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Abstract: The aim of this review was to discuss the current understanding of Type 2 Diabetes Mellitus (T2DM)
genetic advance and aetiology. The T2DM 1s a genetically heterogeneous disease, with several relatively rare
monogenic forms and a number of more common forms resulting from a complex interaction of genetic and
environmental factors. Earlier studies uwsing a candidate gene approach, family linkage studies and gene
expression profiling uncovered a number of T2DM genes, but the genetic basis of common T2DM remained

unknown. Recent years have seen a tremendous surge in our understanding of the genetics of T2DM by
Genome-Wide Association Study (GWAS). Approximately 20 genes consistently associated with T2DM mainly
implicate pancreatic B-cell function in the pathogenesis of T2DM.
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INTRODUCTION

Type 2 Diabetes Mellitus (T2ZDM) is a complex
heterogeneous group of metabolic condition characterized
by elevated levels of serum glucose, caused mainly by
impairment in both insulin action and insulin secretion.
T2DM is a complex trait where common genetic variants
having modest individual effects act together and interact
with environmental factors to modulate the risk of the
disease. Traditional genetic research, including twin,
adoption, and family studies, consistently supports that
T2DM has a genetic component. Two broad approaches
have been used to define the genetic predisposition of
T2ZDM. First, molecular events in T2DM pathogenesis
have been examined directly by testing the role of
sequence variants of specific candidate genes. The
candidate gene approach focuses on the search for an
association between T2ZDM and sequence variants in or
near biologically defined candidate genes which have
been chosen based on  their known physiological
function. To overcome the shortcomings of the candidate
rene studies, investigators have applied a genome-wide
linkage scan strategy in which regularly spaced markers
are traced in families and sibling pairs for segregation with
T2ZDM. No prior knowledge of gene or gene effects is
necessary, but the genetic locus must have sufficient
impact on the disease susceptibility to be detectable.
During the past decades, extensive efforts have been
made to detect the underlying genetic structure for
T2DM. However, until very recently, the genes involved
have been poorly understood. Using a new and powerful

technology in the form of a genome-wide chip that
genotypes up to hundreds of thousands of SNPs,
Genome-Wide Association  Studies (GWAS)  have
recently led to the discovery of a group of novel genes
that were reproducibly associated with T2DM risk. These
studies have increased our understanding of the genetic
actiology of T2DM and provided invaluable insights into
the way genetic studies should be conducted. The
present review discusses the current understanding of
T2DM genetic advance and aetiology.

EVIDENCE FOR THE GENETIC
COMPONENT OF T2DM

The genetic component of T2DM comes from ethnic
group differences in prevalence rates. These differences
in prevalence range from 1% in Mapuche Indian tribes or
Chinese population living in rural areas in mainland China,
o extremely high levels found in Nauru and Pima Indians
in Arizona (King and Rewers, 1993). Furthermore, the
prevalence is higher in full-blooded Nauruan and Pima
Indians than in those with admixture (Knowler et al., 1988,
Serjeantson er al., 1983). Another source of evidence for
cenetic contribution in T2DM is familial aggregation.
Lifetime risk of T2DM development is 40% in offspring of
one T2DM parent and increases up to 70% if both parents
have T2DM (Groop and Tuomi, 1997). In addition,
evidence shows a greater likelihood of T2ZDM in
offspring of affected mothers than affected fathers,
indicating an excess maternal transmission of the disease
(Thomas et al., 1994; De Silva er al., 2002; Arfa er al.,
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2007). Family, history of T2ZDM has a significant,
independent and graded association with the prevalence
of T2ZDM. In twins studies, very high concordance (55 to
100%) for T2DM has been reported among monozygotic
(MZ) twins (Newman ef al., 1987; Barnett er al., 1981).
Mutations in some genes cause rare forms of T2DM,
riving additional support for the genetic roles in the
actiology of the disease. For example, genes KCNJIT T and
ABCCS carry rare mutations that cause a Mendelian form
of neonatal diabetes (Babenko et al., 2006: Gloyn et al.,
2004). Specific mutation in the mitochondrial genome was
found to cause maternally inherited diabetes and deafness
(Van Ouweland er af., 1994). Maturity-onset Diabetes of
the Young (MODY), which is characterized by high
penetrance, early age at onset of hyperglycemia and
defective function of B-cells in the pancreas, accounts for
1-5% of all T2DM cases. Mutations in HNF4A, GCK,
HNFIA, IPFI1, HNFIB (TCF2) and NEURODI cause
different subtypes of MODY 1-6 (Fajans et al., 2001).

SEARCH FOR T2DM SUSCEPTIBILITY GENES

Susceptibility genes identified by linkage studies: The
first T2DM gene identified by linkage is CAPNIO that
belonged to the family of calcium activated non-lysosomal
thiol proteinases. Horitkawa er al, (2000) used relatively
sparse Linkage Disequilibrium (LD) map of SNPs in the
region of linkage on chromosome 2q to identify 3 common
intronic variants of a previously unknown gene. Both a
single intronic variant (UCSNP-43: G o A) and a specific
haplotype combination defined by three polymorphisms
(UCSNP-43, -19 and -63) were associated with T2DM in
Mexican Americans, with lesser evidence of an
association in a Northern European population from the
Botnia region of Finland. Surprisingly. individuals with a
combination of two different haplotypes were at the
highest risk of T2DM (Horikawa er al., 2000; Wang et al.,
2002). Baier et al. (2000) showed altered gene transcription
and reduced muscle mRNA levels in muscle biopsies from
Pima Indians with T2DM. CAPNI0 SNP-44 (rs297576(0)
g4841T/C), located in intron 3 and 11 bp from SNP-43
(rs3792267 A/G). was independently associated with
T2DM in several populations and was in LD with the
missense mutation Thri04Ala and two 3'-UTR variants
(SNP-134 and SNP-135). An mnitial meta-analysis also
supported an association with T2DM (Weedon er al.,
2003). Furthermore, CAPN /() variants were valuable along
with traditional risk factors in predicting the onset of
T2DM in a prospective study of Botnian Finnish
individuals (Lyssenko er al., 2005).

The TCF7L2 gene encodes for an enteroendocrine
transcription factor that has a role in the Wnt signaling

pathway, which is one of the key developmental and
arowth mechanisms of  the  cell,
Reynisdottir et al. (2003) found suggestive linkage of

T2DM to chromosome 10q in the lcelandic population.

regulatory

Fine-mapping with 228  microsatellite markers in
[celandic individuals with T2DM and controls throughout
a 10.5 Mb interval on 10qg identified one microsatellite
marker, DG10S478 in intron 3 of the TCF7L2 gene, as
being strongly associated with T2DM (p = 2.1x107")
(Grant er al., 2006). This association was replicated in
both a Danish cohort (p = 4.8x107") and a US cohort
(p = 3.3x1077). Replications have appeared from analysis
in subjects of Amish (Damcott er al., 2006), Finnish
(Scott er al., 2006), UK samples (Groves er al., 2006),
French (Cauchi er al., 2006), US (Zhang et al., 20006,
Saxena er al., 2006), German KORA 500 K study
population (Herder er al., 2008), population-based study
of Caucasian (Van Hoek er al.. 2008) and Chinese
population (Ng ef al., 2007; Chang er al., 2007). A meta-
analysis of 28 original published association studies
included 29,195 control subjects and 17,202 cases
confirmed the association between the TCF7L2 rs7903146
polymorphism and susceptibility to T2DM (OR = 1.46 95%
CI 1.42-1.51; p = 5.4x107""). Compared with any other
gene variants previously confirmed by meta-analysis,
TCF7L2 can be distinguished by its tremendous
reproducibility of association with T2DM and its OR twice
as high (Cauchi er al.. 2007). Very recently, a large meta-
analysis summarizes the strong evidence for an
association between TCF7L2 gene and T2ZDM both
overall and in Caucasians, North Europeans, East Asians,
Indians, and Africans and
multiplicative  genetic model for all the four
polymorphisms  (rs7903146, rs7901695, rs12255372,
rs11196205) of TCF7L2 gene among different ethnic

populations except for Africans, where additive genetic

suggested a  potential

maode 18 suggested for rs7903146 polymorphism, as well as
suggests the TCF7L2 gene involved in near 1/5 of all
T2DM (Tong et al., 2009). The increase in risk of T2DM
associated with the TCF7L2 variant alleles so far
identified is substantially greater than that associated
with variants in the other confirmed T2DM-susceptibility
genes (PPAR (, KCNJIT). The strongest signal for T2DM
in GWAS was found for TCF7L2 rs7903146 with p-values
down to <107 and increase in the odds for the disease of
37% (Scott er al., 2007; Saxena er al., 2007). In the
prediction study, TCF7L2 rs7903146 was significantly
associated with the risk of future T2ZDM (OR = 1.30;
p = 9.5x107") and predicted progression from normal
glucose tolerance to T2DM (OR = 1.27; p = 2.7x1077) in
the MPP cohort (Lyssenko ef al., 2008).
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The locus at 18p was originally found to be linked to
T2DM in families from Finland and Southern Sweden
(Parker er al., 2001) and was confirmed in a second
series  derived from the Southwest of the Netherlands
(Van Tilburg er al., 2003). The strongest evidence was
obtained for marker D185S63 (LOD score 2.3, nominal
p = 0.0006). In all three studies, the effect of the 18p region
was strongest in the obese subpopulation. One of the
human homologs of mouse Lpinl gene, LPINZ, is located
in the 18pl1 region. LPIN2 is ubiquitously expressed in
different tissues, including skeletal muscle (Zhou and
Young, 2005). The LPINZ gene is responsible for the
lipodystrophy in the fld line, which, among other traits, is
characterized by severe insulin resistance. Fdl mice, in
which Lpinl is deleted, have diminished adipose tissue
mass and multiple pathologies, including insulin
resistance, fatty liver and progressive neuropathy of
peripheral nerves (Shimomura er al., 1999; Péterfy er al.,
2001}, The protein Lipin is required upstream of PPARYy
for normal adipocyie differentiation (Phan et al., 2004 ).
The rs3745012 SNP of the LPIN2 gene is associated with
T2DM and fat distribution { Aulchenko er al., 2007).

The human PTPNI gene maps on chromosome
20q13.13 which showed evidence of linkage with early
onset T2DM in a subset of 55 French families
(Zouali er al., 1997). Multiple noncoding SNPs in the
PTPNI gene were implicated in T2DM in Caucasian and
Mexican-American populations (Bento et al.,, 2004
Palmer et al., 2004), with the most consistent evidence for
association occurring with SNPs spanning the 3" end of
intron 1 of PTPNI through mtron 8 (p=0.043-0.002).
All of the associated SNPs were present in a single
100 kb haplotype block that encompassed the PTPNI
oene.  Haplotype  frequencies  were s ignificantly
different between T2DM case and control subjects
(p=0.0035-0.0056), with a single common haplotype (36%)
contributing strongly to the evidence for association, with
OR=1.3. Furthermore, the same haplotypes
associated with glucose homeostasis

were
measures  in
Hispanic subjects (Bento er al, 2004). However,
Florez et al. (2005) failed to replicate the findings in a large
Caucasian study.

Adiponectin (APMI) is a strong candidate for T2DM
given the clear role of plasma adiponectin levels in insulin
sensitivity and the fall in adiponectin levels with obesity
and T2ZDM. Adiponectin was mapped to the region on
chromosome 3g27 which found to have positive linkage
o metabolic traits and T2DM (Vionnet et al., 2000
Hegele er al., 1999; Kissebah er al., 2000). Multiple
studies found evidence that promoter variants in the
APMI gene were associated with T2ZDM in French and
Swedish Caucasian and Japanese populations. However,

APMI variants did not appear to account for the 3gq27
linkage in French families (Gibson and Froguel. 2004).
APM 1 variation at positions 43 (G allele) in exon 2 and 276
in mtron 2 {T allele) were associated with a 4.5 fold
increased risk of converting from impaired glucose
tolerance  to T2ZDM  in the STOP-NIDDM trial
(Zacharova er al., 2003). A meta-analysis of nine
association studies included 2379 subjects confirmed
significant association between the SNP45TG+GG and
SNP276GG polymorphisms of APMI with T2DM in
Chinese populations (p = (.035) (Li er al., 2008). The search
for T2DM  susceptibility genes on  most  other
chromosomes (1q21.3-23, 2q37.3, 3p24.1, 3g28, 10g26.13,
12g24.31, and 18p11.22) is ongoing.

Susceptibility genes discovered by candidate gene
association: Variants in genes encoding proteins that play
a role in pathways involved in insulin control and glucose
homeostasis are excellent candidates for T2DM. The
candidate gene approach focuses on the search for an
association between T2ZDM and sequence variants in or
near biologically defined candidate genes which have
been chosen based on their known physiological
function. The importance of these variants is tested by
comparing the frequency in T2DM subjects and control
individuals. Numerous variants within several genes that
confer an increased susceptibility to T2DM have been
identified by candidate genes studies but only a small
number have been identified as strong candidates for
T2DM such as PPAR (¢ and KCNJI! genes, which they
were confirmed by GWAS (Zeggini e al.,, 2007,
Sladek er al., 2007).

The PPARYy is a member of nuclear hormone receptor
superfamily of transcription factors and the target of the
widely used class of insulin  sensitizers, the
thiazolidinediones. Multiple stodies have examined a
Prol2Ala polymorphism in the PPAR (2 isoform. The rare
Ala allele i1s seen in about 15% of Europeans and was
shown to be associated with increased transcriptional
activity, increased insulin sensitivity and protection
against T2DM in an initial study (Deeb er al., 1998).
Subsequently, smaller studies provided inconsistent
results. Larger studies have shown a consistently
protective effect of the Alal2 allele when compared with
the common Prol2 allele. The common Prol2 allele
increases T2DM risk by an OR of 12.5 in a meta-analysis
in cross sectional studies (Altshuler er al., 2000). Several,
but not all studies suggest that the rare Alal2 allele
protects against insulin resistance and obesity, but the
association with obesity has been inconsistent. A meta-
analysis of 41 published and 2 unpublished studies
included 42910 subjects (Asia, Europe and North
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America) demonstrated that the reduced risk of T2DM in
Alal2 carriers is not homogeneous (Ludovico et al., 2007).
Recent  replication  studies  reported  significant
associations between rs1 7036328, rs 11709077, rs 1801282
in PPAR (2 and T2DM in the German KORA 500 K study
population (Herder er al., 2008). PPAR (2 Prol2 allele was
associated with T2DM in Huber Han Chinese population
(Dehwah er al., 2008). In the prediction study, PPAR (2
SNP rs 1801282 was significantly associated with the risk
of future T2DM (OR = 1.20; p = 4.0x10*) and predicted
progression from normal glucose tolerance to T2DM
(OR = 1.15: p = 0.03) in the MPP cohort (Lyssenko et al.,
2008).

KCNJI1 encodes a subunit of an inwardly rectifying
ATP-sensitive potassium channel T (KATP). I (KATP)
channels are crucial for the regulation of glucose-induced
insulin secretion in pancreatic f-cell. The P-cell potassium
channel comprises two subunits, the potassium channel
encoded by the gene KCNJIT and the regulatory subunit
(SURI encoded by ABCCSE) that binds sulfonylureas and
ATP. Variants in both subunits have been associated
with T2DM. Two variants in the ABCCS gene were
initially associated in smaller studies (Inoue er al., 1996;
Hart er al., 1999; Meirhaeghe et al., 2001) and larger
subsequent studies appeared to confirm the association
(Barroso er al., 2003; Hani er al., 1997). However, the other
studies have not confirmed the association (Gloyn er al.,
2003; Florez er al., 2004), The association between these
variants and altered insulin secretion was also observed
(Elbein et al., 2001; Hansen er al., 1998). The adjacent
KCNJIT gene was mtally noted to have multiple
nonsynonymous coding variants (Inoue er al., 1997), but
none were associated with T2DM  (Altshuler er al.,
2000; Sakura et al., 1996). However, a E23K polymorphism
was shown to lower the sensitivity of the potassium
channel to ATP and thus reduce insulin secretion
in vitro (Schwanstecher er al.. 2002) and to be associated
with T2DM (Barroso er al., 2003; Love-Gregory et al.,
2003: Yokoi er al., 2006). The result of Meta-analysis
confirmed the association between the E23K variant and
susceptibility to T2DM in UK cohort (K allele OR = 1.23;
p=15x10"" KK genotype OR = 1.65:p = 2x107")
(Gloyn er al., 2003) and white case-control subjects
(n=2,824, OR = 1.49, p=2.2x107") (Nielsen er al., 2003).
Subsequently, Florez er al. (2004) thoroughly examined
KCNJIT and ABCCS and tested sufficient variants to
completely tag all variation in this region. Again, the E23K
variant was associated with T2DM in 3,413 subjects and
the association was confirmed in a meta-analysis that
included over 5000 TZDM subjects and 4747 controls
(p<107, OR = 1.15). Recent replication studies reported
significant associations between common variants in the

KCNJ1lgenes and T2DM in a Japanese population
(Omori er al.. 2008).

Evidence for a role of the HNF4A gene in T2DM
predisposition is also mounting (Barroso et al., 2003;
Love-Gregory et al., 2004; Silander er al., 2004; Zhu et al.,
2003). HNF4A regulates genes involved in glucose and
fatty acid metabolism, as well as insulin secretion, and is
therefore critical for maintaining lipid and glucose
homeostasis. The K121Q variant of the ENPP/I gene has
been best studied and shown to be associated with
obesity but not T2ZDM in Caucasian and African
American subjects ascertained from the New York Cancer
Project (Matsuoka et al., 2006). Other investigators found
an association of K1210Q with earlier onset T2DM and
coronary disease among T2DM patients (Bacci er al.,
2005). The association of KI1210Q with T2DM was
replicated in three relatively small populations, two of
South Asian ancestry and one Caucasian (Abate er al.,
2001).

Minton et al. (2002) sequenced DNA from 29 patients
and uncovered 12 SNPs of WIS/, The most abundant
cenetic variant alters the amino acid at position 611 from
a histidine to an arginine (H611R). The arginine variant
was present in 40% of diabetic cases and 43% of controls
(p<0.02), suggesting that the variant was protective from
T2DM. Through large-scale candidate-pathway study,
1536 SNPs in 84 candidate genes were studied for
association with T2DM, only (rs10010131, rs6446482,
rs 752854, rs734312) SNPs in WFS! were associated
with T2DM in UK and an Ashkenazi Jewish population
(OR =0.92 95% CI (.88-0.95, p<107-107") (Sandhu et al.,
2007). The result was then replicated in northern Swedish
populations, the minor allele (G) at SNP rs732854 was
statistically associated with reduced risk of T2ZDM
(OR =0.85 95% CI 0.75-0.96, p = 0.01), while borderline
statistical significance was observed for the other three
SNPs (rs 10010131, rs6446482, rs734312) (Franks et al.,
2008). Recent replication studies reported significant
associations  between WFS/ rs10012946 (proxy for
rs10010131, r = 1.0) and T2DM in population-based study
of Caucasian (Van Hoek er al., 2008). A meta-analysis
of 11 association studies included 12,979 cases subjects
and 14,937 controls was robustly confirmed the
association of WFSJ rs10010131 with risk of T2DM (OR
= 0.89 95% CI0.86-0.92; p=4.9x10""") (Franks et al.,
2008). In the prediction study, WFST SNP rs 10010131 was
significantly associated with the risk of future T2DM
(OR = 1.12; p = 0.001) and predicted progression from
normal glucose tolerance to T2DM (OR = 1.13; p = 0.004)
in the MPP cohort (Lyssenko et al., 2008).

The HNFIB (also known as TCF2) gene is located on
chromosome 17cen-q21.3, a region linked to T2ZDM
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(Demenais et al., 2003). Although HNFIB is important for
the development of the pancreas, mutations in HNFIB
show other more characteristic phenotypes like cystic
kidney disease, liver dysfunction and abnormal urogenital
tract development (Nishigon et al., 1998; Lindner et al.,
1999: Bingham ¢r al., 2000). Polymorphisms in HNFIE
were reported to be associated with T2DM in Caucasians
(Bonnycastle er al.,, 2006; Winckler et al., 2007
Gudmundsson et al., 2007). However, the previously
T2DM associated SNPs in HNFIB is not associated with
T2DM in cohorts of 2,293 individuals from the Botnia
study (Finland) and in 15,538 individuals from the Malmd
Preventive Project (Sweden) (Holmkvist er al., 2008),

Novel susceptibility genes from genome wide association
studies: Using a candidate gene approach, family linkage
studies and gene expression profiling uncovered a
number of T2DM susceptibility genes (Huang er al.,
2006). Since, 2007, a new window has opened on defining
potential T2DM  genes through genome-wide SNP
association (GWA) studies of very large populations of
individuals  with  T2ZDM. GWAS revealed new
susceptibility loci for T2DM and validated some of the
known candidates (Table 1, Fig. 1). To date, the total of
the twelve update GWA scans for T2DM have been
published (Table 2). Six of these represent high-density
scans (1.e., at least 300 000 SNPs, offering genome- wide
coverage >65%), in samples of Northern European
descent (Sladek er al., 2007; Saxena er al., 2007;

Scott et al., 2007; Steinthorsdottir er af., 2007;
Zegeini et al., 2007 Salonen et al.. 2007). Another four
studies featured a wider array of ethnic groups
including Native American (Hanson et al., 2007), Hispanic
(Hayes er al., 2007) and populations of European descent
(Rampersaud er al., 2007; Florez er al., 2007), but were less
extensive with respect w both sample size and SNP
density (all uvsed the Affymetrix 100K array). Two
recent studies in East Asian subjects were on a smaller
scale (featuring between 82 000 and 207 000 typed SNPs
in a few hundred cases only) (Yasuda et al., 2008,
Unoki ef al., 2008).

The first GWAS covered 392,935 SNPs (passing
quality control) and identified four novel loci
including SLCI0AS, LOC387761, IDE-KIFTT-HHEX and
EXT2-ALX4 (Sladek er al., 2007). Subsequence three
GWAS analyzed 386,731, 393,453, and 315,635 SNPs
respectively (Zeggini et al., 2007; Saxena er al., 2007;
Scott et al.. 2007). Common variants in CDKAL/,
IGF2BP2, CDKENZA/B  genes  were  significantly
associated with T2ZDM nisk, with the allele-associated
odds ratios ranging from 1.07 to 1.48. These studies also
confirmed the T2DM effects of SLCI0AS and HHEX. In
another GWAS, Steinthorsdottir er al. (2007) found that
variant rs7756992 in the CDKALJ gene was significantly
associated with T2ZDM risk in individuals of European
ancestry (allele-specific OR = 1.20 95% CI 1.13-1.27) and
Han Chinese ancestry (OR = 1.25 95% CI 1.11-1.40), but

not in those of African ancestry. Salonen er al. (2007)

Table 1: T2DM susceptibility loci for which there is genome-wide significant evidence for association®

Locus (nearest gene)  Ch Year of discovery Approach Probable mechanism variants Effect size**
PPARY i 2000 Candidate Insulin action ra | B01282 .14
KCMIT1 11 2003 Candidate [-cell dysfunction r=5215 1.14
TCFIL2 [0 2006 Linkage scan B-cell dysfunction 7901 695 .37
FTO 16 2007 GWA Aldtered BMI rsR0501 36 .17
HHEX/IDE 1) 2007 GWA B-cell dysfunction rsl 111875 l.15
SLCA0AR b 2007 GWA B-cell dysfunction 15l 3266634 [.15
CDEALI B 2007 GW A [-cell dysfunction rs 1 0946398 1.14
CDEKN2ALE v 2007 GWA B-cell dysfunction =1 081 1661 [.20
IGF2ZEF2? 3 2007 GWA [-cell dysfunction =4 402960 [.14
HNF-1[ 17 2007 Large-scale candidate-pathway [-cell dysfunction rsdd 30796 ]
WS 4 2007 Large-scale candidate-pathway Lnknown rs 0010031 .12
JALE] 7 2008 GWA B-cell dysfunction 864745 [ 10
CDCI23CAMEID 1] 2008 GWA B-cell dysfunction rs 1 2779790 .11
TEPANB/LGRS 12 208 GWA B-cell dysfunction r=TI61581 .04
THADA 2 2008 GW A Linknown rs73TESYT .15
ADAMTSY 3 2008 GWA Lnknown rsd607 103 .08
MOTCH2 | 20008 OGW A Unknown rs 10923931 [.13
KCMNOI 11 2008 GWA f-cell dysfunction rs2237892 1.29
MTME IR |1 20008 OW A B-cell dysfunction s | OR30596G3 .05

*ADAMTSY: ADAM metallopeptidase with thrombospondin tvpe 1| motif 9; CAMED: Calciumfcalmodulin-dependent protein kinase 1D; CDC123; Cell
division cycle 123 homologue (Saccharomyces cerevisiae); CDRKALL: CDKS regulatory subunit-associated proteinl-likel; CDEN2ZAZB: Cyclin-dependent
kinase inhibitor 2A/2B; FTIO: Fat mass and obesity associated: HHEX: Haematopoietically expressed homeobox: HNF1B: Hepatocyte nuclear factor |
homeobox B; IDE; Insulin degrading enzyme; IGF2ZBP2: Insulinlike growth factor 2 mENA binding protein 2; JAZF1; Juxtaposed with another zine finger
gene 1 KCNIT1: Potassium inwardly rectifying channel, subfamily J, member 11; KCNQI: Potassium voltage-gated channel, KQT-like subfamily, member
1; LGRS Leucine-rich repeat-containing G-protein coupled; NOTCH2: Notch homologue (Drosophilay; PPARy: Peroxisome proliferator-activated receptor
gamma; SLC30AE: Solute carmier family 30 (zinc transporter), member §; TCFTL2: Transeription factor 7 like 2; THADA: Thyroid adenoma associated;
TSPANE: Tetraspanin 8: WFS1: Wolfram syndromel: MTNRI1B: **Melatonin receptor 1B, Estimates of effect size (given as per-allele odds ratios) reported

for European descent populations based on available data (Fig. 1)
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Fig. 1: Effect sizes of 19 common T2DM susceptibility loci. The x axis gives the year that published evidence reached
the levels of statistical confidence that are now accepted as necessary for genetic association studies. The y-axis

gives the per-allele odds ratio (estimated for European-descent samples) for each locus listed on the y-axis. Loci
are sorted by descending order of per-allele effect size from TCF7L2 (1.37) to ADAMTSY (1.09) (Table 1). Loci
shown in white and dark grey are those identified by GWA approaches and by Linkage scan respectively,
whereas those identitied by candidate-gene approaches and by large-scale candidate-pathway studies are shown
in black and light grey, respectively. Odds ratios are as in Refs (Zeggini er al., 2007; Scott er al., 2007,
Frayling et al., 2007; Franks er al., 2008; Zeggini et al., 2008; Yasuda er al., 2008; Prokopenko et al., 2009)

Table 2: GW A scans for tvpe 2 diabeies™

Study Mo, of coses Moo of controls Sample source Genotyping array T2DM phenmype Eeferences
Diabetes gene it e 5 France [Hwmina 300K +1llumina 100K Family history of T20M8, Shadek er al. discovery
Eroup AALY <43 years, BMI <30 kg m™ (2T
[Mabetes Genetics 146 1467 Finland, Sweden Affyvmetrix 500K Partial enrichment for family Saxenn ef i,
Initiative (D1 history and lean T20M {2007
Wellcome Trust 1924 i H] LK AlTvmetnx 500K Enrchment for fumily history Zegmmi ef ol
Cuse Control of TZDM, AAD <63 vear [ 2007
Comsortium (W TOCC)
Finland-L5 LGl 1174 Finland liimina 300K Partial envichiment for family history  Scodl e al,
Investigation of (20067
MIDDM Genetics (FUSIOMN)
deCODE Genetics 1399 3275 lceland IMurnima 300K Mo specific enrichment for Family Steinthorsdoitiv er ol
history, young AAD or BMI [ 2007 )

[adicn SN} 497 East Finland, Mrmina 300K Enrichment for family history, Salonen ef al,

Ciermany, LK, AACkO years {2007

Ashkenuz
Pima 300 334 Fima Indians Affvmetrix 100K AAD <25 vears, enrichment for Hanson & al. (2007

family history

Starr County, Texas 281 280 Mexican Amencans  Affvmetrix 100K Controlled for admixiure Haves et al. (217
Framingham | 10E7 Massachusetts AlMymetrix 100K Incident T2DM cases Flores er al. ( 2007 )
Health Study
OHed Order Aamish 124 2935 Aamish Affymetrix 100K Enrichment for family history Rampersaud el (2007}
Japanese 187 15304 Japanese TSNP Genome Scan T2DM cases Yasuda er al, (2008}
multi-disease K SMPs
collaborativegenome scan
BioBank Japan 194 1556 Japanese Custom set of- 268K SNPs Enrichment for T2I2M cases Unoki ef @l (2608)

EAAD: Age al onsel
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analyzed 315917 HapMap-derived tagging SNPs in a
two-stage study of 3,073 T2DM cases and 3,273 healthy
controls, SNPs in the AHII-LOC44117] region were
found to confer ~30% increased risk. Other three GWAS
genotyping 100 k SNPs in the Framingham Heart Study
(Florez et al., 20007), Amish (Rampersaud er al., 2007) and
American Indians (Hanson er al., 2007) reported some
genetic variants related to the risk of T2DM. However,
these associations were not univocally  observed.
Yasuda et al. (2008) reported that the C allele of SNP
rs2237892 in the KCNQJ gene is associated with an
increased risk for developing T2ZDM in Japanese
population. It is surprising that rs2237892 was associated
with T2DM not only in the original Japanese set of cases
and controls, but also in Chinese, Korean and European
samples. At the same time Unoki ef al. (2008) found similar
evidence for SNPs closely related 1o rs2237892 (rs2237895
and rs2237897) in the KCNQI gene were strongly
associated with T2ZDM in the Singaporean population of
East Asian descent and the Danish population of
European descent. These studies have demonstrated how
studies in non-European descent populations can reveal
novel susceptibility loci.

Strong signals for T2DM were observed for FTO,
which is also highly associated with fat mass and obesity
(Dina er al., 2007). The effect of FTO variants on T2DM
risk has been replicated and seems to be mediated entirely
by their marked effect on adiposity (Frayling et al., 2007).
Melatonin receptor 1B (MTNRIB) gene is located on
human chromosome 11g21-g22 and encodes one of two
high affinity forms of a receptor for melatonin, the primary
hormone secreted by the pineal gland. This gene product
15 an integral membrane protein that is a G-protein coupled
T-transmembrane receptor, 1ts predominant expression in
retina and brain (Reppert et al., 1995). GWAS have shown
that variation in MTNRIEB is associated with insulin and
clucose concentrations. One of the strongest signals
for glucose-stimulated insulin s ecretion in the DGI
scan emanated from a SNP (rs10830963) in MTNRIB
(p = 7=107", rank order 595) (Saxena et al., 2007). Given
that the melatomin pathway had previously been
suggested to be involved in pathogenesis of T2DM,
the MTNRIBE gene was a prime candidate gene for
T2DM. The strong signal was observed at rs10830963,
where each G allele was associated with an increase of
(OR =0.07 95% CI 0.06-0.08) mmaol L™" in fasting glucose
concentrations (p = 3.2x107") and reduced B-cell function
as  measured by  homeostasis model assessment in
~24,000 participants from the ten studies (HOMA-B,
p= 1.1x107"). The same allele was associated with an
increased risk of T2DM (OR = 1.09 95% CI 1.05-1.12; per
G allele p = 3.3x1077) in large-scale meta-analysis of 13

case-control studies including data from GWAS, totaling
18,236 cases and 64.453 controls ( Prokopenko er al., 2009).
The rs 10830963 variants in MTNRI B seem to have a more
marked effect on risk of T2DM, the effect size being
comparable in magnitude (OR = 1.0995% CI 1.05-1.12) to
several other TZDM  susceptibility  genes recently
identified in GWAS, Lyssenko et al. (2009) provided
strong support for a role of melatonin and its receptor
MTNRIB in the pathogenesis of T2ZDM. A common
variant in the MTNRIE receptor was associated with an
increase in fasting glucose over time and predicted future
T2DM. most likely through impairment of insulin secretion
from the pancreatic -cell function. The result of GWA
meta-analysis for fasting plasma glucose indicated that
the MTNRIE rs1387153 strongly modulates fasting
plasma glucose in the European population (f = 0.06
mmol L', p=7.6x10"7, n = 16,094) and increases the risk
for T2DM (OR = 1.15 95% CI 1.08-1.22; p=6.3x10", cases
n = 6,332) (Bouatia-Naji et al., 2009). Effects of melatonin
are mediated by two distinct receptors, MTNREIA and
MTNRIEB (Pandi-Perumal er al., 2008), which are members
of the G-protein coupled receptor family, specifically
inhibitory  G-proteins (Gi). Both receptors have been
found to be expressed in human and rodent islets
{Muhlbaver and Peschke, 2007)., with MTNRIA
predominating, especially in glucagon-producing a-cells
(Ramracheya er al., 2008). There 1s some evidence that
melatonin may exert an effect on insulin secretion, in that
acute effects exerted by cAMP-elevating agents are
inhibited by melatonin, whereas prolonged effects of the
hormone may be stimulatory (Peschke, 2008).

The recent replication studies confirmed significant
associations  between  SNPs  within  the HHEX,
CDENZA/B, CDKALI and KCNQT genes and T2DM in
the Korean population (Lee et al., 2008),
HHEX/KIFTIADE, CDENZA/B and IFG2ZBP2 loci in
Danish subjects (Grarup erf al.. 2007), CDKALI, IGF2BP2,
CDEN2A/B, HHEX and SLC30AS genes and T2DM in a
Japanese population (Omori et al., 2008), CDKALI,
IGF2BP2, HHEX and FTO genes and T2DM in German
KORA 300 K study population (Herder er al., 2008§),
ADAMTSY, CDKALI . CDEN2A/B, FTO, IGF2BP2, JAZF]
and SLCI0A& in population-based study of Caucasian
(Van Hoek er al., 2008), CDKALI, CDKNZA/B, IGF2BP2,
SLC30AS and KCNQ/I genes independently or additively
contribute to T2ZDM risk in the Chinese Han population
(Wu er al., 2008; Hu er al., 2009; Liu er al., 2008, 2000},
TCF7L2 (rs12255372), COKALI (rs7756992, rs7754840),
HHEX (rsT923837), IGF2BP2 (rs4402960 and rs1470579),
CDEN2A/B (rs10811661), and SLC30AS (rs 13266634 ) were
significantly  associated with T2ZDM in  Japanese
population (Tabara et al., 2009). The association of
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SLC30AS, HHEX, CDKALI, CDENZA/CDKNZB,
IGF2BP2 and FTO with risk for T2DM was confirmed, in
the recent large-scale study of Asian ancestry from Hong
Kong and Korea, with odds ratios ranging from 1.13 to
1.35(1.3%107 <P, 0i<0.016) (Ng er al., 2008). It's very
recently reported that the common wvariants in the
CDEALI, SLC30AS8, HHEX, EXT2, IGF2BP2,
LOCIE7761 and CDEN2E genes did not confer a
significant risk for T2DM in Pima Indians (Rong er al.,
20003, In the prediction study, common variants in
TCF7L2  (rs7903146), PPAR({ (rs1801282), FTO
(rs9939609), KOCNJIT (rs5219), NOTCH2 (rs10923931),
WEST (rs10010131), CDEALT (rs7754840), IGF2BP2
(rsd402960)), SLCI0AS (rs13266634), JAZFT (rs864745,
HHEX (rs1111875) were significantly associated with
risk of future T2DM (OR = 1.30; p=9.5x10"", 0R = 1.20;
p=40x10" OR = 1.14; p = 92x10°°, OR = 1.13
p=3.6x10",0R=1.13;p=0.02,0R=1.12; p = 0.001,
OR=1.11p=0.004,0R = 1.10; p = 0.008, OR = 1.10;
p=0.008, OR = 1.08; p=0.03 and OR = 1.07; p = 0.03,
respectively) in the MPP cohort (Lyssenko er al., 2008).

Additional loci from Meta analysis: Efforts to find
additional T2DM susceptibility loci have to contend
with the modest effect sizes anticipated and the stringent
significance thresholds required when many hundreds of
thousands of SNPs are tested in parallel. The obvious
solution is to increase sample size and the most effective
strategy for this involves combining existing GWAS data
through  meta-analysis.  The  Diabetes  Genetics
Replication And Meta-analysis (DIAGRAM) consortium
integrated data from three previously published GWAS
(Saxena er al., 2007; Scott er al., 2007, Zeggin er al.,
2007, thereby doubling the sample size compared to the
largest of the individual stodies to ~4500 cases and
5300 controls. The consortium also used novel imputation
approaches (Marchini et al., 2007) to infer genotypes at
additional SNPs that were not directly typed on the
commercial arrays used for the original GWAS, thereby
extending the analysis to a total of ~2.2 million SNPs
across the genome. In this study, 69 signals showing the
strongest associations in the GWAS meta-analysis were
genotyped in an initial replication set of 22426 individuals
and the top eleven signals emerging from this second
analysis were then evaluated in =57 000 further subjects.
After integrating data from all study subjects, six signals
reached combined levels of significance, including the
JAZFI (rs864745) (p = 5.0x10°"), CDCI23-CAMKID
(rs12779790) (p = 1.2x170"), TSPANS-LGRS (rs7961581)
(p = LIx107%), THADA (rs7578597) (p = L.1x1077),
ADAMTSY (rs4607103) (p = 1.2x10°") and NOTCH?2
(rs10923931) (p = 4.1x107%) (Zeggini er al., 2008),

However, the replication study of these six SNPs in Khatri
Sikh diabetics of North India, only CDC123/CAMKID
(rs12779790) revealed a significant evidence of
association with T2ZDM (pyee. = 0.031) (Sanghera et al.,
2009,

NEW GENES NEW AETIOLOGY

The strongest signal for T2DM in GWAS was found
for TCF7L2 with p-values down to <107" increase in
the odds for the disease of 37% (Scott er al., 2007;
Saxena ef al., 2007), the TCF7L2 rs7901695, increases
disease risk with an odds ratio of 1.37 (Table 1; Fig. 1).
The expression of TCF7L2 was related to genotype and
metabolic parameters in human islets, the risk T allele was
associated with impaired insulin secretion, in cretin
effects, and enhanced rate of hepatic glucose production.
Over expression of TCF7L2 in human islets reduced
glucose-stimulated insulin secretion (Lyssenko et al.,
2007). The HHEX region which also harbors IDE
encoding insulin-degrading enzyme which has been
implicated in both insulin signal and islet function. T2DM
risk allele for HHEXADE gene associated with decreased
pancreatic [B-cell function, including decreased [-cell
glucose sensitivity thatrelates insulin secretion to plasma
glucose concentration (Pascoe er al., 2007). Both HHEX
and [DE are critical for ventral pancreas development and
are powerful biological candidates for T2DM.

A central theme for many of the recently
discovered genes is that many of them seem to be
involved in insulin secretion, pin-pointing the pivotal role
of B-cell function in the pathogenesis of T2DM. These
csenes include TCF7L2, KCNJII, HHEX, SLC30AS,
CDKALI, CDEN2A/Z2B, IGF2BP2 and KCNQI
(Steinthorsdottir er al.,, 2007; Grarup er al, 2007;
Pascoe er al, 2007; Staiger er al, 2007, 200%;
Yasuda er al., 2008; Unok: et al., 2008). The loci seem
particularly to be associated with an increased risk of
developing T2DM through a reduced insulin-secretory
capacity. A further highly interesting finding was the fat
obesity which
predisposes to T2DM by altering Body Mass Index

mass  and associated  FTO  gene
(BMI). It is expressed in hypothalamus (Frayling er al.,
2007) which is the key brain region for influencing
appetite. Interestingly, the GWAS have identified a
separate set of SNPs that seem to represent the strongest
common genetic risk factor for heart disease (myocardial
infarction) (Zeggini et al., 2007; Helgadottir ef al., 2007,
McPherson et al., 2007). There 15 no correlation between
the T2DM signal and the heart disease signal, but the
latter does fall closer to the CDKNZ genes, which
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encodes pl6oINK4a. Over expression of pl6INKd4a results
in a decreased islet proliferation and p-cell dysfunction in
ageing mice (Krishnamurthy er al.. 2006), the initial
human physiology studies have not provided any
evidence that the risk alleles alter insulin secretion, but
phenotype strongly implicates p-cell
dysfunction. CDKALIJ is highly expressed in human islets
(Zeggini er al., 2007). CDKAL! shares homology with the
CDKSRAPI gene, a known inhibitor of CDKS activation.
CDKS5 is implicated in reduced B-cell function, through the

the mouse

formation of p35-CDKS5 complexes, which down regulate
insulin expression (Ubeda er al., 2006; Wei er al., 2003).
T2DM risk allele for CDKALJ gene associated with
decreased pancreatic f-cell function, including decreased
[-cell glucose sensitivity that relates insulin secretion to
plasma glucose concentration (Pascoe er al., 2007). The
IGF2BP2 binds to the key growth and insulin signaling
molecule insulin-like growth factor 2 (IGFII) and is also
expressed in the pancreatic islet (Zeggini er al., 2007).
T2DM risk for CDKALI, SLC30AS, IGF2BPZ2, and
LOC387761 1s specifically mediated through defects in
insulin secretion (Palmer et al., 2008). The product of
KCNQ/{ gene can form hetero multimers with two other
potassium channel proteins, KCNEI and KCNE3. The SNP
rs2237892 in KCNQ/ has known roles in cardiac muscle,
it is not yet known how this gene could affect the risk for
T2DM., but there i1s evidence that it is turned on in the
pancreas ( Yasuda er al., 2008).

Curiously, some of the recent studies suggest a
much debated
epidemiological observations that men with T2DM are

possible explanation for previous
less likely to develop prostate cancer. The same allele in
HNFIB that predisposes to T2DM was protective of
prostate cancer (Gudmundsson er al., 2007). Moreover,
different variants in JAZF I are associated with T2DM and
with prostate cancer (Saxena et al., 2007; Zeggini et al.,
2007 Scott et al., 2007; Thomas et al.. 2008). In keeping
with an effect on development and transcriptional
processes these findings may not come as a surprise
although the exact causal relationships remain to be
investigated (Frayling er al.. 2008).

Moreover, carriers of novel T2DM risk alleles within
JAZFI, COCI23/CAMKID, and TSPANS 1tU's suggested
an impaired pancreatic B-cell function in glucose-tolerant
regions in the cohort of middle-aged people (Grarup et al.,
2008). CDCI23 is regulated by nutrient availability in
5. cerevisiae and has a role in cell cycle regulation. Taken
together, evidence from GWAS implicating variants in or
near CODEKALI, CDEN2A/B, CDCI23 and CAMKID
suggests that cell cycle dysregulation may be a common
pathogenetic mechanism in T2DM (Ridderstrile and

Ciroop, 2009). Notch homologue 2, Drosophila (NOTCH2)
is known to be involved in pancreatic development, but
the mechanisms involved for the ADAMTSY and THADA
genes remain unclear.

MTNRIB is thought to participate in light-dependent
functions in the retina and in melatonin’s neuronal
regulation of circadian rhythmicity and sleep cycles. As
certain sleep disorders, such as obstructive sleep apnea,
result from obesity and are associated with insulin
resistance (De Sousa et al., 2008; Kashyap and Defronzo,
2007). Very recently, three new studies identified and
reported extremely strong, incontrovertible evidence that
the MTNRIB is associated with high fasting glucose
levels and increased risk of T2DM (Prokopenko er al.,
2009; Bouatia-Naji et al., 2009; Lyssenko er al., 2009).
MTNRIB could represent a new interesting candidate
gene linking sleep disorders with T2DM. These new data
implicate an association between the sleep-wake rhythm,
the so-called circadian rhythm, and fasting glucose levels,
T2DM, which was not known previously. The greatest
benefit of T2DM genetic study is likely to come from new
derived from an improved

and better therapies

understanding of the aetiology of the disease.

PREDICTION OF RISK OF T2DM

One of objectives for identification of T2ZDM
susceptibility genes is to predict T2DM risk and identify
high-risk subjects. To predict the risk of T2DM for a
healthy individual we need to know and be able to
measure risk factors, their effect sizes and how they
interact. Although, prediction of total risk is an ultimate
coal, prediction of genetic risk that can be attributed to
inherited genetic variants is an important component.
Generally, the predictive value of genetic testing for
prediction of T2DM is unclear. Several empirical studies
on the predictive value of genetic polymorphisms have
been conducted before the GWAS data were available
(Lyssenko er al., 2005; Weedon er al., 2006). In a case-
control study, combining the information of three
polymorphisms improved disease prediction, albeit to a
limited extent (Weedon er al., 2006). The predictive
value was low compared with clinical characteristics
(Vaxillaire et al., 2008). The complex disease is caused by
multiple genetic variants, the predictive testing based on
a single genetic marker will be of limited value. GWAS
have dramatically increased the number of common
genetic variants that are robustly associated with T2DM.
The predictive value could be improved by combining
multiple common low-risk variants, but all showed
limited predictive value so far (Janssens er al., 2006, 2007,
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Yang et al.. 2003; Wray ef al., 2007). The currently known
and replicated genetic found in GWAS
contributed maodestly to the prediction of T2ZDM in
population-based setting and marginally improved the risk

variants

prediction beyond clinical characteristics (Van Hoek er al.,
2008). Individuals carrying more risk alleles had a higher
risk of T2DM and the common risk variants for T2DM do
not provide strong predictive value at a population level
(Lango et al., 2008). Similarly Lin et al. (2009) constructed
an additive genetic score using the most replicated SNPs
within 15 T2DM  susceptibility  genes
that the weighted 15 SNP-based genetic score provides
additional information over clinical predictors of prevalent

and reported

T2DM. However, the clinical benefit of this genetic
information is limited. The prediction model for T2DM
may not be so useful but has some value and
incorporation of data from additional risk loci is most
likely to increase the predictive power (Miyake er al.,
2009). New gene discoveries from GWAS will certainly
identify  novel novel
intermediate biomarkers, which consequently may be
stronger predictors of disease than the genetic variant
that led to its identification. But it is likely that the

complexity of complex diseases may ultimately limit the

etilogical  pathways  and

opportunities for accurate prediction of disease in
asymptomatic individuals as unraveling their complete
causal pathways may be impossible (Janssens and van
Duijn, 2008). More extensive studies are needed to assess
the usefulness of combining information from multiple
variants.

CONCLUSION

Studies in human genetics have made tremendous
strides in discovering T2DM genes especially through
GWAS. Identification of the causal variants responsible
for the association signals uncovered will provide
valuable clues to understanding disease predisposition.
GWAS is only the beginning in establishing the role of
genetic variants in disease etiology. This would be
followed by the fine-mapping of the susceptibility region
through deep sequencing in large population and the
validation of causality for genetic variants in experimental
settings.

*  Fine-map the new T2DM gene regions. That will
involve deep sequencing and further rounds of
genotyping to build up a full picture of all the
possible common variation that might explain the
association signals, This should include efforts to

define Copy Number WVarants (CNVs) such as

duplications and deletions, and should also attempt
to define independent associations in the same gene
regions

«  Additional association studies of the new wvariants
are needed. Investigators will need to assess their
role in other populations, especially populations with
a high prevalence of T2DM. Further studies of the
role of risk alleles in the general population are also
important

*  The predictive value of genetic testing for prediction
of T2DM i1s unclear. Additional studies are needed to
identify and replicate new genetic susceptibility
variants and gene-gene and gene-environment
interactions to approach levels of discriminative
accuracy that enable the identificaton of at-risk
groups and to assess whether individuals with
extreme numbers of risk alleles may benefit from
genetic testing

*  The mechanisms whereby a given DNA change leads
to an increased risk of T2DM need to be
reconstructed. We need to know whether they
influence T2DM predisposition through primary
effects on P-cell function, through insulin action, or
by some other mechanism. The ultimate objective is,
of course, to understand how genetic findings can
translate into advances in clinical management. In
principle, genetic testing might offer insights into
disease risk and predict response to the various
therapeutic and preventative options available, but
much work will be required to understand how to
deploy such tests in clinically effective ways. A route
15 to apply the insights gained into the mechanisms
of disease predisposition to identify new targets for
drug development. In this respect, genes of small
effect are likely to provide clues just as valuable as
those of large effect

Looking ahead. new methodologies and approaches
may be needed to discover the remaning as vet
unidentified genetic contributors to disease risk. At
associated loci, fine mapping can help narrow down the
list of possible causal variants and simplify future
functional studies. Additional GWAS, in larger samples
and multiple ethnicities, will almost certainly lead to new
discoveries and incremental gains in the amount of risk
accounted for by identified genetic variants. Exploration
of these novel loci will very likely uncover additional
alleles, both common and rare, that explain additional
variance in phenotype, help pinpoint which gene(s) are
responsible for the association and provide better clinical
and molecular tools for assessing function and
mechanism of disease.
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