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Abstract: Many engineering problems are characterized with multi-objectives. Differential Evolution (DE), an
Evolutionary Algorithm (EA), known to be fast and robust in numerical optimization is extended to multi-
objective problems in this study. The new algorithm named Multi-objective Differential Evolution Algorithm
(MDEA) adjusts the selection scheme of traditional DE to solve multi-objective problems. The algorithm also
modifies the domination criteria for the population. The offspring generated in subsequent generations are
unproved before domination check is performed on the population m the final generation. Moreover, trial
solution replaces the target solution if it 1s better or equal in all the objectives. The proposed algorithm 1s coded
i MATLAB 7.0 and has been successfully applied to five commeon test problems and an engineering cantilever
design problem. Good spread of quality Pareto optimal solutions are achieved. The algorithm produces more
Pareto optimal solutions than the previous algorithms and retains the fast convergence and diversity exhibited
by DE m global optimization. The algorithm is a good choice for solving many practical engineering problems
with ease.
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INTRODUCTION

Evolutionary Algorithms (EAs) are some of the most
widely used algorithm for solving Multi-objective
Optimization Problems (MOPs). EAs are applied to a wide
range of problems from science to engineering design
problems. They are powerful optimization algorithms for
solving complex real-world MOPs 1n a single run. The
primary reason why a problem has a multi-objective
formulation is that it is not possible to have a single
solution that optimizes all objectives. Therefore, an
algorithm that gives a large number of alternative
solutions lying on or near the Pareto-optimal front 15 of
great practical value. In multi-objective optimization, there
may not exist a solution that is best with respect to all
objectives, instead, there are equally good solutions that
are known as Pareto optimal solutions (Deb, 2001). A
Pareto optimal set of solutions is such that when we go
from any one point to another in the set, at least one
objective function improves and at least one other
worsens (Babu and Jehan, 2003). Neither of the solutions
dominates over each other and all the sets of decision
variables on the Pareto are equally good. Evolutionary

algorithms have the ability to find multiple Pareto optimal
solutions in one single simulation run because of their
population-approach. There are two goals m multi-
objective optimization. The goals are to discover
solutions as close to the Pareto-front as possible and to
find solutions as diverse as possible in the obtained non-
dominated front.

Several studies have extended evolutionary algorithm
to solve multi-objective numerical optimization problems
(Deb, 2001; Deb et al., 2002; Madavan, 2002; Babu and
Jehan, 2003; Xue et al., 2003; Rakesh and Babu, 2005,
Babu ef al., 2005, Robic and Filipic, 2005; Santana-
Quintero and Coello, 2005; Fan ef al., 2006, Reddy and
Kumar, 2007). Over the past decade, a number of Multi-
objectives Evolutionary Algorithms (MOEAs) have been
suggested (Deb, 2001). Recently, researchers have
extended Differential Evolution (DE) which is a family of
EA to solve MOPs. Tt has been successfully used in
solving single objective problems. Differential evolution
is a very simple population-based, stochastic function
minimizer and very powerful at the same time. DE handles
continuous, discrete and integer variables. In terms of
constraints, DE can handle multiple constraints. It has the
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advantages of simple structure, ease of use, speed and
robustness. Tt does not make use of some probability
distribution function in order to introduce variations into
the population but instead, it uses the difference between
randomly selected factors (individuals) as source of
random variation for a third vector (individual), referred to
as the target vector. Hence, the trial solutions which will
compete with the parent solution are generated by adding
the weighted difference vectors to the target vector.

Pareto Differential Evolution (PDE) proposed by
(Abbass and Sarker, 2002) was the first algorithm to
extend DE to MOPs. The PDE was compared to SPEA
(Zitzler and Thiele, 1999) on two test problems and PDE
was found to outperform it. Other studies by Madavan
(2002), Xue ef al. (2003) and Robic and Filipic (2005) have
proposed Pareto Differential Evolution Approach (PDEA),
Multi-Objective Differential Evolution (MODE) and
Differential Evolution for Multi-Objective Optimization
(DEMO), respectively. All these algorithms perform well
on test problems.

Multi-Objective Differential Evolution (MODE) was
proposed by Babu and Iehan (2003) and Babu et al.
(2005). In the algorithm, the dominated solutions are
removed from the population in each generation. Only the
non-dominated solutions are allowed to undergo DE
operations of mutation, crossover and selection. So, at
each generation, the population size reduces. The
offspring are placed mnto the population if they dominate
the parents. The algorithm worked well on the test
problems but the mumber of non-dominated solutions
generated was few. The dominated solutions that are
removed from the population imtially can still be improved
using the DE operations. During mutation stage, they may
be combined with other vectors to produce offspring that
may replace them instead of just removing them. In this
way, at the end of the generation, the number of non-
dominated solutions is increased with quality members
giving wider Pareto optimal fronts. Tn the original DE with
single objective, most of the 1mitially generated solutions
are infeasible. They undergo mutation and crossover
before they are improved to be feasible. Tn the same way,
the solutions in each generation should be allowed to
mutate, recombine and undergo crossover. The solutions
n the final generation are the only ones to be checked for
domination. Therefore, domination check is done once
instead of doing it in all the generations thereby reducing
the number of function evaluation.

The algorithm proposed by Fan et al. (2006) 1s
implemented by modifying the selection scheme of DE. In
their selection scheme, the trial population is compared
with its counterpart in the current population. If the trial
candidate dominates the current population member it will

survive from the tournament selection to the population
of the next generation and replaces the current population
otherwise the current population 15 retamed. They
suggest that if the trial solution 1s worse than the target
solution in any one of the objectives, it should be
discarded.

A new DE algorithm for Multi-Objective Optimization
Problems (MOOPs) 1s proposed in this study and it 1s
called multi-objective differential evolution algorithm
(MDEA). The DE algorithm proposed is based on the
existing DE algorithm proposed by Price and Storn (1997).
The only difference is its implementation of multi-
objectives.

MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
ALGORITHM (MDEA)

MDEA combines the advantages of algorithm by
Fan et al (2006) and Babu and Jehan (2003) while
overcoming the shortcomings of the algorithms. In this
way, MDEA runs faster with more quality Pareto optimal
solutions. The description of the MDEA is as follows.
The vectors are randomly generated to create mitial
vectors and solutions to the problem. The generated
solutions are allowed to undergo mutation, crossover and
selection for the number of generations chosen. The
solutions that evolve in the final generation are checked
for domination and the dominated solutions are removed.
The selection procedure of MDEA is similar to (Fan et al.,
2006). The trial solution survives to the next generation if
its objective function is better or equal mn all the
objectives to the target soluttion. MDEA will produce
many non-deminated solutions on the Pareto front than
the algorithm by Fan ef af. (2006) and Babu and Jehan
(2003). Moreover, the algorithm by Fan et al. (2006) has
not been modified to handle constraints except bound
constraints. MDEA can handle multiple constraints. Tf any
of the constraints is violated, a high value (10°) is added
to the objective function to make the solution infeasible
(Deb, 2001). In this way, the solution will not be selected
when compared with other solutions because of high
value. MDEA uses a constant population structure like
traditional DE. The fnal population is the same like the
mtial population. So the mumber of non dominated
solutions are less than or equal to population size. This is
an excellent advantage of MDEA over algorithms by
Fan et af. (2006) and Babu and Jehan (2003). Though the
proposed MDEA can be used on any strategy, the
strategy used in this study is DE/rand/1/bin which is the
most widely used of all the ten strategies of DE.

The proposed MDEA methodology
summarized in the following pseudo code steps:

can be
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(1) TInputthe required DE parameters like population size
(NP), crossover constant (CR), scaling factor (F),
maximum generation, mumber of objectives, bound
constraints etc.

(2) Imtialize all the vectors randomly in the limit of
bound constraints.

(3) Set the generation counter, G =0

(4) Perform mutation and crossover operations as
explained in the DE algorithm (Price and Storn, 1997)
on all the population members.

¢+ For each parent, select three distinct vectors
randomly from the current population. The
selected vectors must not be the parent vector.
These vectors combine to produce an offspring.
So in DE, there are 3 parents that mutate to
produce one offspring

¢+ Calculate new mutation vector using the
expression, Vi(g) = Xg) + F*(X, (&) - X.())

* Perform crossover using any of the two
crossover method. Binary crossover method is
used because of the strategy DE/rand/l1/bin
used in MDEA in this study

(5) Evaluate each member of the population and checle if
it 18 better or equal to the parents. Replace the
parents with offspring in the next generation if the
offspring is better or equal to the parents otherwise,
the parents proceed to the next generation.

(6) Increase the generation counter, G, by 1.1.e., G=G+l1.
If G < GMAX, then go to step 4 above and repeat
mutation, crossover and selection. If G = GMAX,
then goto step 7.

(7) Remove the dominated solutions in the last
generation. A solution is dominated if there is
another solution which is better than it in all the
objectives. The method used here is naive and slow
suggested by Deb (2001).

(8) Output the non-dominated solutions.

The steps above are followed, using the pseudo code
below, to code the algorithm in MATLAB 7.0 (The
MathWorks Inc., USA) and is executed ona 1.7GHz, 2GB
RAM PC and tested on some test problems below to
demonstrate its ability to solve MOPs.

The Pseudo Code for Multi-Objective Ditferential
Evolution Algorithm (MDEA):

*Tnitialize the values of D, NP, Cr, F, k (number of
objective functions) and maximum generation (MAXGEN)
*input the boundary constraints of the problem
*Tnitialize all the vectors of the population randomly
Fori=1toNP
Forj=1toD

X,;= Dlower+random number[0,1] x[Dupper:-
Dlower]

Next j

Next i
*Initialize gen = 1
forgen=1 to MAXGEN
fori=1toNP

Form=1tok
Evaluate the objective function values

Nextm

Check the constraints violation

If violated objective function value = objective

function value +

&*10° Deb (2001)

Forj=1toD
(Mutation stage)
Select 3 different vectors for perturbation
different from i such that i#r1 #r2#13
Vign = K T F(Xrl,gen - sz,gm)
{(Crossover Stage)

. {Vj_i_gm ifradnj<Crorj=n
PHER K g Otherwise
andne{l, ... D}
next
(Selection stage)
Start comparing vectors U, and X,
Form=1tok
evaluate kth objective function, f,(U, )
I (U ) = £ )
Select vector U, _, the trial vector
(Kigw)~ Uiz
goto next step
Else
Nextm
endif
select X, the current population member for
the next generation
(K g™ Kigen)
next m
next i
next gen
*remove the dominated solutions from the last generation
using naive and slow method proposed by Deb (2001)
print the results

EVALUATION AND RESULTS
Test problems: Deb (1999) suggested systematic ways of

developing test problems for multi-objective optimization.
Zitzler et al (2000) followed these steps and suggested
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well known 6 test problems. Five of the test problems
(ZDT1,ZDT2,7ZDT3, ZDT4 and ZDT35) which are common
benchmark domains used in literatures (Deb et al., 2002;
Madavan, 2002; Xue et al, 2003), are chosen for
evaluating the performance of owr methods. These test
problems have no constraints. Each of them illustrates a
different class of problems. All the problems have two
objectives, fi(x) and f(x) which are mimmized. The
description of the test functions are shown in Table 1.

Performance measures: The common trend in the
development of many successful solution methodologies,
mcluding multi-objective evolutionary algorithms 1s to
compare these in terms of their performance on various
test problems. Tn a multi-objective optimization, there are
two goals unlike single-objective optimization. The two
goals are; discover solutions as close to the Pareto-
optimal solutions as possible and find solutions as
diverse as possible in the obtained non-dominated front.
A good multi-objective evolutionary algorithm will be
known if both goals are satisfied (Deb, 2001). Therefore,
there 13 a need to have at least two performance metrics
for adequately evaluating both goals of multi-objective

Table 1: Test problems used in this study

optimization. One performance metric evaluates the
progress towards the Pareto-optimal front and the other
evaluates the spread of solutions. Many performance
metrics have been proposed in the literatures. The
descriptions of three common metrics used are given
below though in this study, two performance metrics will
be used to evaluate MDEA. They are convergence metric
T and diversity metric A.

Convergence metric 1: This metric measures the
distance between the obtained non-dominated front, Q
and the set, P* of the Pareto-optimal solutions. It 1s
defined as:

19

2.

i=

1 (1)
Q

where, Q 1s the number of non-dominated vectors found
by the algorithm being analyzed and d; 1s the Euclidean
distance (in the objective space) between the obtained
non dominated front Q and the nearest member in the true
Pareto front P.

Problems n Variable bounds Objective functions Optimal solutions  Comments
ZDT1 30 [0,1] fix)=x, xe[0,1] Convex
% 35=0
B{x)=g(x)1- {—‘]
g(x)
9 = I=2,...n
X=1l+—>x
g =1+ —— Z;, ;
ZDT2 30 [0,1] fix)r=x xe[0,1] Nonconvex
2 x=0
mmﬂ@n{xf
gix)
9 I=2,...n
X=1l+—>x
g =1+ —— Z; '
ZDT3 30 [0,1] fi=x xe[0,1] Convex, disconnected
X X %=0
f,(x)=g(x)[1- L |- =L sin(10nx,)
gx) | g
g = I=2,....,n
X)=1+——>» X
g =1+ —— Z;, ;
ZDT4 10 x,£[0,1] %[ -5,5]1=2,...n fi=x xe[0,1] Noncornvesx
£, = g(x)| 1- [X—] %0
g(x)
n I=2,...n
g(x) =1+10(n -1+ 3" (x7 ~10cos(4nx,))
i=2
ZDT6 10 [0,1] fix)r=x xe[0,1] Nonconvex, nonuniformly spaced
£00Y =0
f(x)=g(x)|1-| ==
g(x)
I=2,...n

s =1+ 3%,

n-13
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Generational Distance (GD): This metric measures the
average distance of the solutions of Q obtained from the
set P* of the Pareto-optimal solutions. It 1s defined as:

kel
1/2 d (2)
GD=1=—

q

where, d, is the Euclidean distance (measure in the
objective space) between non-dominated front Q and the
nearest member m the true Pareto-front P. It should be
noted that an algorithm having a small value of GD 1s
better.

Diversity metric A: This metric measures the extent of
spread achieved using the non-dommated solutions. It 1s
defined as:

Q-1

\ -
df+d1+;(di—d) (3)

Cdy+dr(Q-bd

where, d, is the Fuclidean distance (measured in the
objective space) between consecutive solutions in the
obtained non-dominated front Q and d is the average of
these distances. The parameter d; and d, are the Euclidean
distances between the extreme solutions of the Pareto
front P* and the boundary solution of the obtained front
Q. Also an algorithm having a smaller value of diversity
metric A 1s better.

Cantilever design problem: MDEA is further tested on an
engineering design problem of cantilever design
(Deb, 2001). Figure 1 shows a schematic representation of
a cantilever beam. Figure 1 presents the end load P, the
length 1 and the diameter d. The problem has 2 decision
variables of diameter (d) and length ({). The beam will
carry an end load P. There are 2 conflicting objectives that
should be minimized; the weight f, and end deflection f,.
Minimizing the weight, f,, will result in an optimum
solution that will have small dimensions of d and L. If the
dimensions are small, the beam will not be adequately
rigid and the end deflection of the beam will be large. If on
the other hand, the beam 1s minimized for end deflection,

P
h 4

—

Fig. 1: A schematic representation of a cantilever beam

S

the dimensions of the beam will be large, thereby making
the weight of the beam to be large. There are 2 constraints
in this design problem. They are; the maximum stress, 0.,
is less than the allowable strength S, and the end
deflection, & 1s smaller than a specified limit of &, The
constrained  optimization problem is formulated as
follows:

Objective function 1: Minimization of weight

2
Minimize f, = pn;” h

Objective function 2: Minimization of end deflection

64P7°
3End* ©)

Minimize f, = =

The objective functions 2 are subjected to the
following constramts:

Constraint 1: Maximum stress
The maximum stress should be less than the
allowable strength, S

[V (6)
Constraint 2: End deflection

The end deflection, & should be smaller than a
specified limit of d,,

d<d_. N

Bound constraints:
10<d<50 mm (8)
200<1<1000 mm (9)

where, p, P, d and I are the density, force, diameter and
length respectively. The maximum stress 1s calculated as
follows:

_ 3P (10)

[s) =
" ed?

The following parameter values are used:
p=7800kgm™, P=1000N, E =207 (#Pa, 3,= 300 MPa
and 8, .= 5 mm

RESULTS

MDEA was mnvestigated for lower values of CR and
F when the recommended values of 0.8 and 0.9 failed to
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achieve convergence in the high dimensional functions.
MDEA performs better with lower values of CR and F
than the values suggested in the practical advice on DE
that F is to be a little lower or higher than 0.8 and CR to be
0.9 (Price and Storn, 2008). In test problems ZDT1, ZDT2
and ZDT3, the values of F and CR of 0.6 and 0.5,
respectively give faster convergence and better diversity.
The value of NP used in all the test problems is 100. The
values of CR and F go down to as low as 0.3 and 0.35,
respectively to make the algorithm robust enough for the
test problems ZDT4 and ZDT6. The number of non-
dominated solutions generated for all the test problems is
100. Therefore, all the solutions in the final generation
(100) are non-dominated. This is an advantage of this
algorithm over other EAs.

The statistics of the test problems are presented in
Table 2-6. The convergence and diversity metric for
algorithms NSGA-II (real coded), NSGA-II (binary coded),
SPEA, PAES, PDEA, MODE, SDE and DEMO are taken
from the literatures (Deb et al., 2002; Madavan, 2002;
Robic and Filipic, 20035; Xue et al., 2003). They are used to
compare the effectiveness of MDEA.

In Fig. 2a-c, the dominated solutions for NSGA,
DEMO and MDEA are presented. It is found that the non

Table 2: Statistics of the results on test problem ZDT1

Algorithm

Convergence metric

Diversity metric

NSGA-II (real coded)
NSGA-II (binary coded)
SPEA

PAES

PDEA

MODE

SDE

DEMO

MDEA

0.033482+0.004750
0.000894:0.000000
0.001799+0.000001
0.082085+0.008679
N/A

0.005800+0.000000
0.002741+0.000385
0.001132+0.000136
0.000921+0.000005

0.390307+0.001876
0.463292+0.041622
0.784525+0.004440
1.229794+0.000742
0.298567+0.000742
N/A

0.382890+0.001435
0.319230+0.031350
0.283708+0.002938

N/A: Not available

Table 3: Statistics of the results on test problem ZDT2

Algorithm

Convergence metric

Diversity metric

NSGA-II (real coded)
NSGA-II (binary coded)
SPEA

PAES

PDEA

MODE

SDE

DEMO

MDEA

0.072391+0.031689
0.000824+0.000000
0.001339+0.000000
0.126276+0.036877
N/A

0.005500+0.000000
0.002203+0.000297
0.000780+0.000035
0.000640+0.000000

0.430776+0.004721
0.435112+0.024607
0.755184+0.004521
1.165942+0.007682
0.317958+0.001389
N/A

0.345780+0.003900
0.326821+0.021083
0.450482+0.004211

N/A: Not Available

Table 4: Statistics of the results on test problem ZDT3

Algorithm

Convergence metric

Diversity metric

NSGA-II (real coded)
NSGA-II (binary coded)
SPEA

PAES

PDEA

MODE

SDE

DEMO

MDEA

0.114500+0.004940
0.043411+0.000042
0.047517+0.000047
0.023872+0.000010
N/A

0.021560+0.000000
0.002741+0.000120
0.001236+0.000091
0.001139+0.000024

0.738540+0.019706
0.575606+0.005078
0.672938+0.003587
0.789920+0.001653
0.623812+0.000225
N/A

0.525770+0.043030
0.328873+0.019142
0.299354+0.023309

dominated solutions for MDEA are of more quality than
those of NSGA and DEMO. Though the generated Pareto
optimal front is similar to NSGA and DEMO, MDEA
outperforms them. The convergence metric results in
Table 2 show that MDEA has lower values in the metric
than all the other algorithms except NSGA-II (binary
coded). Also the diversity metric for MDEA is lower than
all the other algorithms. The value is close to PDEA. This
shows that MDEA is better in diversity than other
algorithms.

Figure 3 shows the Pareto optimal fronts for NSGA,
DEMO and MDEA for test problem ZDT?2. It is found from

14 (@
12
1.0+
0.8 1 &

0.6 o

0.44 e ™

0.2 By '

0 0.2 0.4 0.6 0.8 1.0

b) — Pareto-optlmal front
® DEMO/parent

Fig. 2: The results of test problem ZDT1 using (a)
NSGAIIL, (b) DEMO and (c) MDEA
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Fig. 3a-c that MDEA is better in the uniform spread of non
dominated solutions than NSGA. Though they all have
the same shape, MDEA is better in diversity than NSGA
but comparable to DEMO. Table 3 shows the results of
the convergence and diversity metrics. It is found that
MDEA is better in convergence than all the other
algorithms but very close to DEMO. From the results of
diversity metrics, MDEA is worse in diversity than NSGA-
II (real coded), NSGA-II (binary coded), PDEA, SDE and
DEMO but better than SPEA and PAES. The reason
MDEA’s worse diversity in this test problem is that
MDEA converged faster than the other algorithms. So the
diversity is sacrificed for convergence in the test problem
ZDT2.

1.2
113
1.0
0.9-
0.8
0.7
0.6
0.5
0.4-
0.3
0.2 . : . . .

®

127 — Parcto-optimal front

® DEMO/parent
1.04

0.84
0.6
0.4

0.2

0.0 T T T T

o g,

0.91
0.8
0.71
0.6
0.51
0.47
0.3
0.2
0.14

O.G T T T T 1
02 0.4

f,

Fig. 3: The results of test problem ZDT2 using (a)
NSGALI, (b) DEMO and (¢c) MDEA
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It is found in the Fig. 4a-c that MDEA outperforms
both NSGA and DEMO. From the convergence and
diversity results in Table 4, it is found that the value of
convergence metric for MDEA is 0.001139. This value is
lower than the ones obtained for other algorithms.
DEMO’s convergence metric value is the closest to
MDEA’s. Also the diversity metric gives 0.299354 which
is the lowest for all the algorithms. DEMO obtains the
closest value of 0.328873. Therefore, MDEA is the best
algorithm for test problem ZDT3.

From the Fig. 5a-c, MDEA outperforms NSGA but
comparable to DEMO. This is also confirmed with the
results of convergence and diversity metrics in Table S.
Comparison with other algorithms shows that MDEA

1.21(21)
1.1%

0.8 k
0.6
0.4
0.2
0.0
0.2
0.4

g !
N

art®

sk ¥

-0.8 T T T T 1

— Pareto-optlmal front
® DEMO/parent

0.6 %
038 r : T T ,
0 0.2 04 0.6 0.8 1.0

Fig. 4: The results of test problem ZDT3 using (a)

NSGAIL (b) DEMO and (c) MDEA
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outperforms all of them except DEMO even in hard
optimization (ZDT4) in both metrics.

Test problem ZDT6 Pareto optimal front is presented
in Fig. 6a-c. MDEA is comparable to DEMO but better
than NSGA in the figure. Results in Table 6 shows that
MDEA outperforms all other algorithms in test problem
ZDT6 in closer to those of SDE than other algorithms in
both metrics. Therefore, MDEA is comparable to SDE in
test problem ZDT6.

In Fig. 2-6, MDEA has achieved the two goals of
multi-objective optimization which are convergence to the
true Pareto-front and uniform spread of solutions along
the front (Deb, 2001). From the figures, MDEA’s results
are comparable to NSGA Il and DEMO/parent. In all the
Fig. 2-6, MDEA curve is comparable to that of DEMO but
better than NSGA 1II in terms of convergence and
diversity. It can be concluded from these results that
MDEA’s performance is encouraging. The results have
shown that MDEA is a good optimizer as proposed in this
study. It is able to solve multi-objective optimization
problems. The performance is comparable to other multi-
objective Eas.

Comparison of the MDEA to MODE and NSGA on
engineering test problem of cantilever design is shown
in Fig. 7a and b. It is found that the non-dominated

ok

solutions generated by MDEA are comparable to those of
MODE and NSGA. MDEA produces quality non
dominated solutions along the Pareto front. This shows
that MDEA can perform well on real-world engineering

problems.

Table 5: Statistics of the results on test problem ZDT4

Algorithm

Convergence metric

Diversity metric

NSGA-II (real coded)

NSGA-II (binary coded)

0.513053+0.118460
3.227636x7.307630

0.702612+0.064648
0.479475x0.00984 1

SPEA 7.340299+6.572516 0.798463+0.014616
PAES 0.854816+0.527238 0.870458+0.101399
PDEA N/A 0.840852+0.035741
MODE 0.638950+0.500200 N/A

SDE 0.100100+0.446200 0.436300+0.110000
DEMO 0.041012+0.063920 0.407225+0.094851
MDEA 0.048962+0.536358 0.406382+0.062308

N/A: Not available

Table 6: Statistics of the results on test problem ZDT6

Algorithm Convergence metric Diversity metric
NSGA-II (real coded) 0.296564+0.013135 0.668025+0.009923
NSGA-II (binary coded)  7.806798+0.001667 0.644477+0.035042
SPEA 0.221138+0.000449 0.849389+0.002713
PAES 0.085469+0.006664 1.153052+0.003916
PDEA N/A 0.473074+0.021721
MODE 0.026230+0.000861 N/A

SDE 0.000624+0.000060 0.361100+0.036100
DEMO 0.000642+0.000029 0.458641+0.031362
MDEA 0.000436+0.000055 0.305245£0.019407

N/A: Not available
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Fig. 5: The results of test problem ZDT4 using (a) NSGAII, (b) DEMO and (¢) MDEA

3659




J. Applied Sci., 9 (20): 3652-3661, 2009

107 (a)am u'(‘b) — Pareto-optlmal front
0.9 = ® DEMO/parent
- 1.0
0.8
0.7 - 0.8
0.6
o s 0.6
0.5
0.4 "= 0.4
-
0.3 LN
0.2
0.2 "
0.] T T T \ O.G T T T L}
0.2 04 0.6 0.8 1.0 02 0.4 0.6 0.8 1.0
f, £,
1042
09-
0.8-
0.7-
0.6
w05
0.4-
03-
0.2-
0.1- %
0.0 r g r =
0.2 0.4 0.6 0.8 1.0
£
Fig. 6: The results of test problem ZDT6 using (a) NSGALII, (b) DEMO and (c) MDEA
CONCLUSION

2.5+ Ng =300 #MODE

® NSGA

'3 4

(@

2 ‘\-
-]

o s 0
05 1.0 15 20 25 30 35
f

Fig. 7: The results of (a) MODE and (b) NSGA for
cantilever problem

Multi-Objective Differential Evolution Algorithm
(MDEA) is illustrated in this study. The selection scheme
in the original DE is improved to accommodate multi-
objective optimization. Also, dominated solutions are
removed in the last generation only instead of removing
them in all the generations thereby reducing the number
of function evaluation. This allows the dominated
solutions in every generation to be improved by mutation,
crossover and selection operations of DE. It increases the
number of non-dominated solutions giving us wider
Pareto optimal fronts with better diversity. Moreover, DE
has been shown to be capable of solving multi-objective
high dimensional problem with few control parameters.
The advantage of traditional DE which is ease of use is
also applicable to MDEA. The test problems used to
validate the algorithm show that MDEA is a good
optimizer. The algorithm gives good spread of solutions
maintaining diversity and convergence. At higher
iterations, we have uniform distribution of solutions.
Therefore, MDEA is a good alternative for solving
engineering problems and other multi-objective problems.
MDEA as a family of DE can also handle continuous,
discrete, integer variables and multiple constraints.

3660



J. Applied Sci., 9 (20): 3632-3661, 2009

REFERENCES

Abbass, H A, and R. Sarker, 2002. The Pareto differential
evolution algorithm. Int. J. ArtInt. Tools, 11: 531-552.

Babu, B.V. and M.M. Jehan, 2003. Differential evolution
for multi-objective optimization. Proceedings of TEERE
Congress on Evolutionary Computation, Dec. 8-12,
IEEE Press, Canberra, Australia, pp: 2696-2703.

Babu, B.V., JH.S. Mubeen and G.C. Pallavi, 2005. Multi-
objective  differential evolution (MODE) for
optimization of adiabatic styrene reactor. Chem. Eng.
Sci., 60: 4822-4837.

Deb, K., 1999. Multi-objective genetic algorithms: Problem
difficulties and construction of test problems. Evol.
Comput., 7: 205-230.

Deb, K., 2001. Mula-Objective Optimization Using
Evolutionary Algorithms. John Wiley and Sons,
Chichester, UK., ISBN: 047187339X.

Deb, K., A. Pratap, 5. Agarwal and T. Meyarivan, 2002, A
fast and elitist multi-objective genetic algorithm:
NSGA-IL. TEEE Trans. Evel. Comput., 6: 182-197.

Fan, H.Y., T. Lampinen and T.. Yeshayahou, 2006. An easy-
to-implement differential  evolution approach
for multi-objective optimizations. Eng. Comput. Int.
I. Computer-Aided Eng. Software, 23: 124-138.

Madavan, N.K., 2002. Multi-objective optimization using
a pareto differential evolution approach. Proceedings
of the Evolutionary Computation on 2002, May 12-17,
TEEE Computer Society, Washington, DC, TUSA.,
pp: 1145-1150.

Price, K. and R. Storn, 1997. Differential evoelution-a
Sample and efficient heuristic optimization over
continuous spaces. J.  Global Optimization,
11: 341-359.

Price, K. and R. Storn, 2008. Differential evolution (DE) for
continuous function optimization.
http://www . ICSI Berkeley edu/~storn/code html.

Rakesh, A. and B.V. Babu, 2005. Non-dominated sorting
differential evolution (NSDE): An extension of
differential evolution for multi-objective optimization.
Proceedings of the
Conference on Artificial Intelligence, Dec. 20-22,
Pune, India, pp: 1428-1443.

Reddy, M.J. and D.N. Kumar, 2007. Multiobjective
differential evolution with application to reservoir

Comput. Cwil Eng.,

2nd Indian International

system optunization. .
21: 136-146.

Robic, T. and B. Filipic, 2005. DEMO: Differential
evolution for  multiobjective  optimization.
Proceedings of 3rd Intemational Conference on
Evolutionary Multi-Criterion Optimization, March 9-
11, Guanajuato, Mexico, pp: 912-912.

Santana-Quntero, L.V. and CA.C. Coeello, 2005. An
algorithm based on differential evolution for
multi-objective problems. Int. I. Comput. Intel. Res.,
1: 151-169.

Xue, F., A.C. Sanderson and R.J. Graves, 2003. Pareto-
based multi-objective evolution. Proceedings of
Congress on Evolutionary Computation (CEC), Dec.
8-12, TEEE Press, Canberra, Australia, pp: 862-869.

Zitzler, E. and L. Thiele, 1999. Multiobjective evolutionary
algorithms: A comparative case study and the
strength pareto approach. TEEE Trans. Evol. Comput.,
3. 257-271.

Zitzler, E., K. Deb and L. Thiele, 2000. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evol. Comput., 8: 173-195.

3661



	JAS.pdf
	Page 1


