (9)
© pLLThx)

Figure 1 shows that the scheme of GLC contams a
linear feedback controller which controls the linearized
system. In most process control applications, the
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objective is to maintain the output at a non-zero set-point
despite the presence of model error and unmeasured
disturbances. Consequently, the linear controller is
usually a PI or a PID controller (McLellan ef af., 1990). If,
for example, a PI controller is applied as:

v:KC[(ysp—ywH(y*—y)dr] (10)

=0

where, the gain K and the time constant T, are additional
controller tuning parameters, then the complete GLC
control law yields the following closed-loop transfer
function for set-pomt changes:

©

MON i (11)
Va8 Bs™ 4 Bos 4+ (B + K s+ Ii“

i

Ks+£
T

Certainly, one can use other linear controller,
especially for systems that have high relative degree. If
the relative order of the system 1s 1 or 2, the PID controller
is a good choice; but for higher relative orders, it may be
more useful to design the linear controller directly from
the lmearized system.

FEEDBACK LINEARIZATION TECHNIQUE USING
BLACK-BOX NEURAL NETWORK MODEL

In case the process i1s unknown, a model can be
estimated from historical input-output data by letting two
separate neural networks approximate the functions f and
g as follows:

Y =Ty (k- Doyl matk- vk me] g
Ryt 1), -, ylk - m.ugk - 2), (k- m), 6 Juk ~1)

or
$ik|ey = flok).8,1+ 8lp(k).6, Julk -1 (13)
Where:

9k =[ytk —1)....yk —n,) (14

uik-n),...,u(k+1-n,-n)J

where, 0 indicates a vector contaimng the weights and
biases, ¢ is the regression vector and f and g are the
estimated nonlinear functions used to predict the output,
n, and n, denote the number of past outputs and
mputs, respectively, used to determining process output
prediction and nk is time delay.

i) | wit)-fle) u{t-1) o
T E®

@E@ @Efﬂ

Fig. 2: Discrete input-output feedbaclk linearization with
neural networks

The closed-loop system consisting of controller and
process to be controlled 1s shown m Fig. 2. Derivation of
a training method for determination of the weights n the
two neural networks used for approximating fand g in
Eq. 1 1s straightforward.

The prediction error approach requires knowledge of
the derivative of the model output with respect to the
weights. In order to calculate this derivative, the
derivative of each network output with respect to the
weights in the respective networlk must be determined as:

o

q"f(k5ef)=£
4 (15)

_ &

,(k.6,)= 2,

The derivative of the model output with respect to
the weights is often composed of derivatives of each
network 1n the following manner:

6570(‘0) 7|:lpf(k=ef) } (1 6)
a0

w0 = |y, .0, u0k 1

With this derivative in hand, any of the traming
methods can be used without further modification. Any
smooth nonlinear function can be chosen for
approximating the unknown functions f (p(k), 8) and
g (p(k), 6). In this study, two feedforward NNs with a
hidden layer including nonlimear function (1.e., tanh(.))
have been selected for this purpose. The resulting
process model is known as nonlinear autoregressive
moving average model (NARMA-L2) which can be
expressed by Narendra and Mukhopadhyay (1997):

Yo =1 +g @ Huk-1=
200 ) + g7 (W 2ahuk 1) = (17)
FAOWAE (W) + g7 (W g (W nudk - 1)
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where, f'(x) = g'(x) = tanh(x) and fi(x) = g* (x) = x represent
activation functions of the ludden layer and the output
layer, respectively. The quantities a°, a', a” are the outputs
of mput, hidden and output neurons, respectively. The
weights of hidden and output layers are denoted by W'y
W, and W, W?_, respectively.

It's highly recommended to remove the mean and
scale of all the measured signals to the same variance
(usually zero mean and variance 1). Because, the signals
are likely to be measured in different physical umts and
without scaling, there is a tendency that the signal of
largest magnitude will be too dominating. Moreover,
scaling makes the training algorithm numerically robust
and leads to a faster convergence. Since, the network
model 15 a three-layer neural network with linear output
units, it 1s straightforward to rescale the weights after
completion of the training session. In this way, the final
network model can work on un-scaled data.

Neural network learning speed is very important for
real time system identification. To realize fast leaming, a
recursive Levenberg-Marquardt mimmization method 1s
used in this study. It 1s an intermediate method between
the steepest descent and Gauss-Newton, having good
convergence properties. The online training algorithm is
derived so as to minimize the following criterion:

F(8,)=¢ (k) =) - v.4)° (18)

where, &) denotes the prediction error, y.(k) is the actual
plant output and 0, includes all the neural network
weights. The NN weights are adjusted as follows
(Hagan et al., 1996):

6,., =6, —A6, =6, —[G(8,)G'(6,) + 1, IT'G(6,)e(6,) (19)

k+l
where, G is the Jacobian matrix i.e., (FF(0,)/50) and I is
the identity matrix and A, is a constant. This algorithm
reduces to the steepest descent method with small
learning rate as A, is increased. If A, is decreased to zero,
the algorithm approaches the Gauss-Newton method.
Thus, the algorithm provides a nice compromise between
the speed of Newton's method and the guaranteed
convergence of steepest descent.

Control of a CSTR benchmark process with online
feedback linearization technique: Figure 3 shows the
schematic of a cooled exothermic CSTR benchmark
process. The reaction 15 first order in reactant A. A well-
mixed cooling jacket surrounds the reactor to remove the
heat of reaction. Cooling water 1s added to the jacket at a
rate of F; and an inlet temperature of T;,. The volume V of
the reactor contents and the velume V, of water in the
jacket are both assumed to be constant. So, it can be

writter:

Fﬂ
Co
T, |
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_’ FJ
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0
T [
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L s,
T

Fig. 3: Schematic of CSTR

Table 1: Nominal values of the model parameters

Notations  Description Values and unit
Fa Feed flowrate 0.2m’ min~!
v Reactor volurne 2m’
K, Reaction rate coefficient 3.5%10° min™!
E. Activation energy 49.884 kI mol™
R Ideal gas constant 8.313x107% kI mol™!
H, Heat of reaction 500 kI mol™*
Cun Concentration of A in feed 1000 mol m’
Ta Feed temperature 30°C
o Density of solution 1000 kg m™>
Cp Heat capacity of solution 4.2kJkg™! °C
U, Heat transfer coefficient (surface) 252 kI'min~t °C
v Jacket volume 0.4m?
Ty Inlet temperature of coolant 10°C
u=F=F,
F,=F (20)

The first-principles model of the CSTR process is:

dCc, F -E,

T:ZVD(CAU*CA)*kD CXP(RT 1C,

dr  F H E UA

= YT -T) - —k, ex 9C,+——(T.-T) (21
m V(D ) pCPV 0 P(RT) & PCPV(J ) ( )
dT; U

A u
FRRr AR A AUREY
where, CA (mol m™™) is the concentration of the A
component in the reactor, T(°C) is the temperature of the
reactor and T,(°C) is temperature of the reactor jacket,
while the process input is the flow rate of the cooling
water u (m’ min~"). The controlled output of the process
15 the reactor temperature. The parameters and their
nominal values of the model are shown in Table 1.
Because of the CSTR nature, the model adaptation is
completely necessary m system identification. It 1s very
common that one of the parameters of the process like
feed flow rate, feed temperature, concentration of
components m feed and inlet temperature of coolant
change with time. Thus, by incorporating them in online
process identification, the controller can compensate for
these changes.
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Fig é: Model’s outpt and real outpot for a set of test
data. Zolid lne outpot, dashed line: one step
ahead prediction

In the first stagme, drgost-outpst data should he
getierated for obtaining the NARWMA-L2 model of the
process(Fig 44 b [tis clear that moore informati on about

Mumber of Samples

the gystem is obtaned by using a very long atd pow erfid
ingnat signal. This is relevant for indostrial processes
which typically have slow dynamics and kigh level
distirbatices. On the other hand the cost of the
expetitent becotes low by keeping the expetimernt titme
shott and the signals asmall From an industrial oand
ecotiotmical perspective, the test data moust lead to a
autable model within an acceptable ime petiod in order to
dewiate as little as possible from normal operation. The
itputs of the MARMA-TY were selected az wik-10, wk-2,
wk-17 and uk-20).

It should he mernticned here that for making the
training algorithen mmum erically robust and having a faster
cotrrergence, the irpod-output data hawe been scaled to
zero thesn atd varianee 1 (Fig 5a b

Figure & shows the mode's oot and the real
process outpt for a set of test data, while Fig 7 shows
the etror between the model™s outpat and real process
outpaat. [t can be seenthat the wali dity of the NARMA-T2
model iz acceptable.
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Inthis case, the desited polynomial has been selected
to cottesponding to two stable poles.

Figure & shows he residting set-point tracking
petformance of the C3TR process.

FEEDBACK LINEARIZATION TECHNIQUE
USING NEURAL NETWORK AND

SEMI-ME CHANISTIC MODEL

Hewal Networks (HMH'$) provide soitable tools to
mode plart uncertainties that are in form of wiknown
functions if appropriate inputfootpnd data is awvailable
(Widrowr ef al, 1994, Bazaed and Ll d 2003, In Nikolama
anhd Hatagand's (1993  contribuaticn,  feedback
lineatizaticths has heen applied to  contitmous-time
recurtent NH's In Braake of ol (1998) study, some data-
based Exact Feedback Linearization (EFL) and
Spproithate Feedback Linearization (AFLY schemes in
discrete-time wia HNMN's have been developed In the
feedback linearization mentioned it the previous section,
the HH's are used az a Hlack-box model of the plant and
fo part of the plart dynamic equations are asmamed a
priotl koown Hence, the black-box N model may have
poor extrapolation properties and its vali dity moay remain
within the range of the training data,

The models totally generated by the first principles
knowledge othe basis of generd plorsical niles governing
the plarts are called white-box models. Although, these
models have good extrapolation properties,  their
geteration,  if  possible, 15 expensive in  genera
(W anCanef al., 1996).

It may possible to generate models based on a
cotnbination of first principles knowl edge of the plart and
neural, fuzzy, or other types of models, resdting in what
is caled first-principles-based gray box, lybrid, semi-
mechanistic, o semi-physical models.

The grey-box models can be dassified into parallel
atid serial fypes. [nthe parallel grevbox moodels discussed
byLeeefal (20020, Cote of . (19957 and3uef . (1992),
the HH's are placed in parallel to the first principles
models. This type may have better interpolation
propetties conpared to the black-box one. In serial gray-
bow models, the MM is traitied to model the wiknowrn or
uncertain part of the plant dynanics. The serial type may
vield better dimensional extrapolation property than that
of the black-tox and the parallel grewbox types. However,
when the available mechanistic model, detived from the
process knowledze, is not sfficierntly accurate, the
parallel Iytrid-modeling scheme may exhibit better
extrapolatior, we meats that some variables o paramn eters
of the plard, which bave been fiv ed during model trairing,
ate dlowed to change during the use of the model withoat
fieed for te-training (Van Can efal |, 1996).

B ecause in serial gravbox modeling the identification
effott iz ordy on the know part of the plant, the training
titn e as well asthe moodeling error will dectease while the
validity doman (ie, the range extrapolation) of the
resulting model will improve compared to those of the
black-tox moodel.

B the proposed method we take the advantages of
feedback litearization teclwicue, first principles
knowledze and grev-box newral modeling to impeove the
cotitrol petformatice.

The undetlying philosoplyy of  semi-thechard stic
modeling is that black-box models, like neural networks,
caty be uged to represent the otherwise difficult-to-obtain
patts of first-prineiple models. Fortunately, a first-principle
model can be easily extended by exchanging parts of the
mode. In chemical engineering first-prineiples models are
mostly  derived from  dynamic mass  energy  and
momertim balances These bhalaices are based on
cotwervation principle and for hawped process systems,
they lead to differentisl equations formulated as:

i oA

[44)
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where, x; i a conserved extensive quantity, for example
IMass Or energy.

In chemical engineering, usually the last two terms of
Eq. 22 (1e., amount of generated components i a chemical
reaction) are especially difficult to model, but the first two
terms (i.e., inlet flow or heat transfer) can be obtained
more easily. Certainly, it always turns out in the modeling
phase which parts of the first-principle model are easier
and which parts are more laborious to obtain.

First-principle linearization control for CSTR: Here, the
control law of GLC is derived on the bases of the first
principle model of the controlled process. The state-
variables x = (x,, X,, X,) are: X, = CA the concentration of A
component, x, = T the reactor temperature and x; = T, the
jacket temperature. The manipulated mput u 1s the coolant
flow rate while the controlled output y is the temperature
i the reactor. So, the model equations of this affine
system can be represented by:

3( s — %) -k, exp R,
_1Q _ LA
f{x)= V(TF X,) c, V(Xz X;)
UA
(Xz - Xg)
. pCpY\JTJ i (23)
0

glx)= 0

Lim-x,)

_VJ i ’
hix)=x,

Then, the relative order of the system can be
determined based on:

Lhx) =0
(24)

L.L; h(X)—_( £ 3) EY

So, the relative degree of the system is r = 2.
Therefore, the feedback control law can be formulated as
follows:

v=(Bh(x) + LG + B,LEN(X)) (25)
Bl Leh(x)

with the following Lie derivatives:

Lhix) =1, (x)

(26)
Lthix) = f(X) (X)+f(X) (X)+f(X) ()

Where:
o Hy exp[—_&]
o, o Rx,
ﬁ(x):—ng H, k, Eaz exp[fEﬁ]x, _ua (27)
X, Vo ope, Ry, Rx, pe,V
Ay g UA
%, pe,V

In the ideal case, Eq. 25 on the basis of mput-output
feedback linearization results i the following second-
order transfer function:

w__ 1 (28)
w(s) BS +RS+HR

But, Eq. 28 camnot be perfectly realized m practice
due to some practical difficulties. The first difficulty 1s that
the manipulated input is constrained. However, this is not
significant if & parameters are selected appropriately. The
second 1s that the model parameters are not known
accurately; and the third 1s that the state variables cannot
be measured perfectly. These difficulties influence the
performance of the GL.C controller.

The linear controller can be designed using Eq. 25.
Assuming that the desired closed-loop transfer function
is a first-order filter represented by:

y(=) _ 1 20
Vo8 1+Ts (29)

where, y is the output, y, is the setpoint and T, is the
filter time-constant; then the transfer function of linear
controller becomes:

ve_ B B R (30)
e(s) T, T T.s

Actually, Eq. 301s a classical PID controller with the gain
K = B/T, the integral time constant T, = B,/p, and
derivative time constant T, = [3,/B;.

The parameters of feedback linearization (ie., Py, P,
and PB,) were set by trial-and-error method. Adjusting
these parameters is easy because the meanings of these
parameters are very simple, representing the linear
parameters of the desired trajectory. Virtually, tuning of
these values is necessary only because the manipulated
input is constrained.

So, these parameters must be tuned m such a way
that the calculated manipulated input will approximately
satisfy these constraints during the control. The selected
parameters were setto B, =1, p, = 10 and p, = 5. The PID
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parameters were determined by direct synthesis Hq. 30 as
K.=1,T,=10and T, = 0.2. Tt should be noted here that
both the first principle and the semi-mechanistic GLC
controller had the same parameters.

Semi-mechanistic GLC for CSTR: The first-principle
GLC controller builds upon the complete first-principle
model of the process. There may be situations when some
parts of the first-principle model are not available. In
contrast to first-principle GLC, the key strength of
semi-mechanistic GLC 1s that it does not need a complete
first-principle model. In the followings, an example will be
presented that illustrates this problem through the
application example of CSTR.

The control-related model of CSTR consists of two
conservation equations:

The heat balance of the reactor and the heat balance
of the jacket. The first balance is associated with the
controlled variable (1.¢., reactor temperature):

{Heat accumulated} B [ Heat of } {Heat of }

in reactor inlet flow outlet flow

(31)
Heat transferred Heat generated

to jacket from reaction
while the second balance is associated with the

manipulated variable (i.e., flow rate of coolant):

{Heat accumulated} B [ Heat of } [Heat of }

in jacket coolant inlet coolant out let

(32)

Heat transferred
+
from reaction

The mathematical formalization of these terms is
well-known in chemical engineering. Certainly, during the
formalization of the model terms, some assumptions must
be made with respect to certan a priori knowledge, e.g.,
the heat transfer coefficient was assumed to be constant.

But, it is not enough to provide an exact description
of each term, the model parameters must be provided, too.
In the course of modeling of chemical reactors, the
parameters of chemical reaction rate are generally
problematical. Tn this application example, it is assumed
that this part of the model is not available. Hence, the
neural network will model the heat released by the
chemical reaction. Therefore, the semi-mechanistic model
of CSTR can be written as:

dx UA
B _Qep ) ef, 20+ A (x, - x,)

d v pe, (33)
dx UA u

d_t3 = PV, {X; —X;) +7](ij —X3)

where, fy; is the neural networls, z is the input of this
neural network (i.e., temperature of the reactor), x, =T is
the reactor temperature, x, = T, is the jacket temperature. It
can be seen that the semi-mechanistic model Eq. 33 does
not contain the x1 state variable. Tt means that the semi-
mechanistic GL.C controller does not need to measure the
concentration in reactor.

In the followings, the above described semi-
mechanistic model will be utilized in the GL.C design
scheme. The procedure is the same as the first principle
model.

For the sake of simplicity, the state variables will be
denoted in the same way: x; is the reactor temperature, x,
is the jacket temperature and thus the state vector is
denoted by x = (x,, x;). The mampulated input u 1s the
coolant flow rate, while the controlled output y 1s the
temperature in the reactor. Therefore, the model equations

become:
| 9(Tf -X,) - (@ + UA (x;, -X;)
P = Vv C,
UA (X, —X,)
pe:Y) (34)
[0
g(x) = VLj(T]f —-X;)
h(x)=x,

Tt should be noted that Eq. 32 assumes that the input
of the neural netwaork 1s a function of state variables, 1.e.,
z = f z(x); for example, the mput of neural network 1s
composed of measured state-variables.

The relative order of the semi-mechanistic model can
be determined through Lie derivatives:

Lh(x) =0
1 UA (35)
LL:h(x)= VJ.(T]f - XB)@

So, the relative degree of the system is r = 2. The Lie
derivatives of the semi-mechanistic model are:

Leh(x) =1,(x)

Ih0) =0+ F, (x)%(x) + fz(x)%(x) (6)
with the following partial derivatives:
VD ey &7
=T %
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The relative degrees isr= 2, thusthe feedback cordrol
law is iderdical to Eq 25 (but the Lie derivatives differ
from each other), that is:

o ¥ (RGO BLAGO + L)) )
Byl L ACx)

It is importart to consider that for applying the
ohtained uby feedback linearization m ethod, the stability
of the internal dymamics and zero dynamics shodd be
checked. But, by using the semi-mecharni stic moodeling ris
obtained equa to 2 and because the system order also
reduces to 2, there is 1o need for doing stability analyais.
Hence, the linea controller of semi-mechanistic GLC
controller isthe same, i.e,, itwill be a PID controller.

HMow, suppose that some parameters of the system
change It's necessary to apply a method that our
cottroller recognizes these changes for performing the
cotmpensatory strategies. From Eq. 34, the Parameters of
the plart are Q,V, U, A pocg W, Tpp Tr [tis supposedtha
V.V, & ae dways constant and they never change ng
it's possible that the inlet temperature of feed T, the inlet
temmperature of coolart T, and the feed flow rate O change,
It iz also possible that the parameters p oand o and T
dot't remain constant. Cleatly the chatiges of paran eters
T Trand Q) can be measwed online by sensors from plant
atud then they can be incorporated it the controller.

Adaptation forany change in Q: Inpractical applications,
asmumpticn, of itvrariabdlity of feed flow rate is totally
inaccwrate and almost it is impossible to fix the feed flow
rate in a desired vaue.

Inthe first experitn ent, withowt veing adaptatice, the
feed flow rate (O decreased by 10% at time = 600 (ie,
Q0% decreasing). It can be seen that because of the natre
of feedback, the system would tolerate this deviation and
remain stable (Fig Pa, H).

How, by gpplyng adaptation in the controller and
ordine applying of the change in the feed flow rate to the
controller, the resdtsinFig 10a and bwod dbe obtained.
It can be seen that in this case, the petformance of the
gystem isnot much better that before.

Mo, if the walue of flow rate goes 40% more than its
notnina walue at tme = 600, withost applying adaptation
the resltsin Fig 11a and b wodldd be obtained Itis clear
thatin spite of lack of adaptati o, the plant remains stable.

Andif adaptation is applied, the results are shownin
Fig. 1Z2aandh.

For more changes in O, because of the physica
limitations (e.g., saturation in the flow rate), the system
with or withowt adaptation can not wok  propedy

(Fig. 13a, b).
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Fig 9: (&) Temperature atd (4 jacket flow rate of CETE
obtained by semi-mechanistic modeling in
absence of adaptation and 0% decreasing of feed
floer tate (1)

Adaptation for any change in T;: If the indet tesiperatire of
the feed chatiges 1% at time = 600, in the dhsence of
adaptation the results shown in Fig 14a and b owill ke
ohtaitied

By applying adaptation in the controller, for 1%
ineteasing in TT the temdts shown in Fig 154 and b are
ohtaned. It iz clear that the comtroller wotks a little better
than the time that itis not adaptive. For mote increasing
in T, the online controller may not work properly. Thisis
due to the saturation in maripd ated wariahble.

For 3% decreasing of T, (without adsptation), the
results shown in Fig 162 andb are obtained

It case of applying adaptation, the resdts shown in
Fig 17aand b are acceszed

EBased on the resdts, it canbe concluded that there
is a negligible difference bebween the adaptive and non-
adaptive cases.

For more decreasing in T, (with or withowt applying
adaptatioe), results shownin Fig 183 and b are obtaned.
It caty be seen that the system is not able to track the set
poitit This phetinn enonis because of lower limdtation for
mardgnlated variable. Forinstance, the ingot flow rate of
jacket can not be less than zerd).
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Fiz. 11: {a) Temperature and (b} jacket flow rate of C5TR obfained by serai-mecharistic modeling in ahsence of
adaptation and 40°% increasing of feed flowr rate (1)
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adaptation and 40% increasing of feed flow rate (0
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Adaptation for any change in T; : In the ahsence of
adaptation, by decreasing the feed temperatuwre of the
jacket more than 3% at time = 600, the system becomes
urstable (Fig. 194, ). By applying adaptati o, even when
the feed temperabare of the jacket decreases 100%, the
gysteth temains stable (Fig 204 W), It shmd d be noted that
by inecreasing T, more than 3%, even in jpresence of
adaptation and having no constraint for manipalated
vatiable, the system goes to vnstable mode (Fig 21 b
Thiz is because of the existence of T, in denominsor of
maripd ated wariable (). The physical explanationis dus
tothe fact that if the temperabure of jacketincreases more
than a specific amount, the water in the jacket can not
ahzoth the heat generated during the reaction with any
possible flow rate.

Estimation of heat of reaction hy newral network:In
Eg. 33, fNH iz the model of heat generated during the

reactionwhich can be described by

(3%

fiog = — Ky explet,

B

o 1

By using MM, generated heat in the reaction can be
estimated withmat any need to online measuring of
cotwcentration. By using this approach, any small changes
i the parameters of heat equation can be considered and
also there is no need to have the exact walues of the
itrvolved parameters(H, &, E.

It can be seen from Fig 22 that the newal netarork
would be trained accor ding to the error bebreen the grey-
box model output and the actual plant outpat. Since the
other parameters changes wodd be compensated
instantaneously by the cortroller, it carn be expected that
the NI reflects the heat of teaction with a good acowacy
athid itz orline traning would be mosly influenced by
chatiges in heat of reaction parameters and not the other
plant param eters.
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The MM should be able to cotrverge so as to make the
followrityg estithation error equal tozero:

e = T ™ Tocruna

Tamnm = T —2

(T
T =25 —

(40

From the structure of the model, the output of NN i

T4
[

(4)

; =EE££_£2,§¢g_gmuy- (T~ T

. dt dt

The ot etically, the difference between the plant outpat
and the model outpt showld be zero 3o, by inserting
defdt = 0 and T, =T estimate in Eq 41, the deared
outgnat of the neural network should be:

Al e 2

MV

(44)

Ee]

Ta
I:'rr - Tﬂm:l - I:c_;ilirfrl - ij

For imtial training of the newd network in off-line
mode, the appropriate imgod-outpt dada should he
collected

Inn thiz case the ingat of the newsl nebwork is
temperatire of the reactor and its outpt is the reaction
heat which can be obtained from Eq 42,

The results of using M for reaction hedt estimation
ate shown in Fig 233 and b, In this case, the cortroller
cary detect up to 29% fall in k, andkeep the processin the
stable mode.

Determining the changes of U/pe,: Fouling phenotmena
caty chatige the walue of U (e, heat tranafer coefficient).
It additicry, the walues of p and o ate somehow
dependent on the temperature and also the concentrati on
of the product inside the reactor 3o, assumption of
changing the term Ufpep isnot wnrealistic.

It addition, it can be supposed that the deviation of
this param eter is not too much and even negligihle. B,
for considering the generality of the study, a method for
otline determination of term Ufpe, is presented here.

Up to now, it has been assumed that the semi-
mechanistic model and some of the system equations of
o system are accessible, One of these equations is heat
balarce equation of the JTacket which iz as foll o s

dT,

m (437

_ A _ u _
e DD

By defining TAfpe, = w and t, as the sampling time, it can
be written:
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K Loy k-1 u k-1 k-1
T, =ts><7(T -] )+tsxv(TJf—TJ )+ T, (44)
j

]

So, ¢ can be estimated as:

TJK —t, %(TJF _ Tjk—l) _ TJk—l
. ; (45)
t - -
VS(Tk 1_ T]k n

1

Therefore, o can be updated at each sampling time.
By this technique up to 19% reduction m ¢ would be
tolerable and the stability of the system has been verified
by simulation studies. As a typical demonstration, the
result for 10% reduction 1 ¢ has been shown in Fig. 24a
and b,

Although, by this method, UA/pc; can be estimated
very accurate and fast, since its variation is very slow due
to the nature of UA/pe;, the observations show that it 1s
not necessary to measure this term in each sample for
practical applications.

In Madar et ol work (2005), the results have been
reported for the uncertamnty of 3% mn k,, 2.5% mn E, and
10% m U. Whereas, in our proposed method, the
controlled system remains stable, as shown in Fig. 25a
and b, even for 15% change both in lg; and 1J and 10%
change 1 E, all being exercised at t = 600.

CONCLUSIONS

In this study, two different methods for adaptive
control of nonlinear processes using neural networks
were presented. The main benefit of these techniques is
the online capability m order to incorporate any changes
of the plant's parameters in the controller implementation.

The first method 15 adaptive feedback linearizing
control technique which is based on black-box modeling
of the plant. The main advantages of this method are:

* Implementation 1s simple
¢ Tt can use a nonlinear model of the system without a
priori knowledge

The second method 1s adaptive feedback linearizing
control technique which is based on a semi-mechanistic
modeling of the plant. Tt was practically observed that the
power of set-pont tracking of this method 13 more
efficient than the first one, giving a better characteristic as
well.

Tt should be mentioned again that semi-mechanistic
modeling approach for feedback linearization allows the
user to combine black-box modeling with white-box

modeling in such a way that a posteriori modeled element
replaces the uncertain part of a priori model. In the
proposed semi-mechanistic model, a neural network
replaces the difficult-to-model part of the priori model.

When precise knowledge about some parts of the
uncertain plant exists, it may be used in forming partial
structure of the model and the modeling capability of the
NN can be focused on the unknown parts. This can be
achieved using a serial neuro-gray-box model which is
more accurate than the black-box one while it takes
shorter traimng time. Although, serial gray-box schemes
can only be used for the plants with some a priori partial
knowledge, the resulting validity domain is larger than
that of the black-box method.

For the methods in which a black-box model replaces
the plant, any changes in parameters can be identified by
neural network. But, i the semi-mechamstic feedback
linearization beside the use of a neural network for
modeling the difficult-to-model part of the plant, extra
sensors and transmitters are needed for online estimation
of the plant parameters.

So, although the performance of the semi-mechanistic
feedback linearization is better than the other methods, its
implementation can be more expensive and so a trade-off
compromise should be taken to select the proper method
for practical applications.

In the semi-mechanistic modeling technique,
although the plant parameters' changes of the plant can
be distinguished accurately and fast so as to be used in
the controller implementation, the plant output may go to
an unstable mode mainly due to the manipulated variable
saturation.
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