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Abstract: This study focuses on geochemical assessment of thirteen core samples from two wells (9/23b-10-
Harding and 9/18b-17-Gryphon) that lie on the same block: s0 as to determine their compositional
heterogeneities and to compare other biomarker parameters in these columns. latroscan TLC-FID showed that
saturated, aromatic hydrocarbons, resins and asphaltene fractions were in agreement with where thermogenic

hydrocarbons had existed. All the core samples were found to be associated with each other based on
diagnostic biomarker parameters including Pris/Pris+Phy vs. C,.pa Dias/ C,, sterane, Ts/Ts+Tm, 225/225+22R
homohopane and the presence of 28,30 bisnorhopane from GC-MS analyses, which were related to their organic
matter source and thermal maturity. This study reveals that vertical compositional heterogeneities remain in the

two columns.
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INTRODUCTION

Geochemical analyses increase exploration efficiency
by accounting for several parameters controlling the
volumes of petroleum available for entrapment; this
includes source rock quality and richness, thermal
maturity and the tming of generation, migration and
accumulation relative to trap formation: these require
incorporation of other disciplines, such as seismic
sequence  stratigraphy  and reservoir characterization
(Peters and Fowler, 2002; Purvis ef al., 2002; Simoneit,
2004). Accurate and subsurface description 15 necessary
to provide reservoir engineers with model for dynamic
simulation (Purvis er al., 2002; Wei et al., 2008).

Large scale heterogeneities in petroleum composition
within reservoirs have been known for many years but the
topic received less attention until 1980s when sufficient
analytical technologies became available to probe the
phenomenon. The work of England et al. (1987) and
England and Mackenzie (1989) has brought the
explanation of petroleum reservoir geochemistry
especially the concept of heterogeneity to the forefront
of petroleum geochemistry (Stoddart er al., 1993). These
compositional differences are sometimes preserved on a
lateral kilometre scale across communicating reservoirs
over geological time but rarely within the vertical scale of
a petroleum column (Stoddart et al., 1995). The order of
magnitude time scales for reservoir fluid mixing by
diffusion as a function of reservoir properties was
established by England and Mackenzie (1989).
Homogenization times for inherited petroleum column

heterogeneities on a kilometre scale by lateral diffusion
are on the order of 100 Ma while for vertical diffusion on
a reservoir thickness scale of 100 m is about 1 Ma
(England et al., 1987: England and Cubit, 1995). For
reservolrs filled during Late Tertiary times, some level of
vertical homogenization would be expected in a petroleum
column composition with persistence of a significant
lateral heterogeneity (Larter and Aplin, 1995). Thus, these
variations can be used to determine fill direction assuming
that the most mature petroleum entering the reservoir last
displaces the less mature petroleum (England er al., 1987).

The wvarations in geochemical composition of
petroleum fluids exist for one or more of the following
reasons:

»  The oils may be obtained from different source rocks,
or may have differing contributions of ol from
multiple source rocks as well as filling history
(Killops and Killops, 1993; Tissot and Welte, 1984)

«  Microbial alteration of petroleum during migration
and emplacement (Baylis, 1998) and other processes
including interaction of polar petroleum compounds
with reservoir surfaces may affect homogenization
even on small scales (Larter, 1992)

«  Maturity  differences may be preserved as
compositional variations in a petroleum column due
to incomplete mixing of petroleum in a reservoir

(Horstad et al., 1990)

Many development and production problems can be
understood wsing  rapid  and  common  petroleum
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geochemical methods (such as Rock eval pyrolysis, TLC-
FID, GC, GC-MS, etc.). Traditional exploration focuses on
subsurface traps and the play concept in sedimentary
basins described according to tectonic style (Peters and
Fowler, 2002; Wei et al., 2008). Sophisticated analyses
such as GC-IR-MS or Nitrogen compound and phenol
analysis are found useful in the study of oils and core
samples (Larter and Aplin, 1995).

This study is aimed at determining whether variations
occur within and between the two oil columns located in
Harding and Gryphon fields based on geochemical
analyses associated with their maturity, biodegradation,
source, etc, by analyzing oil saturated cores obtained from
the exploration wells in the two fields,

MATERIALS AND METHODS

The samples used in this study were a gift from
Dr. Martin of Newcastle University, upon Tyne, UK;
comprising thirteen core samples: Eight samples from
Harding oil column (9/23b-10) and five from Gryphon oil
column (9/18b-17). The Gryphon oil field 1s located in
block 9/18b, North-East of Aberdeen which was deposited
during Late Palaeocene-Early Eocene; while the Harding
field (Late Palaeocene-Early Eocene) lies principally
across Block 9/23b North-East of Aberdeen. All reagents
used in this study were of analytical grade except
otherwise stated.

Iatroscan (Thin layer chromatography-flame ionization
detector): Core extracts were analysed by latroscan
TLC-FID. A TH-10 Mk IV instrument equipped with a
flame ionization detector was used for rod scanning and
quantification as described by Karlsen and Larter (1991).
Silica rods type chromarods-S III (pore diameter 60,
particle size 5 pm) were used for TLC. Normal hexane and
toluene were used as mobile phases for the separation.
The amounts of saturated and aromatic  hydrocarbons
and polar compounds (resins and asphaltenes) were
identified by a digital recorder (LabSystem Atlas v3.0
software).

Thin Layer Chromatography (TLC): The TLC plates were
prepared using aqueous slurry of 0.5 mm thick Keiselgel
60 G; the plates were activated for an hour at 100-120°C.
The samples were spotted on separate TLC plates at
about 2-3 cm from the bottom using a capillary tube. The
plates were then separated in petroleum ether. Rhodamine
6 G was sprayed on the plates to identify different bands
under UV light. aliphatic and aromatic hydrocarbon bands
were identified and scraped off into different prepared
elution tubes which were washed with about 40-50 mL

dichloromethane. The extract for each was reduced in
volume using a rotary evaporator and then placed in auto-
sample vial. Aliphatic hydrocarbon fractions were taken
for further analysis.

(Gas Chromatography-Mass Spectrophotometry (GC-MS):
GC-MS analyses of the aliphatic hydrocarbon fractions
werg  performed on a Hewlett Packard 3890 gas
chromatograph interfaced to a VG AutoSpecQ Ultima
(electron energy 70 eV electron multiplier 250 V; filament
current 200 pA; source temperature 280°C) tuned to 1000
resolution. Chromatography was carried out on a fused
sthica column (30 mx0.25 mm 1.d.) coated with DB5MS
(modified 5% phenyl, 95% methyl silicone, 25 pm film
thickness), using a splitless injection technique. The oven
was programmed for an initial temperature of 40°C for
2 min, followed by heating at 4°C min ' to 310°C and held
at a final temperature for 20 min. The samples were run
using full scan and Single lon Monitoring (5IM) and data
obtained was recorded and processed using a HP
ChemStation data system.

RESULTS AND DISCUSSION

Well 9/23b-10 (Fig. 1) showed approximately 15-90%
saturated hydrocarbons, 10-49% aromatic compounds,
0.6-26% resins and 0-29% asphaltenes; also, well 9/18b-17
(Fig. 2) was relatively uniform with a slight increase in
saturated hydrocarbons (e.g., from 45-68% at 5748-5782 m,
respectively). The highest percentage of saturates in this
well was observed at a depth of 5782 m, which has a very
low concentration of resins and asphaltenes.

The plot of Pris/Pris+Phy versus C,.fjee S+R Dias / C,,
steranes (Fig. 3) indicated a genetic relationship between
the samples. Biomarker parameters such as 225/225+22R
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Fig. 1: Distribution of components of the core extracts
in Harding oil column (9/23b-10) obtained from
TLC-FID analyses
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Fig. 2: Distribution of components of the core extracts in
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TLC-FID analyses

.85
74 - *
0.6 “'r
0.5
.4
0.3+
0,24
0.1
0.0 T T T T ¥ T 1
(1.0 011 0.x 03 0.4 .5 (.6 0.7

C, oz dias/sterane

Pris/i Pris+Phy)

Fig. 3: Source related biomarker indicating the level of
relationship between core samples in the two
columns; this is obtained from GC-MS fingerprints

homohopane, Ts/Ts+Tm and sterane/hopane were
measured for the two wells (Table 1) to determine the
extent of these ratios in the two columns. Representative
mass chromatogram (m/z 191) for hopane shows the
presence of bisnorhopane (Fig. 4) in all the samples which
is a source related parameter. Slight to moderate
biodegradation of the samples occurred in both wells
(9/23b-10 and 9/18b-17) as represented in Fig. 5a-d.

Utilizing the GC and GC/MS techniques made it
possible to arrive at a clear characterization according to
organic source materials, environmental conditions during
deposition, the thermal maturity experienced by a rock or
oil and the degree of biodegradation. This has been
achieved using fingerprints from acyclic isoprenoids,
steranes and terpanes biomarkers (El-Gayar er al.. 2002a;
Bost et al., 2001).

The gross compositions of core extracts screened by
latroscan TLC-FID were determined: thus all samples in
the two wells seem to represent regions where migrated
petroleum has existed (Fig. 1. 2). This is due to the fact
that the wvalues obtained are higher than what were
suggested by Bhullar er al. (1998) who showed that any

lom 19100 (190,70 o 191.70): SASILS.D

UG 28, 30 Bisnorhopane
H5IH1
BT -
35H) -
S Calh b
» 45004 hopane
£ 40004 _
= 35004 %0
2 300 TaTin hopa Cizap
< 2501 . C3le |3 -
pans
T her
15041 ‘JR T T
|
10004 p_ k) ALV ll""“kl- W-‘Ji'\dk'ﬂbn.-.ﬂw
S0

1 ¥ I I ] ]
l'n.\"" "‘:' - i{':-" n::ll"‘ rhr".' i-".'.'l r-'ﬁ'l. *..n-:' ‘?P"
& EEF q‘ﬂ#‘%ﬁhéf‘
o @Y o u”@:ﬁ -a‘?caﬁ}'w D TR o

Time

Fig. 4: Mass chromatogram (m/z
presence of bisnorhopane

191) showing the

Table 1; Some of the diagnostic biomarker parameters in the two columns
Well depth im)  Sample code T<Ts4+Tm  Sterane/hopane Homohopane

5278.00 9/23b-10 0.49 (.93 (.54
528620 0.50 (.60 (.54
360,00 (.58 (.82 (.56
5632.11 0.65 (.84 (.58
640,00 0.62 (.86 (.57
b6 .49 074 (.57
579780 0.65 (1,54 0.57
S8 1000 .61 0.77 (.58
5679.30 9/18b-17 0.69 (.49 (.59
5748.90) 071 (.81 (.58
5733.60 0.69 (.50 (.59
5T42.00 0.72 (L&l (.60
S805.60 0.69 (.50 (.59

Where TsaTs+Tm (Cyy | Te-hopane/C., 1Te-hopane + Cy; 1 7a-hopane);
Steranethopane  [(Cy.Co, T e (205420R) + CpCo O weef
(2054200 1 Ta-hopane Cyy-Cyy Pseudohomologs 225+22R for C-Ci)|
and homohopane [(CyfCy-Casd 1T (225422R) hopane]. All of these were
obtained from m/z 191 and m/z 217 chromatograms

core extract that contained less than 10% saturates, less
than 20% aromatics and greater than 70% polar
compounds had no thermogenic hydrocarbons and rather
the extract was generated in-situ and does not represent
a migrated petroleum. Some of the core samples
especially those from 9/23b-10 showed the abundance of
saturated hydrocarbons which are in agreement with
suggested  wvalues  (>60) of good  saturated oils
(Younes, 2003).

A genetic relationship between the core extracts is
examined in Fig. 3: showing a convergence of points
which indicates a common source with only two outliers;
these outliers are the shallower samples of well 9/23b-10
which their fingerprints suggest that they were affected
by biodegradation. This might likely be the reason that
made them appeared different from the rest of the data
because such difference is likely due to secondary
processes rather than source.
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Fig. 5: Total hydrocarbon gas chromatograms indicating the presence of biodegraded oil and oil based mud signature
from well-9/23b- 10 (two at the top) and well-9/18b-17 (two at the bottom) from GC-MS analyses. (a) TIS: SAS2LSD
(b) TIC: SASISLSD (¢) TIC: SAS12LSD and (d) TIC: SAS14LSD

The samples in both wells seem to be mature with
higher values (Table 1), which conform to those described
by Peters er al. (2005) where 225/2254+ 22K homohopane
ratios of 0.5-0.54 indicated a range of samples that have
entered oil generation and those with 0.57-0.62 have
reached the main phase of oil generation; they further
added that once this stage has been reached, no further
maturity information would be available because the ratio
remains constant. This is in agreement with C;
homohopanes measured for oil samples studied by
El-Gayar er al. (2002b) and Harb er al. (2(003); where all the
values were closer or even higher than the steady-state
value of (.60 and as such the oils were suggested to have
been derived from source rocks at advanced stage of
thermal maturity.

Also, Waseda and Nishita (1998) described
Ts/Ts+Tm ratio as one of the most reliable maturity
indicator and the ratio increases from 0 to 1 with
increasing maturity. Thus, the values obtained suggested
some level of maturation in both wells. The Ts/Ts+Tm
ratios obtained from this study were lower than those
obtained from Western Desert samples that have higher
values of =1 (Shi er af., 2005; Harb er al., 2003); and much
higher than those from Paleozoic reservoir rocks in the
Tataria and Perm basins, of Russia as found by
Aizenshtat ef al, (1998). Also, facies dependence could be
exhibited by this ratio (Ts/Ts+Tm) where less than unity
indicates marine depositional environment (Y ounes, 2003;
Peters et al., 2005).

Source related biomarker (sterane/hopane) has been
described by Moldowan er al. (1985) where marine
sources with major inputs from planktons and or benthic
algae have sterane/hopane ratio =1, while non marine
sources with high terrestrial inputs tend to have very low
values (near zero); therefore, all the values measured from
this rato are closer to 1, suggesting mixed inputs which
may be linked to Kimmeridge source as the major source
of o1ls 1n the North Sea (Dahl, 2004).

The occurrence of relatively high amounts of 28, 30-
bisnorhopane in the m/z 191 mass chromatograms from
most of the core samples in the two fields has been
observed (Fig. 4). This feature seems to provide a good
evidence for the source of these samples and tends to
follow the findings from several studies which proposed
the presence of bisnorhopane in the Viking Group,
Kimmeridge Clay bitumen and oils from Oseberg Back
Basin, Viking Graben, Heather Formation and Upper
Jurassic Draupne Formation (Dahl, 2004). Thus 28,
30-Bisnorhopane found in the core extracts in this study
indicates that the extracts were sourced from Kimmeridge
Clay Formation. Thus, bisnorhopane isomers are found to
be a helpful tool to group Viking Graben derived oils into
families as represented in several petroleum systems and
reservoir geochemistry analysis (Johannesen et al., 2002).

Slight to moderate biodegradation occurred as most
of the n-alkanes have been removed. These results agree
with the study of Baylis (1998) and Peters and Fowler
(2002) which showed that alteration of core materials and
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contamination of samples with Oil-Based Mud (OBM)
commonly give a saturated gas chromatogram with a
hump of unresolved compounds; they further showed
examples of hump in the C,.-C,; n-alkane range where the
sample was contaminated by Biovert (emulsion of water
and highly paraffinic low aromatic mineral oil). This may
be similar to what has been observed in Fig. 5. Also, the
loss of straight-chain and isoprenoids as seen in the
Fig. 5 corresponds to what was observed in Cuban oils
studied by Grimalt ef al. (2002); suggesting that mixing of
severely biodegraded oil with undegraded oils during
accumulation in the reservoir contributes to different
patterns of biodegradation as well as oxidative activities
of microbes within the reservoir (Campos ef al., 1996).

Based on these parameters; it could be concluded
that all the core samples examined in this study, though
obtained from the same block but are heterogeneous, with
common source and compositional variations existed in
the two columns indicating that vertical reservoir
equilibration has not yet being established.
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