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Abstract: This study presents the investigations on the application of genetic algorithms to solve multimodal
shortest path problem. To evaluate the efficiency and robustness of proposed method, the algorithm was
carried out over 250 randomly selected pairs of origin and destination points with different distances and
number of nodes. It was assumed that three modes of walking, bus and subway are used to travel between
points. The classification of results in three main classes of monomodal, bimodal and multimodal paths shows

that more than 65% of paths are multimodal. These results show the robustness of proposed model. It 1s also
concluded that these experimental outcomes validate the effectiveness of evolutionary methodology to solve

the problem.
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INTRODUCTION

Multimodal shortest path problem concemns with
finding a path from a specific origin to a specific
destination in a given multimodal network while
minimizing the total cost associated with the path
(Deo  and Pang, 1984), Despite a monomodal
transportation network, a multimodal network comprises
combinations of several services and modes of
transportation such as taxi, subway, bus and walking
which operate concurrently under the changing
conditions (Fig. 1). Associated travel time and cost of
each arc change with time in these networks and using
them requires information about tmetables of
transportation means (Kaufmann and Smith, 1993,
Ziliaskopoulos and Wardell, 2000). Thus, it is necessary
to have start time of travel to solve the problem. The main
motivations to  solve this problem are emerging
requirements for routing in Intelligent Transportation
Systems (ITS). urban trip planning and route advisory
systems (Aifadopoulou erf al., 2007; Barrett er al., 2002;
Bérubé et al., 2006; Feillet et al., 2004; Kramer ef al., 2006;
Souffriau et al, 2008,  Vansteenwegen and
Oudheusden, 2007).

There have been different researches on computing
multimodal shortest path. A considerable portion is
about finding solutions for static multimodal shortest
path problem (Crainic and Rousseau, 1986; Spiess and
Florian, 1989; Modesti and Sciomachen, 1995
Nguyen er af, 2001). Most of these algorithms
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Fig. 1: A path in (a) monomodal network and (b)
multimodal network
approximate  waiting time of transfer according to

headway or using generating of artificial waiting time
arcs. But, recent  researches have changed the
direction towards working on dynamic solutions
(Pallottino  and Scutelld, 1998; Ziliaskopoulos and
Wardell, 2000; Abdelghany and Mahmassani, 2001;
Lozano and Storchi, 2001, 2002; Chang er al., 2007;
Bielli er al., 2006; Ayed et al, 2008; Qu and Chen,
2008),

In addition to these researches, some practical
systems  have been developed mostly in the form of

Corresponding Author: Rahim Al Abbaspour, Department of Surveying and Geomatics Engineering,
Faculty of Engineering, University of Tehran, North Karegar Street, Ale-ahmad Junction, Tehran, Iran
Tel: +98-21-8008841 Fax: +98-21-8008837
3804



J. Applied Sci., 9(21): 3804-3812, 2009

path planners to find multimodal shortest paths for
users. Among these systems, we may refer o EasyGo
(Pun-Cheng er al., 2007), RADS (Meng er al., 1999),
EasyTransport (Fragouli and Delis, 2005; Bayernlnfo,
2009; JPL, 2009; SCOTTY, 2009).

The major weakness of these researches is that they
were not carried out on real dataset of any metropolises
that include complex transportation networks. In these
cities, search spaces are too large and highly complex.
Thus, the problem will be too complex to be solved
by traditional methods and efficient optimization
strategies are required that are able to deal with this
difficulty.

A novel formulation and evolutionary-based solution
is proposed in this study to compute single-objective
shortest path on multimodal networks taking both travel
and switching time into account. It was assumed that the
multimodal network consists of three modes of walking,
bus and subway and also the arcs of network have time-

dependent weights.
PROPOSED FORMULATION

In  contrast with finding monomodal paths,
computing the shortest multimodal path may encounter
some difficulties. The algorithm should take all
service lines and transportation modes passing one
station into  account according to their temporal
schedules. Furthermore, it is necessary to model the
waiting time when the services/modes are changed
(Fig. 2).

— Bus service line

— = Subwiay service line

m=s=s= Walking path

Fig. 2: A multimodal network

et the multimodal transportation network be
assumed as a weighted directed graph of G = (N, A) where
N is the set of nodes and A represents the set of arcs. In
classic representation of a graph, nodes are often the
junctions of network arcs, but in this modeling, these
points are the stops of transportation services (i.e.,
subway stations and bus stops) as well as origin and
destination points. Thus, the arcs are the paths between
two successive nodes. Since, three modes of bus, subway
and walking are considered in this article, a weight vector
of w,=(w,".w, \w;") is associated to arc (i,j) where w"=0),
w,'z0 and w,"=0 show the weights of bus, subway and
walking modes for this arc, respectively. The weights
reflect the time duration taken to travel between two
nodes. The wvalues of w," depend on contextual
information of user such as age and health situation, while
w," and w; ‘are functions of time. They are calculated
using information of timetables of service lines. When the
origin or destination point is not one of the stops, they
are dynamically assumed as nodes and the connecting arc
of these nodes to nearest stations is assigned walking
weight,

The differences between modeling of monomodal
and multimodal path are illustrated through an example.
As depicted in Fig. 3, it is assumed that there are three
service lines and some bus stops. Each service line,
SL,, is represented by the sequence of stops. For
example, SL, = (..., 301, 102, 103, 202, 203, 401....) shows
the service line with ID number of 3 passing through
the mentioned stations. Each line has a departure
timetable and it is possible to build a timetable for each of
the stations according to the temporal distance of
precedent stations and line number. If the non-temporal
monomodal path from O to D is represented by
Path (O.D) = (0,101,102,103,202,203,204,205,D). then this
sequence may coincide with different multimodal paths
such as the following list:
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Saai Bervice line 2
— e 2 CEVIOE ling 3

BSn m Bussiop
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| I = ] -
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S-F.. - A S Destination (D)
S ES"”

Fig. 3: Sample service lines in a multimodal network
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»  Walking from O to §,,,, waiting for the bus at §,,,,
going up to S, by SL,, walking from 5, to S,,,
waiting for the bus at 8,,,, going by SL, up to S,
and finally walking to D

«  Walking from O to §,,,, waiting for the bus at § .
going up o S, by SL,, waiting to change the bus,
going by SL, up to §,,,, again waiting to change the
bus, then going by SL, up to S,,; and finally walking
to D

»  Walking from O to S, waiting for the bus at 5.,
going up to Sy by SL,, waiting to change the bus,
going by 5L, up to S, and finally walking to D

*  Obviously, these paths may have different
corresponding total cost

The cost of each multimodal path consists of two
main parts of traveling and waiting time. Travelling time
shows the duration of travelling and waiting time
represents the periods when someone changes the
service line(s) of transportation. Consequently, the
objective function of finding a multimodal shortest path
between an origin (O0) and a destination (D) consists of
two general parts of minimizing the weights of used arcs
(first summations) and minimizing the waiting time
(second summation) when the modes are changed

(Eq. 1).
““”E-IL}E::.,_.,.""ijwi- +EU 1) (1)

[n this optimization function, x; i1s a binary variable
associated to each arc connecting two nodes and equal to
| if and only if the corresponding arc is used in the
solution. tg represents the time when the transportation
mean of service line SL, passes the station S, and t is the

current time.
PROPOSED SOLUTION

A solution based on an evolutionary algorithm is
proposed to compute the multimodal shortest path in this
study. The evolutionary algorithm is a class of
optimization methods that simulate the process of natural
evolution (Zitzler, 1999), Evolutionary computing
comprises Genetic Algorithm (GA), genetic programming,
evolutionary programming, evolutionary stralegy and
classifier systems (Biick ef al., 1997). This algorithm is
also a member of a group of methods, known as meta-
heuristics. This set of technigues includes simulated
annealing method, tabu search method, ant colony
algorithm, bee algorithm, particle swarm optimization,
artificial immune systems and distributed reinforcement
learning. They have been proposed to solve the difficult
possible optimization problems (Dreo et al., 2006).

Genetic  Algorithm is different from the other
mentioned meta-heuristic methods in several ways. The
most important difference i1s that GA works on a
population of possible solutions, while other heuristic
methods use a single solution in their iterations. The
general acceptance is that GA is particularly suited to
multidimensional  global search problems where the
search space potentially contains multiple local minima
(Haupt and Haupt, 2004 ). The basic GA does not require
extensive knowledge of the search space, such as likely
solution bounds or functional derivatives.

The engine of proposed genetic algorithm to find the
shortest multimodal path works in 5 steps. Coding of
chromosomes is the first step. Since, the numbers of
nodes for a path are not predefined in this problem, the
chromosome with variable length is used to show a path
in the network. The values of odd genes show the labels
(IDs) of nodes. The values of even genes represent
transportation modes between two successive nodes
where number 1 and service line IDs are used for walking
and the other modes, respectively. The position of a node
represents the order of that node in a path. Figure 4
shows an example of encoding. The randomly generated
genes (nodes) are appended sequentially to construct a
chromosome (path). When the population reached the
population size (num,, ), the cost of each chromosome 1s
calculated. Velocity of user, which actually depends on
the context of the user, is assumed an average amount of
4kmh™,

In the next step. i.e., natural selection, half of the best
chromosomes (num,.,) are selected from a sorted list of
chromosomes to form the mating pool. Afterwards, two
chromosomes are selected from mating pool according to
roulette wheel paring method in the third step to produce
two new offspring.

The mating is the fourth step, in which offspring are
created from parents selected in the previous step. A

Chromosome{route): | 1 | 1| 3

{ ]
LA
1

Fig. 4: An example of a path and related encoded
chromosome
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Fig. 5: (a) Single-point crossover and (b) versus two-point crossover
combination of both single-point and two-point crossover Crossover point
is used in this study. When two chromosomes are » | +

: : arent 5 3 21] 2
selected from mating pool, they are compared with each AR 1 N i ER T EE A BN ES ) ER RN EY
other. They should have at least one common gene except Parent (2) [s[1 sl 1]15]
for origin and destination. It is not necessary the location Single-phint crossover
of common genes in two chrnmnsnmcs‘m the same. If Offspring (1) [3 [ 1] 6] 35 [10]35] 5 112 [10] 1 [13]
there is exactly one common odd gene in both of them, Loop '
then single-point crossover is applied. In this type of Offspring (2) [BTT[S]1[4[ai]21 %]
crossover, the genes following common genes are Rectification
5wupEed (Fig. 5a). If there is more than one common odd Offspring (1) [FTTTE TR T T T3]
gene in selected chromosome, two of them are selected
. , . : ?

randomly and the two-point crossover is performed. In Offspring (2) EINEEINIEIEIEINE Y

this type. the genes of two chromosomes, which are
between two common genes, are swapped (Fig. 5b). The
procedure continues until num_ -num,_ offspring are
born to replace the discarded chromosomes. Furthermore,
elitism strategy is also adopted and two chromosomes are
kept as elite ones in iterations.

Since, a chromosome shows a path as the sequences
of stations and connecting transportation modes,
changing the wvalue of any genes may made the
chromosome to be ineligible due to emersion of loops. To
cope with this issue, a rectification procedure was utilized
to eliminate the loops to ensure that newly generated
chromosomes are valid paths. This procedure removes
renes between the same genes o rebuild a valid path
(Fig. 6).

To keep away from local optimal solutions and keep
the algorithm converging fast before sampling the entire
cost surface, the random mutation is used in the next step.

Fig. 6: Implementation of rectification
eliminate loops

procedure to

In proposed solution, the mutation is applied only to odd
cenes. The even genes (transportation modes) are
maodified according to odd genes. Since, changing the
value of a gene in a chromosome may make it to be
ineligible as a path, the modification procedure is also
applied after mutation. This procedure includes two
modules namely loop removal and validation and works in
three steps. In the first step, existing of any loops in the
path is checked and if there are any loops, they are
eliminated. Afterwards, the validity of sequences of genes
as a path 1s evaluated. Wherever there are gaps between
successive nodes, some valid genes are added between
to reform the path. Finally, the loop removal module is
applied again.
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It is noticeable that both crossovers and mutations
are used with a probability level. The costs associated
with offspring and mutated chromosomes are once again
computed and assigned.

The whole process, i.e., step 2 to 5, is iterated
until the temporal differences between twenty best
cost  paths reach 2zero In successive ilerations.
However, if the algorithm does not stop according to
specified criterion, the process is set to terminate after
500 iterations.

RESULTS

The proposed framework and formulation are
evaluated through conduction of some experimental tests
over the data of a part of Tehran. Tehran is one of the
metropolises of Iran that has an extent of about 700 km’
and comprises 22 districts. Public transportation employs
five main modes that are taxi, van, minibus, bus and
subway in this city. Among them subway, due to its high
speed and bus, due to its extensive coverage, is of more
interest for travelers and commuters. Table 1 shows some
statistics of these two modes.

As shown in Fig. 7, the data set consists of pathways
(i.e.. streets, avenues and highways used by buses) and
subway system (consists of lines and stations). The data

Fig. 7: Dataset used for evaluation

set is prepared as it should be, i.e., the topologic structure
is rebuilt and required tables are created.

To evaluate the multimodal shortest path algorithm,
500 points (in the form of 250 pairs of sources and
destinations) with different number of nodes and start
time were selected. They were used as the input origin
and destination of algorithm. Some of these pairs are
shown in Fig, 8, where lighter labels show origins and
darker labels illustrate destinations. According to  this
Fig. 8, the distance and distribution of endpoints of paths
are diverse.

The proposed algorithm starts with generating of a
large population of chromosomes as the initial population.
For initial population it is inferred that num_, = 250} is a
good choice. Then, the cost of each chromosome is
calculated based on fitness (objective) function and
chromosomes are sorted in descending order according to
the assigned cost. In the next step, num, = num,_, = 100
best chromosomes, which had lower costs, are kept for
next iteration and the others were discarded. It is realized

that num_,, = 100 is a suitable value according to persent

Table 1: Information about bus and subway transportation networks in

Tehran
Property Subway Bus
Mo, of service lines 4 30
Mo, of stops (stations ) 45 4763
Length of line (km) 91.6 2761.3
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Fig. 8: Some of origin (light labels) and destination points (dark labels)

experience. In the next iterations, C,, = 30% is selected.
The next steps were natural selection, mutation and
checking termination criteria. Due to stochastic nature of
algorithm, 30 runs are conducted for each pairs of
endpoints and the best value of each set 1s selected as the
representative that shows the shortest multimodal path
between those two points.

The classification of results in three classes of
monomodal, bimodal and multimodal paths shows that
more than 653% of paths are multimodal (Fig. 9). These
results also show that the multimodal shortest path, i.e.,
combination of modes to travel, is not the optimum one in
all cases.

The result for one of the case studies is illustrated in
Fig. 10. The path of this case consists of a combination of
all three modes.

The convergence curve, which shows the cost of
minimum cost path as the function of iterations, is
adopted to represent how the results of iterations for this
case are. As the convergence plot for selected case

3509
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Monomaodal

Himodal Melueltirrioadal

mo. of modes

Fig. 9: The diversity of resulted paths according to used
models

shows (Fig. 11}, there is a rapid decrease of the fitness
values in the first few generations. The curve also
indicates that the process is converged. This behavior is
observed in all cases of evaluation.
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Fig. 11: Convergence plot for presented case
Fig. 12: Failure ratio of calculated paths

To measure the quality of proposed method, the
failure ratio (Ahn and Ramakrishna, 2002) is utilized. This
ratio shows the times that GA fails to find the global
optimum in respect of whole runs. This index is calculated
for each of 250 paths and shows the frequency of paths
which fails to be optimum among 30 runs for each of the
cases. Figure 12 shows this ratio for evaluated data set.
The horizontal axis of this diagram shows the number of
failed runs in 30 runs and vertical axis illustrates the
frequency of number of failures among all cases. It was
perceived that average failure ratio of proposed path
finding algorithm is about 2.77. Therefore, the quality of
solution and path optimality is bout 90.75%.

DISCUSSION

The proposed algorithm was tested over 250 different
cases with start time, origin and destination. The results
indicated that the numbers of erations in genetic
algorithm increase as the distance between endpoints
increases. The number of iterations for each problem was
between 50 and 220. The comparison of results also
highlighted that in the completely similar conditions when
the start time changed. the paths changed. This behavior
supports  the time-dependent nature of shortest
multimodal problem.
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In some cases, the paths were compositions of two
modes of bus and walking even in the area where there
were subway. The best path vsed just walking in some
cases. These were evidences to robustness of proposed
algorithm.

In all of the evaluated cases, the convergence
plots have similar behavior. They show  considerable
fall during the first iterations and then decrease
slightly up to the iterations where the plots remain
stable.

The high average amount of success rate of
algorithm shows the high performance of proposed
algorithm.

Existing researches generally presented a special case
study rather than a general method. On the other hand,
the commercial route advisory systems do not consider
the temporal nature of problem. This study proposes a
novel metaheuristic approach based on genetic algorithm
to solve the time-dependent multimodal shortest path
problem. In contrast with other researches, it could be
extended to include other modes and big search area such
as metropolises due to the high capabilities of proposed
method. The other distinction between this method and
existing systems and approaches is consideration of
contextual elements such as uwser profile and on-line
congestion information.

CONCLUSION

In this study, the possibility of using genetic
algorithm to solve time-dependent shortest path problem
in urban multimodal transportation networks is
investigated. The proposed approach has been tested on
a dataset of a part of Tehran City. To evaluate the
algorithm, 250 pairs of points were selected randomly as
the source and destination. The results may be divided
into three main groups where path consists of one, two,
or three modes of transportation. These show that the
paths with combinations of all three modes are not
essentially the shortest one in all cases. Thus, that
proposed algorithm has high degree of robustness that
enables it to cover monomodal solutions as the special
case of multimodal paths. Moreover, it may be concluded
that proposed algorithm can efficiently explore the search
space to find the shortest multumodal path. Several topics
remain for future research. Since some of the decisions
made by citizens to select their way to transport between
(wo points are not just the function of time, thus
extension of our proposed algorithm to address the multi-
criteria path-finding problem i1s important. The second
activity may be consideration of real-time implementation
of our algorithm that in turn needs some modifications to

3811

improve the speed and management of on-line input
parameters. To develop a useful and practical path-finding
module for a user, considering his/her contextual
information is critical. These parameters may let the
selected path adapt the user situations as much as
possible.
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