Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Journal of Applied Sciences 9 (22): 4086-4090, 2009
ISSN 1812-5654
@ 2009 Asian Network for Scientific Information

A Novel Approach for Replacing Legacy Systems

Y. Moghaddas and H. Rashidi
Department of Computer, Islamic Azad University, Qazvin Branch, Qazvin, Iran

Abstract: Modernizing and reengineering on the legacy systems is an essential need in software industries.
The replacement of legacy software systems is one of the most effective parts in process of modernizing
software systems. In this study, a useful method for replacement of legacy large systems is proposed. In this
method, the incremental approach is used to create interface and control lavers on the corresponding sectors
in two systems. With considering a new system in under-controlled condition and testing with real data and
finding possible errors, replacement process faces with low risk. In comparison of proposed method with other
traditional methods, two main differences are considered. In proposed method, data bases and resources of new
system shall be different with legacy system. Second difference is finding errors to make final systems ready

to decrease the risks and increase reliability.

Key words: Software reengineering, replacement, legacy systems

INTRODUCTION

Increasing the needs of organizations and their
expectation levels from software system cause the
increase of usage from new technology and advanced
programming tools, Most important system which
controlling important parts in modern society, 1s among
systems are developed during last years, need support
and maintenance to continue life. Always in these
changes and supports, systems are gradually faced with
some problems and limitations cause to increase the level

of financial costs for their maintenance. These
systems are called legacy systems. Generally, any
information based systems that resist against

changes and developments are called legacy system
(Davis and Alken, 2000).

Set of maintenance activities of software systems are
divided into three parts: corrective, adaptive and
perfective maintenance. Corrective maintenance is referred
into removing reported problems by users from system, in
this type of maintenance there shall not be many
structural changes in system. Adaptive maintenance is
concerned with adapting the software to a new
environment (such as new platform or OS). Also, it seems
that considered changes in platform of software systems
15 not referred into implementing of system and there shall
not be any changes in this part. But most of the times, this
process are caused into some fundamental change in
system and even its implementation will be impossible and
it needs re-carrying out of system for new platform.
Finally, in Perfective maintenance, including 653% of
avallable maintenances shall be several changes and

implementing of new needs in svstem. Thus, these
changes does not cause fundamental changes in
structure of system, but, as a result of increasing
these kinds of changes is important in supporting unit
(Bisbal er al., 1999; Pressman, 2001).

The aim of proposed method is risk reduction and
increasing the reliability of legacy systems replacing
process. For this propose, the effort was to reduce the
rate of random faults of new system as low as possible
and to remove the regular data invalidity while replacing
the new systems.

MODERNIZATION OF LEGACY SOFTWARE
SYSTEMS

Usuvally, most legacy software systems are faces with
some problems such as dependency on hardware, lack of
document, impossibility of tracing the program, lack of
integrity and unity of system, increasing the time and
supportive costs, These problems cause that
organizations perform several activities for modernizing
their legacy information based systems. To remove these
problems, system developers, use one of these
approaches: wrapping, migration, reengineering or
re-developing. These four approach are followed each
other and on the basis of level of changes and its
dependency with legacy system, they shall be different
with each other (Chikofski and Cross, 1990).

Wrapping and changing in available system, being
under especial condition, are used for removing problems,
sectionally. Infect, this approach is considered following
the reforming and re-constructing legacy system and

Corresponding Author: Yaghoub Moghaddas, Department of Computer, Islamic Azad University, Qazvin Branch, Qazvin,
P.O. Box 51745/534, Tabriz, [ran Tel: 498 912 677 4147
4086

J. Applied Sci., 9(22): 4086-4090, 2009

continuing the work with new condition. As a result of
lower executive cost and it's simplify, it shall be preferred
into other ways,

Migration approach transfers components of legacy
system into environment having more facilities and
flexibility, but data and other parts of main system are kept
with out change. In this approach, components of legacy
systems reforms gradually and inducts into new system.
Also, it can be used in long-term for removing problems
of legacy systems. In spite of that this way is more
flexible, but it shall not be considered as a comprehensive
method, because, although it has some standard frames
for improving these processes, but, as a result of lack of
re-structuring the final system structure and not main
changing in code, so, it can not be used in any software
projects, especially in modernizing the critical projects of
legacy systems.

Reengineering approach includes a combination of
reverse engineering process, re-documentation of system,
re-structuring the system, forward engineering on new
documents for the purpose of producing new system and
replacing final system with previous. The aim of this
approach is understanding awvailable legacy system
(including characteristics, designs and its
implementations) and re-carrying out of system for
improving its efficiency. Re-developing or buying a new
system 15 considered as a step for avoiding form the
problems of previous system and replacing all system
with a new one. It is necessary that before any selection

form mentioned approaches, developers consider
available risk and dangers, costs and level of accuracy of
each method (Chikofski and Cross, 1990; Davis and

Alken, 2000).

REENGINEERING

Reengineering of legacy systems plays an important
role in modern industry of software engineering.
Chikofsky and Cross (1990) introduced reengineering as
a process, considering original system, making it into a
new form and implementing its characters in frame of this
new form. In 1993 to complete the present definitions,
Armold introduced reengineering as changing of a
software production after recognition of problems, so that
it causes to improve the qualities of other norms of
system or it's adaptation with new platforms

(Chikofski and Cross, 1990; Stevens and Pooley, 1998).

Life cycle of reengineering: As shown in Fig. 1, general
includes
refinement.

process of reengineering three phases:

abstraction, alteration and In abstraction

Reengineering

- -

(Alteration)
Requirments

=
- |
- | =
= =|&
=l =1 b=y
z|.2 . 215
=l Designs 3 |,
s | & il
E E 1
Al =,
T =
£
= ————
— E—_—— Code = T

=

Fig. I: Life cycle and general model of reengineering
process

phase, complete documents are extracted from system by
performing reverse engineering on available legacy
system. In alteration phase, new documents are extracting
from traditional documents and system requirements. In
refinement phase, final system will be produced by
forward engineering on new documents. Life cycle of
reengineering is introduced in six steps that cause to
achieve final system.

Requirements analysis: In this phase, reasons of
performing reengineering are considered and analysis on
legacy system and new requirements of system shall be
recognized.

Recognition of system model: For making any changes on
a system, it is necessary to determine the design
structure, architecture and relation between different
components of system. One of the most important
problems of legacy software systems is lack of
documents. Thus, initial structures and models witch are
extracted from these documents may not be able to define
the system completely.

Problem and fault detection: Existence of problems in
legacy systems is the main reason of requesting new
requirements. To perform reengineering process, it is
necessary to gather complete information from these
problems. For this purpose, use tools and methods
carrying out some activities on structure of software
system, such as leveling, testing and visualizing, is
possible.

Analysis of problems: Developers must determine the
reasons of existing mentioned problems and their effects
on system process by complete analysis on problems of

4087

J. Applied Sci., 9(22): 4086-4090, 2009

legacy system. Also, it must be determined that solving
the specified problems by supplying the new
requirements 1s possible or not.

System restriction: To achieve final system, it's
necessary (o make some changes on structure of legacy
systems, based on new documents.

Publication and acceptance: This phase includes all
acceptance processes and testing the wvalidity of
new system and its adaptation with presented
exceptions and finally replacement with legacy
system (Demeyer er al., 2008; Miiller er al., 2000)).

REPLACING METHODS

One of the important problems which developers of
legacy systems are faced with them is state of replacing of
legacy and new system with together. For this purpose,
developers usuvally use some general approaches
including Big-Bang, incremental and evolutionary.

Big-Bang approach: As shown in Fig. 2. in Big-Bang
approach, which is called lump sum, all parts of legacy
system are replacing with a new system. This way is used
in projects which problems must quickly remove in system
or new facilities are added into system, immediately.

One of the advantages of this approach is quick
making the system ready after completing the other steps
of reengineering. But, this method is not desired for
critical systems and because of high risks in replacing
process, losing system data 1s possible.

Incremental approach: In incremental approach which is
called phase-out in reengineering, considered system are
divided into some logical parts by reverse engineering on
legacy system. As, shown in Fig. 3, after performing
software reengineering on e¢ach part, any of them will be
added into legacy system as a part of new system.

By applying incremental approach, components of
system are produced quickly and testing the system to
find problems before the system become complex is so0
easy. According to this fact that temporary versions of
program are produced aftter completing each part,
customers can observe the steps of system development
and determine the faults of system, quickly. But, it is not
possible to perform structural changes on whole of the
system and developers have to make structural changes
on each part separately.

Evolutionary approach: Finally in evolutionary approach,
which is the completed version of incremental approach,
reengineering process and required structural changes are
performed on whole of the system. In this approach

w Target system

Fig. 2: Big-bang replacement approach

Existing
system

Target
System

Fig. 3: Incremental replacement approach

ol®

g

(JCICIC

Fig. 4: Evolutionary replacement approach

Existing
syslem

(Fig. 4), it 15 possible to keep a part of legacy system in
final system with same functionality, compose some parts
of legacy system into a single part in final system or
divide a part in legacy system into several parts in final
system.

In this method, final system is usually
designed modular and is suitable for final systems
which are based on object-oriented technologies
(Niersirasz and Ducasse, 2004: Rahgozar and
Oroumchian, 2003).

In most online software systems, occurring any
problem will be faced the system with a critical crash. In
this case, developers use incremental or evolutionary
approaches to decrease the risk of Big-Bang replacement.
Applying incremental or evolutionary approach make
more operational overhead. But, it is justifiable on the
basis of the advantages of it is usage.

Simplest method of using these methods is carrving
out all these parts and suddenly replacement of new
part(s) with old part(s) in legacy system. This method has
many limitations and it is usable only when input and
output of two parts (from new and legacy system) are
same, Also, the method has high risk in replacement
phase.

4088

J. Applied Sci., 9(22): 4086-4090, 2009

Lagacy syslem

: I

Mew system

part

- /

Fig. 5: Using interface in incremental replacement

- ™
Legacy system

Old
'@ database

Fig. 6: Making a bridge between two systems method

As shown in Fig. 5, in another method, an interface
layver is used for making relation between new part and
other old parts. Thus, when inputs and outputs of a part
in legacy and final system are not same, it is possible to
create proper relations via interface layer.

Although, this method could remove one of the most
important problems in replacement phase by applying an
interface layer, but it can not be used as a suitable method
for large scale projects.

In a comprehensive method, which is called making a
bridge between two systems, as shown in Fig. 6, 1t tries to
solve problems by creating a communication bridge
between corresponding parts in two systems. In this
method, old parts are applied as an interface for new parts
and transfer requests via the bridge.

Also, there are some other methods to replace legacy
and new databases with together such as: Chicken Little,
Cold Turkey and Butterfly (Keller, 2000; Valenti, 2002;
Demeyer et al., 2008).

PROPOSED METHOD

Traditional methods for replacing of new parts of
software system and removing most available problems,
there was no solution for removing the high risk of
suddenly replacement. Even for decreasing these risks,
any way for testing these parts in real environment
without making any problem in legacy svstem is not
proposed. On the other hand, traditional methods pay
attention to software or data base systems separately.

In proposed method, after implementing a new part
from system, to make sure about correct functionality,
errors and inconsistency detection (related with other
parts of system, database or other section), new parts be
executed in parallel with legacy system parts. For this
purpose (Fig. 7)., a multi-layer control unit 1s used witch
covers on corresponding parts in (wo systems. The
control unit executes new parts as a virtual part and
controls its functionality. Control unit includes two layers:
interface and result controller.

Interface layer (activity emulator) is most important
layer of control unit. Its main duty is executing the new
and legacy system parts synchronously. This layer is
similar to interface layer in traditional methods but
executes legacy and new parts in parallel. By issuing new
request from legacy parts, activity emulator delegates that
request for new parts to debug new parts in real world
conditions.

Verification and validation of new parts outputs is the
main duty of result controller layer. This laver compares
legacy and new parts’ results with together to distinguish
the differences. Most errors found in this unit are logical
errors which based on problems in new parts. This layer
increases the reliability and decreases risks of final
syslem.

By tracking above steps, all parts of new system are
combined with each other then, with solving problems
and omitting applied layers, new system will be produced.
With comparing the proposed method with others, two
main differences are considered. In proposed method,
data bases and resources of new system shall be different
with legacy system. Traditional methods had proposed by
the assuming legacy and new systems' data bases to be
similar and in especial conditions, changes of databases
were simulating with making interfaces. While most of the
times, reengineering on legacy systems and databases are
performed simultaneously.

Finding error to make final systems ready to decrease
the risks and increase reliability is the second ditference
between proposed and traditional methods. It's clear that
error detection in real world condition is not paid in
traditional replacing methods.

4089

J. Applied Sci., 9(22): 4086-4090, 2009

' ™y

™
New part Result Old part
controller
A
F Y Interface
b A

-

Ol databage

—

New database
Fig. 7: Making a bridge between two systems method
CONCLUSIONS

In this study a novel method for replacing legacy
software systems 1s proposed. In proposed method, a
control unit (witch consists of two lavers: Activity
Emulator and Result Controller) covers on corresponding
parts in legacy and new systems. The control unit
executes new and legacy parts in parallel and controls the
system functionality.

Proposed method has lower risk and high rate
reliability in comparing with traditional methods. Using
test lavers in lower levels, decreasing the operational
overhead of executing processes in parallel and
customizing proposed method for multi-layer systems may
improve proposed method.

REFERENCES

Bisbal, J., D. Lawless and J. Grimson, 1999, Legacy
information system: Issues and directions. [EEE
Software, 16: 103-111.

Chikofski, E. and J. Cross, 1990. Reverse engineering
and design recovery: A taxonomy. IEEE Software,
T 13-17,

Davis, K.H. and P.H. Alken, 2000. Data reverse
engineering: A historical survey. Proceeding of the
7th Working Conference on Reverse Engineering,
Nov, 23-25, Brisbane, QId., Australia pp: 70-78.

Demeyer, S., S, Ducasse and O. Nierstrasz, 2008,
Object-Oriented Reengineering Patterns. 1st Edn.,
Square Bracket Associates, Switzerland, ISBN
O78-3-9523341-2-6.

Keller, W., 2000. The bridge to the new town: A legacy
system migration pattern. Proceedings of the 3th
European Conference on Pattern Languages of
Programs, (PLP"00), Irsee, Germany, pp: 23-29,

Miiller, A., H. Jahnke and B. 5Smith, 200M). Reverse
engineering: A roadmap. Proceedings of the
Conference on the Future of Software Engineering,
(FSE'00), Limerick, Ireland, pp: 47-60.

Nierstrasz, O. and 5. Ducasse, 2004. Object oriented
reengineering patterns, Proceedings of the 26th
International Conference on Software Engineering,
(ICSE'04), USA., pp: 734-735.

Pressman, R.S., 2001. Software Engineering: A
Practitioners Approach. Sth Edn., McGraw-Hill Series,
USA., pp: 7T99-823.

Rahgozar, M. and F. Oroumchian, 2003. An effective
strategy for legacy systems evolution. J. Software
Maintenance, 15; 325-344,

Stevens, P. and R. Pooley, 1998, Systems reengineering
patterns. Proc. 6th ACM SIGSOFT Int. Sympo.
Foundat. Software Eng., 23: 17-23,

Valenti, 5., 2002, Successful Software Reengineering. IRM
Press, Italy, INBN: 1-931777-12-8.

4090

	JAS.pdf
	Page 1

