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Abstract: Generating random numbers plays outstanding role in computer simulations. Most applications
demand for uniform random numbers more than other distributions. In this study concept of two-layer cellular
automata and a novel neighborhood structure are introduced. According to these concepts, a novel
approach for uniform random number generating is proposed. First layer consists of binary cellular
automata which are responsible for activation and inactivation of cells in next layer. A cellular automaton with
integer values 1s used for second laver. Interaction between layers of represented cellular automata leads to a
dynamic and complex behavior of proposed model. To evaluate the quality of proposed model, several
simulations were implemented. Results prove that two-layer cellular automata generate better uniform random
numbers in comparison with MATLAB. Simulation of innovative RNG based on cellular automata, shows
promising results, which encourage further research with the proposed techniques in this and related

domains.
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INTRODUCTION

Dynamics of complex systems lead many
processes in real world to be assumed stochastic and
ambiguous (Bar-Yam, 1997). Due to this motivation in
recent decades, scientists  has  paid  attention 1o
computer based random number generating in complex
system simulations and attracted many researchers to
introduce and develop these methods (Avanzadeh e al.,
2008; Moghaddas er al., 2008; Bar-Yam, 1997;
Banks et al., 2004).

Lottery, computer games, cryptography, calculation

with Monte Carlo method, computer simulations,
operational  research  and most  of intelligent
optimization algorithms such as genetic  algorithm,

particle swarm optimization, tabu search and other
Meta-heuristics are some  applications  of  random
number generators (Jang er al., 1997; Banks et al., 2004;
Viega, 2003; Kalos, 2007). Random numbers are generally

classified to 3 categories as below:

Truly random numbers: In this category, all numbers
have equal probability to be generated. This class is not
periodic and the numbers don’t follow any pattern. In
addition, truly random numbers are not generated by

specific algorithm and prediction of next element of
sequence 1s not possible. Indeed there 1s no correlation
among these kinds of random numbers (Kohlbrenner and

Gaj, 2004).

Pseudo random numbers: Pseudo random numbers
are generated by specific algorithms and it is possible
to  predict  some  subsequences by considering
eenerated  trajectory.  To  start the algorithm it is
needed that some of parameters be initialized. One of
the most obvious problems about this category is
existence of periods and specific patterns in sequences
(Viega, 2003).

Quasi random numbers: In fact quasi random
numbers are sequences of nonrandom numbers  which
are shutfled to be seemed random. Thus these types
of random numbers are so suitable for calculation
with Monte Carlo method (Lecuyer, 2003; Chen and
Markel, 2005).

It 1s clear that random number generators must be
adaptable with various statistical distributions due to
application (e.g., uniform, normal, exponential, Poisson,
Erlang). Uniform random numbers are applied in vast
variety of applications. According to outstanding role of
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uniform random numbers in computer simulations,
represented approach in this study is proposed to satisfy
these requirements.

High period, low computational space and time order
for random number generation and low correlation among
random numbers are some of important factors which
determine the performance of a typical random number
generator (Ayanzadeh er al., 2008).

RANDOM NUMBER GENERATORS

In 1927, Tippet designed table of forty thousand
random numbers to use in various applications. One
hundred thousand of random numbers were generated in
a table designed by Kendall in 1939, Smith followed
Kendall's study and designed mechanical random
cenerator device in 1955, The exciting point about these
tables is that they were filled without any specific
algorithm. In 1951 Neumann proposed a computational
method (however this method had low performance). In
recent decades several algorithms were developed for
random number generation as below (Ayanzadeh et al.,
20008; Moghaddas et al., 2008; Hortensius er al., 1989),

Linear congruential generators: Linear Congruential
methods use specific algorithm to generate random
numbers. These algorithms are iterative and initial state is
needed to start the algorithm. A sample of these
algorithms is indicated in Eq. 1:

X,=(aX_,+¢c) mod m (1)

where, X, 1s the generated random number in previous
iteration a and ¢ are constant coefficients, m is
congruential module {one unit more than maximum
allowed random number) and X, is the output of
algorithm. In this method generated random number
extremely depends on its previous value, Maximum period
of m this algorithm is m (Chen and Merkel, 2005),

Multiple recursive generators: Multiple recursive
cenerators are like linear congruential generator, but this
method use k random numbers from previous iterations.
A multiple recursive generator is indicated in Eq. 2.

In Eq. 2, a are constant coeflicients of algorithm,
X,ds output of algorithm in (n-i)" iteration and m is
congruential module {(one unit more than maximum
allowed random number). The advantage of this method
is that maximum period of algorithm is 2" which is
much more than period of Linear congruential method

(Chen and Merkel, 20035).

k
}'{n:Ezn_K"_, mod m, i=12,..... k (2)
1=1

Lagged fibonacei generators: Lagged Fibonacci
generators are a special case of famous Fibonacci
sequence which use two outputs of previous iterations.
Eq. 3 indicates the general form of this method.

X, =(X, +X, ) mod m, (3)
D=k<l

where, m, X, and X, are same with these parameters in
multiple recursive generator method. k and 1 are the
indexes of numbers which were generated in previous
iterations, Performance of algorithm depends on selection
of these values (Chen and Merkel, 2005).

Summation operator in Eq. 3 can be changed by any
other operator (e.g., subtraction operator). Moreover it is
possible to use binary logic operators o generate random
bits. In this case if the operator is exclusive or (XOR) the
method will be called transfer register generator thus the

congruential operator will be neglected from equation and
Eq. 3 will be changed 1o Eq. 4:

KII'H = :{ @ }{I'I"-I {4}

Output of Eg. 1 up to Eq. 3 will be random numbers
between zero and m.

Blum blum shub random generator: This generator was
introduced by Blum and his team but due to slow
functionality of this method it was never used in computer
simulations. This method is widely used in cryptography.
Bv using this method. random numbers will be generated

via Eq. 5:
X, =(X) mod m (5)

where, m is congruential module and usoally 1s
considered as  production of two big prime numbers

{Chen and Merkel, 2005).
CELLULAR AUTOMATA

Cellular Automata (CA) are discrete computational
maodels that contain networks of completely same cells
which have interaction with together within a
neighborhood structure. Various neighborhood structures
are proposed till now. Some of the most popular models
are; Neumann, Moore, Cole and Smith which are shown in
Fig. 1. In Fig. 1, it is assumed that neighborhood radius
equals one (Avanzadeh er al., 2008; Bar-Yam, 1997,
Sarkar, 2000).

Cells state (value) is selected from a finite set. These
values are changing synchronously in iterations by using
of some transition rules which are same for all cells. Next
states will be determined according to current values of
cells and current values of neighbors (Sarkar, 2000).
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Fig. I: Common neighborhood structures in cellular

automalta

Binary cellular antomata are one of the most common
simulation tools where each cell can be stated as zero or
one. Transition rules are determined by Boolean algebra
rules (AND, OR and NOT). Wolfram (1986) proposed o
use decimal value of bit sequence of next state to name
the rules,

Some of the most useful Wolfram transition rules in
linear binary cellular automata are shown in Fig, 2 where
first row is current states of left neighbor, the cell and
right neighbor, respectively. Next state of cell is indicated
in other rows by using of specified rules. Using transition
rules in Fig. 2 and starting from a random configuration
leads to generate pseudo random bits. Locality of rules
leads to generate pseudo random bits with desirable
period (Wolfram, 1986).

TWO-LAYER CELLULAR AUTOMATA FOR
RANDOM NUMBER GENERATING

Generating sequence of binary bits and combining
these bits is one of the most popular methods used in
cellular antomata based random number generators. It 1s
clear that quality of generated random numbers in such
methods depends on quality of sequence of random bits.
Binary cellular automata will generate high period pseudo
random bits by using wolfram transition rules 30, 90, 103,
110 and 165 in 1solated or hybrid manner.,

Framing the sequence of generated random bits-base
mapping-will cause to appearance of various patterns in
final sequence of random numbers. Obviously appearance
of patterns among sequences of random numbers means
low guality of random number generator, It is possible to
compensate this problem by using parallel cellular
automata to some extent. However, range of generated
random numbers can demand large number of needed bits.
In this case vsing independent cellular automata per bit
will extremely increment consumption of memory and time
order,

Mismatching between range of random numbers
before and after base mapping is the other problem that
will cause improper results. In binary numerical systems,
a binary number with length n envelopes range of zero up
to 2"-1. Thus if it 1s impossible to map the desired range
of random numbers to such range, mapping the range will
increment the chance of numbers of specific sub range to
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Fig. 2: Transition rules in binary CA
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Fig. 3: Two layers CA for uniform random number
generation

be generated. For example five bits are needed to generate
random numbers in range [(), 20] but five bits envelope
range of [0, 31].

The simplest way to handle this problem i1s to 1gnore
random numbers bigger than 20, However, this method
may produce patterns and reduce the quality of generated
random numbers. The other approach to compensate this
problem is using of linear (or nonlinear) mapping. It is
clear that if the length of origin range is bigger than length
of destination range, chance of random numbers to be
generated won’t be the same. In such condition the
uniformity will reduce.

Based on this issue, in this study a novel structure of
cellular automata 1s proposed to be used as random
number generator. Proposed model is constructed from
two heterogeneous layers of cellular automata. Each layer
contains a two dimensional cellular automata with same
size.

Cells of first layer are binary and include zero or one
bits. If the goal is to generate uniform random numbers
in range [0, n] then the cells of second layer will include
integer numbers between zero and n. structure of
proposed model is shown in Fig. 3.

Each row of binary cellular automata-in first layer is
assumed as independent linear binary cellular automata.
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Thus each cell 1s adjacent with one right neighbor cell and
one left neighbor cell. Associated values of cells of each
row will be updated using one of the Wolfram transition
rules 30, 90, 105, 110 or 1635.

A novel neighborhood structure-named psendo
Neumann-is applied in next layer. In proposed model-like
Moore standard neighborhood structure-eight neighbors
of each cell are considered as adjacent. The difference
between pseudo Neumann and Moore structure is that if
cells with same positions from first layer equal one they
will be active, otherwise they will be inactive. If the cells
of first layer generate uniform random bits, the cells of
second layer will activate/inactive with same probability.
In this case about half of cells in neighborhood
structure-about four cells like Neumann structure-will be
active. Interaction between first and second layers of
cellular antomata leads pseudo Neumann neighborhood
structure to be assumed as Neumann neighborhood
structure with dynamic adjacency.

States of each cell in second layer will be updated by
dividing summation of cell value and active neighbors'
values to n+1. Remainder of this division is the next value
of cell. According to this rule, values of cells will be
between zero and n. Initial configuration of automata must
be uniform. In other words chance of integer numbers
between () to n to be generated must be equal. Now each
cell of second layer is a random integer with uniform
distribution.

[f lower bound of needed random numbers is not
zero, it is possible to map the generated random numbers
to desired range by using a simple linear mapping. For
example if desired range of random numbers is [- 100, 100]
then n will initialized with 200 and - 100 will be added to

output results.

SIMULATION AND EVALUATION
OF PROPOSED MODEL

Here, simulation results of two-layer cellular automata
in random number generation will be discussed. Each
layer consists of a 1000x 1000 cellular automata. States of
cells in first layer are updated by using rule 30.

In the following, capability of binary cellular automata
to produce random bits by using rule 30 will be discussed
and second experiment will compare the uniformity of
generated random numbers by proposed model with
MATLAB,

Experiment 1: Objective of this experiment 1s evaluating
capability of cellular automata to generate random bits. To
reach this purpose, simulation of linear binary cellular
automata with one hundred cells was implemented. In this
simulation neighborhood radius was one and rule 30 was
used to change the cell values 107 random bits were

generated and total numbers of ones which were appeared
in sequence were computed. This simulation had been run
for one hundred times and statistical features such as
average, standard deviation and scattering length were
extracted. Table | contains simulation results.

Obviously, Table | indicates that quality of generated
random bits by using of cellular automata is very desirable
and output random bits of automata follow the uniform
distribution. Thus if rule 30 is used to update the values
of first layer of proposed model, then cells of second layer
will activate and inactive with approximately same

probability.

Experiment 2: Purpose of this experiment is evaluating
the uniformity of generated random numbers in proposed
model. Thus, sequence of random numbers is generated
by second layer of proposed model and integer random
number generator of MATLAB. Then an experiment is
implemented as below.

*  Generate N = 10" random numbers in the range of
[0, 100]

*  Classify the generated numbers in ¢ = 10 classes with
equal sizes

«  Compute the frequency of numbers in each class (1))

After running these steps for one hundred times,
average, standard deviation and scattering length of
frequencies of classes are computed. Table 2 contains the
experiment results, Histogram diagrams of calculated
frequencies of two-layer cellular automata and MATLAB
are shown in Fig. 4 and 35, respectively. Comparing
Fig. 4 and 5 results that generated random numbers by
two-layer cellular automata are more uniform than
MATLAB.
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Fig. 4: Histogram diagram of classified generated random
numbers by two-layer CA
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Table 1; Statistical features of experiment |

Statistical analysis Values
Average 490, 0454
sD 10,6328
Scaftering length By 000

Table 2; Statistical features of experiment 2

MMethod Average =D Scatterimg length
MATLAB D26.23 111.93 Si4
MLCA Q44,86 8110 308
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Fig. 5: Histogram diagram of classified generated random
numbers by MATLAB

CONCLUSION

In this study, two-layer cellular automata and pseudo
Neumann neighborhood structure are introduced. Based
on these novel concepts, an innovative approach to
generate uniform random numbers 1s proposed. In this
maodel, cells of automata which are responsible to generate
random numbers contain integer values and this is against
previous random number generating approaches which
were based on generating random bits by using cellular
automata. These cells are activated and inactivated by
cells of a binary automaton in first layer. This condition
leads cellular automata to obtain dynamic neighborhood
structure. Simulation results of proposed method and
comparing uniformity guality of this method with random
number generator of MATLAB proved that two-layer
cellular automata generate random numbers with more
uniformity, High period, low computational space and time
order and low correlation among random numbers are
some advantages of proposed model. Also, the output of
proposed model can be used as BCD random number.
Main problem of this method is initial configuration which
may cause Garden of Eden. Applying hybrid transition
rules,  neighborhood  structures  and  hardware
implementation can improve the performance of two-layer
cellular automata model.
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