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Abstract: This study presents the critical survey of the methodologies to select materialized view in more
efficient way. In this study, we are summarizing all these methodologies with critical analysis. Advanced
solutions are particularly focusing the evolutionary optimization methods. We have analyzed and
compartmentalized the available literature on the basis of relevant evaluation parameters. Important books, Ph.D
thesis, links, etc. are also given in study. To work out this study we have gone through more than fifty research
papers. This study may be helpful to the researchers, who are working mn the domain of the Data Warehouse

focusing on the materialized view selection.
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INTRODUCTION

A set of significant new concepts and tools have
evolved 1n to a new technology that makes it possible
to attack the problem of providing all the key people in the
enterprise with access to whatever level of information
needed for the enterprise to swvive and prosper in an
mncreasingly competitive world. The term that has come to
characterize this new technology i1s Data Warehousing.
Data warehousing is an emerging approach for effective
decision support. According to Inmon (1996), a data
warehouse 1s a subject-oriented, integrated, time-varying,
nonvolatile collection of data that 13 used primarily in
organizational decision making. The need for data
warehousing techmiques 1s justified due to decision
support queries, which are ad-hoc user queries in various
business applications. In these applications, current and
historical data are comprehensively analyzed and
explored, identifying useful trends and creating summaries
of the data, in order to support high-level decision making
in a data warehousing environment. A class of queries
typically involves group-by and aggregation operators.

Maintaining or updating a warehouse is not cheap
because propagating updates from source data to the
aggregates in the warehouse 1s a time consuming process
that usually must be done off-line. Many issues should be
studied, including how to detect changes and how to
develop algorithms for warehouse mamtenance that are
able to balance update cost against query response time.

From a computer science perspective, a data
warehouse is a collection of materialized views derived
from base relations that may not reside at the warehouse.

Therefore, a data warehouse 1s considered as a definer
and storage of views. When a view is defined, the
database system stores the definition of the view itself,
rather than the result of evaluation of the relational
algebra expression that defines the view. Hence, a view 1s
a derived relation defined in terms of base relations. A
view thus defines a function from a set of base tables to
a derived table; thus function is typically recomputed
every time the view 1s referenced. According to the
perspective of materialized views, at the abstract level the
contents of the data warehouse are regarded as a set of
materialized views defined over the data sources. These
materialized views are designed based on the user’s
requirements (e.g., frequently asked queries). The benefit
of using materialized views 1s significant. Since index
structures can be built on materialized views,
consequently, database access to the materialized view
can be much faster than recomputing the views. A
materialized view is just a cache, which is a copy of the
data that can be accessed quickly. Integrity checking and
query optimization can also benefit from materialized
views. In short, when a view is defined, normally the
database stores only the query defining the view. In
contrast, a materialized view 1s a view whose contents are
computed and stored. It 1s cheaper in many cases to read
the contents of a materialized view than to compute the
contents of the view by executing the query defining the
view. Materalized views are important for improving
performance m some applications.

Though some review papers are available, but most
of them are from year 1980 to 1990. In last decade, many
researchers have proposed the solution strategies for
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materialized view selection problem. But year 2000
onwards, some advance techniques are used to find the
solution e.g. simulated amealing, genetic algorithm etc.
This study 1s intended for the beginners in the domain of
materialized view selection problem. This study provide
the details of basic data structures, mathematics, cost
modeling, books, Ph.D thesis, links, glossary of key terms,
benchmark database and critical analysis on past and
present methods.

MATERIALIZED VIEW SELECTION
PROBLEM AND COST MODEL

In materialized view selection problem, the main
objective 1s either the minimization of a cost function or a
constraint. A constraint can be user oriented or system
oriented. Attempting to satisfy the constraints can result
in no feasible solution to a view selection problem. Most
of the approaches comprise m ther design the
mimmization of a cost function. Many view selection
problems define by Gupta (1997), Yang et al. (1997) and
Baralis et al. (1997) and take as input the queries that the
Data Warchouse has to satisfy for an mitial or an
mcremental design. The overall query evaluation cost 1s
the sum of the cost of evaluating each input query
rewritten over the materialized views. This sum can also
be weighted, each weight indicating the frequency, or
umportance of the associated query. The approaches aim
at  minimizing the query  evaluation cost
(Harinarayan et al., 1996, Gupta and Mumick, 1996¢;
Shukla et al., 1998). The materialized views are maintained
using an ncremental approach. In an incremental
approach, only the changes that must be applied to the
view are computed using the changes of the source
relations (Blaiseley et al., 1986; Griffin and Libkin, 1995;
Quass, 1996). These view changes are then applied to the
materialized view. The view maintenance cost is the sum
of the cost of propagating each source relation change to
the materialized views. This sum can be weighted, each
welght mdicating the frequency of propagation of the
changes of the associated source relation. The
expressions used to compute the changes to be applied to
a view involve the changes of the source relations and are
called mamtenance expressions. When the source
relation changes affect more than one materialized view,
multiple maintenance expressions need to be evaluated.
The techmques of multl query optimization can be used to
detect common sub expressions between maintenance
expressions in order to derive an efficient global
evaluation plan for these maintenance expressions
(Sellis, 1988; Shim et al., 1994). Mamtaining the query
evaluation cost and the view mamtenance cost are
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conflicting requirements. Low view maintenance cost can
be achieved by replicating source relations at the Data
Warehouse; in this case the query evaluation cost 1s high.
Low query evaluation cost can be obtamed by
materializing at the Data Warehouse all the input queries.
In this case the view maintenance cost will be high. For
this reason, one can choose a linear combination of the
query evaluation and view maintenance cost. In most of
the research related to the materialized view selection
used the linear cost model (Harinarayan et al, 1996),
which 1s used for view cost evaluation Only difference
occurs at the assumptions which are used i the
evaluation of mathematical model of the cost. Analytical
justification of linear cost model based on graph theory is
given 1 (Dhote and Ali, 2007). General linear cost model
1s described as follows:
Letus assume that a set of queries Q = (Q,, Q,,..., Qp)
are defined over a set of source relations S = (S,, S,,..., S
and a multi query graph G. Let GQ; be the query DAG for
,1=1, .., minG. E(GQ,) denotes the cost of evaluating
Q;, using GQ,. The query evaluation cost of G is:

E(G) = ¥ FQEGQ,) (1)

where, fQ, is query frequency.

Let G5, where 1= 1, ..., n be the change propagation
DAGs forQ1=1, .., minG. M(GS) denotes the cost of
propagating the changes of 5, to the materialized views
using GS;. The view maintenance cost of G is:

M{G) = ifer(Gs,) 2

where, fS, is source relation updation frequency. The
values of query frequency and base relation updation
frequency can be assumed for the experimentation.

In literature it is found that most of the researchers
used this cost model for the evaluation of the total cost
of all processing. Particularly, both the cost functions
are considered as the independent function and
hence the problem be of multiobjective
optimization. In some cases, both these functions are
considered together as the single objective function,
50 the  problem can be of single objective
optimization.

can

View selection problem can be described as: How to
select an appropriate set of materialized views from a
certain graph G, so that the total query processing cost
for the supported queries and the total maintenance cost
of these materialized views 1s mimmal.
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Given a G, let M be a set of views in a G to be
materialized, fg, f5 the frequency of executing
queries and frequency of updating base relations,
respectively. Furthermore for each veM, let E (Gq, (v))
and M (Gs, (v)) denote the cost of access for query
Q using v and the cost of maintenance of view v base
on changes to base relation s, respectively (where,
veQN is the set of queries and seSRN is the set of
base relations). Then the query processing cost will
be:

E(G(v)) = ng;E(GQl ) 3

And the materialized view maintenance cost will be:

n

M{G(W)) = YIS M(GS,(v)) “4)
Thus the total cost of materializing a view v is:
Total cost (v) = E{G{v}) + M({G{v)) &)

Therefore, the total cost of materializing a set of
views M 1s Total cost:

Total cost = 2 Total cost(v)

veld

(6)

Equation (3) and (4) can be use for multi objective
optimization and Eq. 5 can be use for single objective
optimization.

MATHEMATICAL BACKGROUND

To solve the view selection problem, mathematical
formulation 1s the first step. In view selection problem
mathematical formulation, data structures are required to
represent the view selection. For this the concept of
discrete mathematics and graph theory like set theory,
graph theory, lattices are generally used. In following sub
sections the fundamentals of the above mentioned

concepts are discussed with the help of example.

Relational algebra: Relational algebra falls in to the
category of procedural query language. Queries in
relational algebra are composed using a collection of
operators. A fundamental property is that every operator
in the algebra accepts (one or two) relation mstances as
arguments and returns a relation mstance as the result.
This property makes it easy to compose operators to form
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a complex query- a relational algebra expression is
recursively defined to be a relation, a unary algebra
operator applied to a single expression, or a binary algebra
operator applied to two expressions.

Some of the basic relational algebra operators which
are mvolved in the query processing and their occurrence
play an important role m the query optimization process
and further, in to the query evaluation plan. The
fundamental operators of the relational algebra are
Selection (0), Projection (IT), Union (U), Intersection (),
Cross-product or Cartesian product (<), Set Difference (-)
and Join (o).

Directed acyclic graph: A directed acyclic graph, also
called a dag or DAG, 1s a directed graph with no directed
cycles that 1s, for any vertex v, there 1s no nonempty
directed path that starts and ends on v. DAGs appear in
models where it doesn't make sense for a vertex to have a
path to itself; for example, if an edge u< = v indicates that
v is a part of u, such a path would indicate that u is a part
of itself, which is impossible. Directed acyclic graphs can
be used to represent a number of interesting relations.
This includes trees, but is less general than class of all
directed graphs.

AND/OR graph: Many complex problems can be broken
down 1nto a series of sub problems such that the solution
of all or some of these results m the solution of the
original problem. These sub problems may be broken
down further in to sub-sub problems and so on until the
only the problems remaiming are sufficiently primitive as
to be trivially solvable. These breaking down of the
complex problem in to several sub problems cen be
represented by a directed graph like structure m which
nodes represent problems and descendents of a node
represent the sub problems associated with it. AND graph
is represented as in Fig. 1, a problem A that can be solved
by either solving both the sub problems B and C or the
single sub problems D or E.

Groups of sub problems that must be solved in order
to imply a solution to the parent node are joined together
by an arc going across the respective edges i.e. the arc

J
ONOXOXO

Fig. 1: AND graph
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Fig. 2. Graphs representing AND/OR problem

across the edges <A, B> and <A, C> By mtroducing
dummy nodes as m Fig. 2, all nodes can be made to be
such that their solution requires either all descendents to
be solved or only one descendent to be solved. Node of
first type are called AND nodes and those of the later
type OR nodes. Nodes A and A of Fig. 2 are OR nodes
while node A is an AND node. AND nodes will be drawn
with an arc across all edges leaving the node. Nodes with
no descendents are termed terminal,

Lattices: A data cube allows data to be modeled and
viewed in multiple dimensions. Tt is defined by dimensions
and facts. The mteresting property of cubes 1s that the
n-D data can be represented as a series of (n-1)-D cubes.
Decision support applications involve complex queries on
very large databases. Since response time should
besmall, query optimization 1s critical. Users typically view
the data as a multidimensional data cubes. The < operator
imposes a partial ordering on the queries. This is related
to the views of a data cube problem forming a lattice. In
order to be a lattice, any two elements (views or queries)
must have at least upper bound and a greatest lower
bound according to the = ordering. However, in practice,
one only needs the assumption that < is a partial order
and that there 13 a top element, a view upon which every
view 18 dependent. Consider two queries Q and ;.
Q, © Q, can be defined if Q, can be answered using only
the results of Q,. Tt is then said that Q, is dependent on
Q,. In most of the applications, dimensions of a data
cube consist of more than one attribute and the
dimensions are organized as hierarchies of these
attributes. A simple example shown in Fig. 3 is that of
organizing the time dimension in to the hierarchy: day,
month and year.

In the presence of hierarchies, the dependency lattice
is more complex than a hypercube lattice. Hierarchies
mtroduce query dependencies that one must accounts for
when determimng what queries to materialize.
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Fig. 3: Lattice example
REVIEW OF EXISTING WORK

The data warehouse problem through materialized
views 1s usually stated as the view selection problem.
When designing a data warehouse, it is extremely
important to minimize the cost of answering queries
because the warehouse is very large, queries are often ad
hoc and complex and decision support application
requires short response time. The determination of the
optimal collection of views for available storage space and
minimum query cost 1s referred to as the view selection
problem. This view selection problem is totally different
from the view selection problem under the disk space
constramt. With numerous numbers of the base tables
(with schemas in hundreds attributes) from dozens of data
sources, 1t would be very challenging to decide which
views should be materialized.

View selection problem can also be solved under the
different types of constrants. For example, space
constraints, time constraints, aggregation and grouping
constraints, source availability constraints and currency
constraints etc. Roussopoulos (1982), Gupta (1997),
Theodoratos and Bouzeghoub (1999), Gupta et al. (1997)
and Liang ef al. (2001) explored the problem of selecting
a set of materialized views for answering queries under
the presence of updates and a global space constramt.
When aggregation and grouping are present, view
selection algorithms can be handled by constructing view
graph structures. The view graphs express how source
data is materialized into views. The algorithm basically
creates the search space of possible configurations of
materialized views. Ad hoc rules are used to limit the
size of the generated 3-D view graphs. An important
research issue is how to incorporate a pruning strategy
for the algorithm with specialized view selection

algorithms.
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Appropriate data structures are needed for view
selection. Design problems using views typically selects
a set of views to matenialize in order to optimize the query
evaluation cost, view maintenance cost, or both, with
certain constraints. For example, greedy algorithms have
been provided for queries represented as AND/OR graph
(Gupta, 1997). Gupta (1997) present a theoretical
framework for the general view selection problem and
polynomial-time algorithms for some special cases, which
lower bound the benefit of the optimal solution. In
particular, both query response time and the maintenance
cost 1s to be minimized for a bounded space. Gupta (1999)
extends the study in Gupta (1997) to address the problem
of selecting views to materialize under the constraint of a
given amount of total maintenance time. The literature is
full of instances where researchers have used
different data structures to solve the View Selection
Problem in Data Warehouses and proposed different
methodologies. This section provides a brief review of
some of the approaches that have been discussed n the
literature.

Harinarayan et al. (1996) model the view selection
problem for the data cube using a lattice framework. The
data cube lattice 1s a graph-representation of the CUBE
operator that captures the dependencies among the
different elements; views. Using this framework a greedy
algorithm 15 used to pick a set of views with the maximum
benefit. The benefit of a solution 1s defined as the total
reduction in query response time compared with an empty
set of views. A very important factor for the view
selection problem 1s the constraints used for selection.
For example, Theodoratos and Bouzeghoub (1999) refined
the view selection problem to accommodate both source
availability constraints (which are concermned with
frequency of a data source accessed for view
maintenance) and currency constramnts (wlhich are
concerned with the aging of old data elements in the data
warehouse). If constraints were not satisfactory, the
source relation which caused the constraint violation
would be identified. Otherwise, an algorithm was used to
compute the minimal update frequencies to achieve the
desired data currency. This work also concerned data
quality in warchousing environment. Gupta et al. (1997),
mvestigated the combined view and ndex selection
problem under a given space constraint. Since the
materialized views are large, having them pre-computed
and stored within the data warehouse using relational
tables 1s in many cases wasteful, unless these are indexed
in order to support fast access to individual records. In
present study presented a family of algorithms of
mncreasing time complexity that consider also indices
(B- trees) for the selected views.
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A method of decomposing the data cube into a
hierarchy of view elements that correspond to partial and
residual aggregations works with an algorithm that picks
a non-redundant set of such elements and mimmizes
query response time (Smith ef al., 1998). If extra space is
available, a second algorithm that releases the non-
redundancy requirement and focuses on selecting a set of
elements that minimizes processing cost for target storage
bound. The main drawback of this approach is the
extremely high complexity of the decomposition step,
which makes the algorithms impractical even for a limited
number of dimensions/views. Query performance 1s
tremendously improved as more views are materialized.
With the ratio of cost to disk volume is constantly
dropping, disk storage constraint 1s now no longer the
limiting parameter in the view selection but the tume to
refresh the materialized set during updates. Liang et al.
(2001) explained the view selection problem under the
maintenance time constramt with two heuristics
algorithms. The key underlymg these algorithms 15 to
define good heuristic functions and to reduce the problem
to some well-solved optimization problems. Baralis et al.
(1997) and Yang et al. (1997) presented various algorithms
for mimimizing the response time and the maintenance
overhead without any resource constraint. Yang et al.
(1997) also presented a frameworlk for analyzing the issues
1n selecting views to materialize which lead to heuristic
algorithm that provide a feasible solution based on
individual optimal query plans. Labio et al. (1997) used an
A™ search to pick the best set of views when only the
maintenance cost 1s to be mimmized.

There are meny other approaches on selection of
common views. A data warehouse may contain multiple
views which can be defined over overlapping portions of
data. Data warehouses may contain multiple views with
different query frequencies. When these views are related
to each other and defined over overlapping portions of
the base data, then it may be more efficient to materialize
the certain shared portions of the base data from which
the warehouse views can be derived. Identifying the
shared views or shared parts of a particular view can
therefore improve data warehouse performance by
dimimishing the number of views which have to be
materialized, as well as reducing the amount of data
requiring frequent refreshment. Theodoratos et al. (1999)
defined a generic method that, given a set of SPT queries
to be satisfied by the data warehouse, generates all the
significant sets of materialized views that satisfy all the
input queries. This process is complex since commaon sub
expressions between the queries need to be detected and
exploited. In addition, algorithms have been developed so
that a materialized view set selected in this way fits in the
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space allocated to the data warehouse for materialization
and minimizes the combined overall query evaluation and
view maintenance cost. Zhang et al. (1999) explored the
use of a genetic algorithm for the selection of materialized
views based on multiple global processing plans for many
queries.

The approach based on hypercube lattice
explained Harinarayan ef al. (1996). The most common
case of the hypercube lattice is considered and examined
the choice of materialized views for hypercube in detail,
giving some good tradeoffs between the space used and
the average time to answer a query. In this research the
problem of deciding which set of cells (views) in the data
cube to materialize in order to minimize the query response
time 1s investigated. Materialization of views 1s an
essential query optimization strategy for decision support
applications. Right selection of the views to materialize is
critical to the success of the strategy (Harinarayan et al.,
1996). Shukla et al. (1998) proposed a modified faster
algorithm that under some assumptions achieves the same
benefit bound. A theoretical framework for the data
warehouse configuration problem in terms of the relational
model 13 proposed (Theodoratos and Sellis, 1997). A
method for dealing with the problem was developed by
formulating it as a state space optimization problem and
then solving it using an exhaustive incremental algorithm
as well as a heuristics algorithm. A case was considered
where auxiliary views are stored in the Data Warchouse
solely for reducing the view maintenance cost. In this
study it was considered that there are no space
restrictions m the Data warehouse and space is not the
problem.

The approach is focused on the experimental
evaluation of an exhaustive algorithm and develops
greedy and heuristic algorithms that expand only a small
fraction of the states produced by the exhaustive
algorithm (Ligoudistianos et al., 1998). The algorithms are
described in terms of a state space search problem. The
data warchouse configuration problem 1s formulated as a
state space search problem based on a representation of
views and queries using conjunctions of selection and
join atomic predicates. A realistic cost model for query
processing and view maintenance has been developed.
Two algorithms: r-greedy algorithms that prune the state
space and compare their performance using various
criteria. In addition, heuristic algorithm that searches a
small fraction of the state space and reports a sub-optimal
solution, which 13 based on the greedy algorithms and
compared its performance with the r-greedy algorithms, is
developed Mohania et al. (1999) discussed the problem
of incremental maintenance of materialized views in data
Views defined by relational algebraic

18

warehouses.
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operators and aggregate functions were considered. Tt is
shown that a materialized view can be maintained without
accessing the view itself by matenalizing and maintaming
additional relations. These relations are derived from the
intermediate results of the view computation. An
algorithm for determining what additional relations need
to be materialized m order to maintain a materialized view
incrementally was proposed. Further an efficient
incremental algorithm for updating the materialized view
(and the additional relations) based on the optimized
operator tree used for evaluating the view as a query 1s
proposed. One important feature of the algorithm is that
it derives the exact change to every materialized additional
relation, including the materialized view, without
accessing the view itself. This feature i1s wnportant to
ensure the correctness of the update to views defined by
aggregate functions. Assumption made was; views that
contain relational algebraic operators and aggregate
operators and can be represented by operator trees (Korth
and Silberschatz, 1986).

Tt was assumed that duplicates are not retained in the
materialized views. It was shown that a materialized view
can be maintained efficiently by maintaimng and
materializing some additional results at the warchouse,
called auxiliary relations, which may or may not contain
intermediate results of the view. While deriving the
auxiliary relations, referential integrity constraints are
generated between the auxiliary relations and base
relations. An algorithm for determining which auxiliary
relations are needed in order to maintain a view is given.
These relations make it possible to maintain an aggregate
view without recomputing the intermediate results from
scratch, thus significantly reducing the total computing
and commumication cost. In addition to reducing the cost
of maintaining a view, storing auxiliary relations has
additional benefits. Firstly, these auxiliary relations can be
used in maintaining multiple views having common sub
expressions, where the auxiliary relations will correspond
to these sub expressions. Secondly, they may also be
used for answering ad-hoc queries mn data marts, where
each data mart contains a subset of data in the data
warehouse relevant to a particular domain of analysis
{(Chaudhurt and Dayal, 1997, Quass ef al., 1996). Lastly,
the relations may be used to maintain a view when the
view definition itself is slightly modified (Mohania, 1997).

To find the solution to the view selection problem, an
evolutionary approach 1s described (Homg ef al., 1999).
Genetic Local Search (GLS) algorithm (Ishibuchi et af.,
1997 Kolen and Pesch, 1994; Merz and Freisleben, 1997)
is a hybrid heuristic that combines the advantages of
population-based search such as Genetic algorithm and
local optimization. Local search iteratively moves from one
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solution to a better one in its neighborhood until a local
minimum 18 reached (Davis and Smith, 1987, Goldberg,
1989). While 1t quickly finds good solutions in small
regions of the search space, the genetic operators are
suitable for exploring the whole search space m order to
identify mteresting regions.

The 1ssue of designing a DW, m the context of the
relational model, by selecting a set of views to materialize
in the DW is discussed (Theodoratos and Sellis, 1999). A
theoretical framework for the DW design problem, which
concerns the selection of a set of views that (a) fit in the
space allocated to the DW, (b) answer all the queries of
mterest and (¢) minimize the total query evaluation and
view maintenance cost. The problem 1s formulated as a
state space search problem by taking mto account
multiquery optimization over the maintenance queries (1.e.
queries that compute changes to the matenalized views)
and the use of auxiliary views for reducing the view
maintenance cost. Finally, mcremental algorithms and
heuristics for pruning the search space are presented. Use
of an evolutionary algorithm for materialized view
selection based on multiple global processing plans for
queries (Zhang et «l, 2001). A hybrid evolutionary
algorithm is applied to solve three related problems. The
first is to optimize queries. The second is to choose the
best global processing plan from multiple global
processing plans. The third 1s to select matenialized views
from a given global processing plan.

Evolutionary algorithms use a randomized search
strategy similar to biological evolution for good solutions.
Although an evolutionary  algorithm
randomized algorithms in this aspect, the approach shows
enough differences to warrant a consideration of its own.
The basic i1dea 13 to start with a random initial population
and generate offspring by random variations (e.g.,
crossover and mutation). The fittest members of the
population survive the subsequent selection; the next

resembles

generation is based on these. The algorithm terminates as
soon as there 1s no further improvement over a period or
after a predetermined number of generations.

A randomized approach for mcrementally selecting a
set of views that are able to answer a set of mput user
queries locally while minimizing a combmation of the
query evaluation and view maintenance cost is developed
(Theodoratos et al., 2001). In this process common sub-
expressions among new queries and between new queries
and old views have been exploited. The approach is based
on the Simulated Annealing process.

To find an efficient plan for the maintenance of a set
of materialized views, by exploiting common sub
expressions between  different

view Imalntenance
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expressions is presented by Mistry et «l (2001). In
particular, it has been shown how to efficiently select (a)
expressions and indices that can be effectively shared, by
transient materialization, (b) additional expressions and
indices for permanent materialization and (c) the best
maintenance plan-incremental or recomputation-for each
view. These three decisions are highly mterdependent
and the choice of one affects the choice of the others. A
framework was developed that cleanly integrates the
various choices in a systematic and efficient manner.

Lee and Hammer (2001) focused on an efficient
solution to the maintenance-cost view selection problem
using a genetic algorithm for computing a near-optimal set
of views. Specifically, the view selection problem in the
context of OR view graphs has been explored. In this
study, a solution to the maintenance cost view selection
problem which minimizes query response time given
varying upper bounds on the maintenance cost, assuming
unlimited amount of storage space because storage space
1s regarded cheap and not a critical resource 1s focused.
Specifically the view selection problem in the context of
OR view graphs, in which any view can be computed from
any of its related views has been explored.

A scalable algorithm for determining whether part or
all of a query can be computed from materialized views
it incorporated
transformation-based optimizers 1s presented (Goldstein
and Larson, 2001). The main contributions of this paper
are (a) an efficient view matching algorithm for views
composed of selections, joins and a final group-by (SPIG
views) and (b) a novel index structure (on view
defmitions, not view data) that quickly narrows the search
to a small set of candidate views on which view-matching
1s applied. The version of the algorithin described here 1s
limited to SPIG views and produces single-view
substitutes.

Due to the space constraint and maintenance cost
constraint, the materialization of all views is not possible.
Therefore, a subset of views needs to be selected to be
materialized. The problem noticed 18 NP-hard, therefore,
exhaustive search is infeasible. A View Relevance Driven
Selection (VRDS) algorithm based on view relevance to
select view 1s developed (Vallun et al., 2002).

The query processing cost and the view maintenance
cost was taken into consideration. In this paper, the
concept of view relevance is introduced. After having
obtained the optimal AND DAG, one wishes to select a
subset of the views to materialize. This is based on the
view relevance, which indicates how the presence of a
view in the set, affects the benefit of the other views, thus
affecting the total query processing cost and update
maintenance cost. For implementing the View Selection

and describes how can be in
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algorithm, an array is used to indicate whether a node is
visited ornot. It 1s an array of size equal to the number of
nodes. All the elements of the array are wmtially assigned
a value 0. Whenever a node 1s
materialization, its value 13 changed to 1. The VRDS
algorithm strikes a balance between the query processing
cost and the view maintenance cost, whereas greedy
algorithm is focused mainly on updates and MVPP
algorithm on selecting all beneficial views.

A constrained evolutionary algorithm is proposed
(Yu et al., 2003). Constraints are incorporated into the
algorithm through a stochastic ranking procedure where
no penalty functions are used and constramnt handling

considered for

techmque, 1.e., stochastic ranking, can deal with
constramts effectively. The algorithm proposed 1s able to
find a near-optimal feasible solution and scales with the
problem size well. First, pools of bit string genomes are
generated randomly. This 1s the mitial population. Each
genome represents a candidate solution to the problem to
be solved. The length of this genome is the total number
of vertices in the lattice; 1 and O mean that the vertices
need to be materialized or not, respectively.

Based on whether the current materialized views will
be used in computing the new views and whether the data
warehouse will query the remote data sources for
additional data to do the computation, the data warehouse
view mamtenance techniques are classified mto four major
categories: self-maintainable recomputation, not self-

Table 1: Comparison of four categories

maintainable recomputation, self-maintainable incremental
maintenance and not self-mamtainable mcremental
maintenance.

The approach provides a comprehensive comparison
of the techmiques m these four categories i terms of the
data warehouse space usage and number of rows
accessed in order to propegate an update from a remote
data source to a target materialized view in the data
warehouse (Wang et al., 2004). The analysis shows that
self-maintainable incremental maintenance performs the
best in terms of both space usage and number of rows
accessed. The comparison of these categories is given in
Table 1. Both the not self-mamtainable recomputation and
not self-mamtainable mcremental maintenance approaches
suffer from some common disadvantages. As the remote
data sources have to process queries from the data
warehouse that consume their limited local rescurces, the
OLTP system will be slow. Once a data source is
unavailable, the data source will not be able to answer
queries sent from the data warehouse in time. Tt will block
the data warehouse view maintenance process. The not
self-maintainable incremental maintenance approach has
some additional disadvantages. To avoid the anomaly
problem, the view maintenance process must be designed
carefully.

Among all the four categories, self-maintainable
incremental maintenance (Quass et al., 1996, Cui and
Widom, 1999; Hull and Zhou, 1996) is the best mn terms of

Category Advantage

Disadvantage

Self-Maintainable

Recomputation separated from OLTP operations.

Unavailable source will not block the data warehouse

view maintenance process.

Mot Self- Maintainable
Recomputation

Very simple to implement.
Mo replicate data at the data warehouse.
No extra data storage for replicate data.

Do not have to implement and maintain data transfer

Data warehouse view maintenance operations are totally

Data are replicated at data warehouse.

Need extra data storage for replicate data.

Have to implement and maintain data transfer processes to
transfer data from.

Sources to data warehouse.

Unavailable source will block the data warehouse view
maintenance process.

Evaluating queries at the data sources consurnes local
resources.

processes to transfer data from sources to data warehouse.

Self-maintainable

incremental separated from OLTP operations.
maintenance Unavailable source will not block the data warehouse
view maintenance process.
In the worst case, the number of rows accessed to maintain
a view is the lowest.
Mot self- Mo replicate data at the data warehouse.
maintainable Mo extra data storage for replicate data.
incremental Do not have to implement and maintain data transfer processes
maintenance to transfer data from sources to data warehouse.

Data warehouse view maintenance operations are totally

Data warehouse view maintenanc e operations are not
separated from OLTP operations.

Data are replicated at data warehouse.

Need extra data storage for replicate data.

Have to implement and maintain data transter processes to
transfer data from sources to data warehouse.

Unavailable source will block the data warehouse view
maintenance process.

Evaluating queries at the data sources consume local resources.
Data warehouse view maintenance operations are not
geparated from OLTP operations.

Have to design the view maintenance process carefully to
avoid the anoraly problem.

In the worst case the number of rows accessed is the highest.
Performance is down-graded rapidly.

Need extra storage for intermediate data (COLLECT tables).




J. Applied Sci., 9 (3): 401-414, 2009

space used in the data warehouse and the number of rows
accessed in order to propagate an update to the target
materialized view m the data warehouse. As the cost of
data storage becomes remarkably low, this 1s the best
approach to implement a data warehouse. However, in
order to make the materialized views self-maintainable, the
auxiliary views are stored in the data warchouse to
provide the additional mformation. Extra storage and time
overhead are therefore required to maintain the auxiliary
views themselves. How to design materialized views at the
data warchouse so that only necessary information
are stored at the data warchouse 1s a major issue
(Quass ef al., 1996, Huyn, 1996a, b, 1997a, b).

Table 2: Analysis of approaches and constraints

A common variant of the view selection problem
addressed in the literature earlier minimizes the sum of
maintenance cost and query time on the view set.
Converting what 18 inherently an optimization
problem with multiple conflicting objectives into one
with a single objective ignores the need and value of
a variety of solutions offering various levels of
trade-off between the objectives. We have scanned
more than fifty research papers for this swvey. Critical
analysis is work out on the basis of type of algorithm or
approach, type of constramts handelled or mmposed.
Critical analysis of some of the studies 1s given in the
Table 2.

Approach References

Constraints

Remarks

An evolutionary algorithm for (Zhang et al., 2001).
materialized view selection based

on rmultiple global processing

plans for queries

Data model is based on (SPT)y model
rather than the multidimensional model.
Proposed hybrid algorithms perform better
than the heuristic algorithm in terms of

Hybrid algorithms that combine the
advantages of heuristic and evolutionary
algorithms seermn to perform the best

cost savings, they often require longer
computation time

Proposed a heuristics algorithm
based on individual optimum
query plans

(Yang et ad., 1997).

View maintenance technigques
are classified into four major
categories: self-maintainable
recomputation, not
self-maintainable recomputation,
self-maintainable incremental
maintenance and not
self-maintainable incremental
maintenance

(Wang et al., 2004).

Without anmy resource constraint

8pace usage and No. of rows accessed

Framework is based on specification of
multiple view-processing plan (MVPP),
which is used to present the problem
formally

Self-maintainable incremental
maintenance performs the best in terms of
both space usage and number of rows
accessed.

A method for dealing with the
problem was developed by
formulating it as a state space
optimization problem and then
solving it using an exhaustive
incremental algorithm as well
as a heuristics algorithm.
Randomized approach based
on the Simulated Annealing
process

The problem is formulated as

a state space search problem by
taking into account multiquery
optimization over the maintenance
queries and the use of auxiliary
views for reducing the view
maintenance cost.

An exhaustive algorithm with
greedy and heuristic algorithms
that expand only a small fraction
of the states produced by the
exhaustive algorithm

The problem noticed is

NP-hard. A View Relevance
Driven Selection (VRDS)
algorithm based on

view relevance

By exploiting common sub

(Theodoratos and
Rellis, 1997).

(Theodoratos et af., 2001).

(Theodoratos and
Sellis, 1999),

(Ligoudistianos et al., 1998).

(Valluri et ad., 2002).

(Mistry e? al., 2001).

That there are no space restrictions in
the Data warchouse and space is not the
problem does not discuss the complexity
of the view selection problem

Constraint that the new views and the old
views together must be able to answer all
the new queries has been imposed

8pace constraints,

As the number of implications increases
the rgreedy performs worse and the
heuristic algorithm becomes the winner

The query processing cost and the view
maintenance cost was taken in
to consideration

Increase in cost of optimization

An exhaustive algorithm was designed
and has provided heuristics for pruning
the search space in different cases

Simulated Arnealing has been used in a
variety of optimization problems. In the
Database area, it has been used for query
optimization

The static case of the DW design
problem is studied

r-greedy algorithms that prune the state
space and a new heuristic algorithm that
searches a small fraction of the state space
and reports a sub-optimal selution

VRDS algorithm performs better than
greedy and MVPP algorithms when
there is a space constraint and update
frequency is high

Extended the Volcano query optimization
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Table 2: Continued

Approach References

Constraints

Remarks

expressions between different
view maintenance expressions
is presented

The main contributions of this
stufy are (a) an efficient view
matching algorithm for views
composed of selections, joins
and a final group-by

(S8PIG views) and

() a novel index structire
(on view definitions, not

view data) that quickly narrows
the search to a small set of
candidate views on which
view-matching is applied.
Local search technique. GLS
approach to solve View
Selection Problem has

been adopted.

A new constrained evolutionary
algorithm is proposed

(Goldstein and Larson, 2001).

(Homng et al., 1999).

(Yuetd., 2003).

is acceptable.

1000 views in the system

NP-complete problem

Constraints are incorporated into the
algorithm through a stochastic ranking

framework to generate optimal maintenance
plans. A greedy heuristic has been proposed

View-matching algorithin was developed,
including the filter tree, in SQL Server.
An index structure is presented, called a
filter tree

Genetic algorithm based solution

Stochastic ranking, can deal with
constraints effectively

procedure. No penalty fimctions are used.

IMPORTANT BOOKS, Ph.D THESIS AND
RELEVANT LINKS

To help the other researchers in the materialized view
domain, the collection of important books, Ph.D thesis
and links related to the materialized view selection in data
warehouse are given below:

Important books:

Mastering Data Warehouse Design Relational and
Dimensional Techniques By Claudia Imhopf

The Data Warehouse Toolkit by Ralph Kimball
Building a Better Data Warchouse by Don Meyer
And Casey Carmon

The Data Warchouse Life Cycle Toolkit by Ralph
Kimball

The Microsoft Data Warehouse Toolkit with SQL
Server 2005 And Microsoft Busmess Intelligence
Toolset by Ralph Kimball

Building the Data Warchouse by W.H.Inmon.
Effective Database Design Phi 1981

Important Ph.I) Thesis:

Materialized Views In Data Warehouses By Dallan
Wendell Quass August 1997

Selection and Mamtenance of Views m a Data
Warehouse by Himanshu Gupta September 1999
Optimization Strategies Data
Mamtenance m Distributed Environments by Bin Liu
April 2002

for Warehouse
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Efficient Incremental View Maintenance for
Data Warehousing By Songting Chen December

2005
Important links:

Designing a scalable data warehouse virtual lab:
www.msevents.microsoft.com

http: /fwww.icde2001 .org
WWW.area.cs. cir. it

www.codata.org
www.infolab.stanford. edu/warehousing
prototype)

www. rkimball.com (data warehouse training)
www.dhise. andrews.edu/dw

www.portal acn.org/citation. cfm
wWww.citeseer.ist.psu.edu
www.peterindia.net/datawarehousing links html
IBM research centre:

(whips

www.almaden.ibm.com
www.sybase.com

www.thedacs.com
www.research.cornel
www.web.mit.edu
www.infolab.stanford.edu/warehousing

GLOSSARY OF TERMS AND BENCHMARK
DATABASE FOR THE EVALUATION OF
APPROACH

Here, key terms related to materialized views are
discussed and the benchmark database links are

given.
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Glossary of terms:

Data warehousing: A database system that collects
and stores data from several databases 1s called as
data warehouse

View: A view is a derived relation defined in terms of
base (stored) relation

Materialized view: A view can be materialized by
storing the tuples of the view in the database

View maintenance: Just as a cache gets dirty when
the data from which it is copied is updated; a
materialized view gets dirty whenever the underlined
base relations are modified. The potential cost
incurred to propagate the changes in the view
definition 1s the view mamtenance cost
Incremental view maintenance: Algorithms that
compute changes to a view in response to changes
to the base relations are called incremental view
maintenance algorithms

Query processing: It refers to the range of activities
involved in extracting data from a database. Tt is
concerned with choosing a strategy for processing a
query that mimmizes the amount of time necessary to
compute the answer

Query optimization: Query optimization refers to the
process of selecting the most effective query
evaluation plan for a query

Query evaluation: Query is evaluated with the
selected plan and the result of the query is the
output

Cost of a query: The cost of answering a query Q 1s
the number of rows present i the table for that query
Q,. where Q, is an ancestor of Q.

On-Line Transaction Processing (OLTP): OLTP
consists of parsing and translation, query
optimization and query evaluation. It 13 concem
with choosing a strategy for processing a query that
minimizes the amount of time necessary to compute
the answer

On-Line Analytical Processing (OLAP): Queries
mvolving group by and aggregation operators and
provides excellent support for complex conditions,
statistical functions and features for time series
analysis

Query processing plan: A sequence of primitive
operations that can be used to evaluate a query is
the query processing plan

Multiple views processing plan: An alternative query
processing plans used for evaluating a query

Base relation: Base relation is a table consisting of
columns representing the attributes and rows
specifying the tuples or records
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Query frequency: Tt is the frequency of posing a
particular query on a base relation

Updation frequency: The frequency at which the base
relation 1s updated (insert, delete and modify)

Benchmark database for the evaluation of approaches:

A free, open source, performance benchmark for
private testing of relational database systems. Tests
are written in the C language using GNU tools:

www.osdb.sourceforge.net

The TPC-H is a decision support benchmark. Tt
consists of a suite of business oriented ad-hoc
queries and concurrent data modifications:

www.it.iith.ac.in/~chetanv/personal/acads/
db/report_ht ml/node3 html

The TPC-D benchmark, which simulates a complex
DSS workload with 17 queries areas including data
warehousing, high performance OLTP and Web/E-
Commerce:

www.taborcommunications.com/dsstar/
98/1110/1004 06.htnl

The TPC-E benchmark simulates the data processing
associated with a real warehouse:

www.itjungle. com/two/two080807 -story04.htnl
http://www.tpe.org
POSSIBLE APPROACHES

Toretrieve the information relevant to the query form
the data warehouse, much more time 1s required because
the data warehouse 1s the huge storage of orgamzed data.
For the retrieval of relevant information, particular data
have to be located in the data warehouse. To locate this,
whole data warehouse may have to be explored 1.e. query
related base relations have to be located and the relevant
data may get displayed. For each query this task will be
repeated. As the data warehouse contents huge data and
the mumber of queries may be any value, for the execution
of all the queries much higher time 1s required. To avoid
this, if we find one particular requirement of all the queries
and then keeping only the particular base relations or
copy of these base relations, where from we can get the
relevant information. To do this, we may have to search all
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the queries. In this regard one can use the different search
strategies.

In the case of base relation updation, materialized
view selection may get affected. So, it does not mean that
once find solution will be the last and final solution, we
have to take care of the base relation updation. Now the
materialized view selection becomes the load balancing
problem. How it can be the load balancing problem? In
this case, we have to balance the base relation updation
cost with query processing cost to achieve the optimum
materialized view. Materialized view selection problem can
be formulated as the load balancing problem and can be
solved by the dynamic programming technique. Other
version of this problem is that it is the optimization
problem. In this case, one can consider thus problem as
multi objective (two) problem 1.e., mimmization of base
relation updation cost and other objective will be
minimization of the query processing cost.

Numbers of advanced techmiques are available to
solve the searching and the optimization problem. Here in
this problem, both the scopes are available. Different
possible solutions are discussed below which may
give the solution to materialized view selection
problem. This problem can be formulated as the neural
network problem. Different queries can be used as the
input and the relevant base relation index with the
particular view will be the output. And later this neural
network can be tested for any random query. If we
consider this problem as the optimization problem then
the ant colony optimization technique can also be
applied to find the shortest path. Here the shortest path
1s the collection of mimmum cost view of particular query.
This can be done locally or globally. Tn addition to this
swarm optimization can be used. It can also be solved by
genetic algorithm by treating the materialized view
selection problem as multi objective problem. In case of
query searching, different searching techniques can be
used e.g., spiral search, Tabu search,
matrices etc.

circulant

CONCLUSION

We have analyzed more than fifty research papers
and books. Through this study we tried to give the basic
content which is required to be known to the beginner
who is going to work in this domain. We have discussed
about the basic mathematical background meluding the
cost model formulation. We have critically analyzed the
past and present methods or techniques to solve the
materialized view selection problem by providing the
summary in Table 1 and 2. We have also provided the
details of books, thesis, important links, glossary of terms
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and the benchmark database which can be used to check
anybody’s approach or technicque. In addition to these we
have proposed some solutions based on the new
advanced technmiques of searching and optimization such
as Spiral search, Tabu search, Circulant matrices, ant
colony optimization, swarm optimization, genetic
optimization. Dynamic programming can also be the base
to solve this problem as a load balancing problem.

One typical area of this problem is the cost model
formulation 1.e., mathematical formulation. In literature till
date every one used the linear cost model. We think that
here also some scope available to formulate the problem
as the piecewise linear cost model. In place of having only
two objectives 1.e. view maintenance cost and query
processing cost, we can have some more depth of these
objective function by representing them as the piecewise
linear functions. Tt is beyond the scope of this study to
discuss all possible approaches in detail. Few of the
approaches are brief out in the previous section and the
present section. Finally, we can say that this study can be
the initial guide for the beginner in this domain. Recently
many researchers are working in this domain. Still there 1s
a scope to contribute much more mn this domain
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