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Abstract: This study preliminarily investigates the numerical application of both Extended Kalman Filter (EKF)
(which has traditionally been used for non linear estimation) and a relatively new filter, Unscented Kalman Filter
(UKF) to the nonlinear estimation problem. The new method can be applied to nonlinear systems without the
linearization process necessary for the EKF and it does not demand a Gaussian distribution of noise and what's
more, its ease of implementation and more accurate estimation features enables it to demonstrate its good
performance. Present experimental results and analysis indicate that unscented Kalman filtering UKF have
shown better performances in presence of the severe nonlinearity in state equations.
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INTRODUCTION

This study considers the problem of applying the
Kalman Filter (KF) to nonlinear systems. Estimation in
nonlinear systems is extremely important because almost
all practical systems involve nonlinearities. Accurately
estimating the state of such systems is extremely
important for fault detection and control applications.
However, estimation in nonlinear systems is extremely
difficult. The optimal (Bayesian) solution to the problem
requires the propagation of the description of the full
probability  density function (pdf) (Kushner and
Budhiraja, 2000). This solution 1s extremely general and
incorporates aspects such as multimodality, asymmetries
and discontinuities. However, because the form of the pdf
15 not restricted, it cannot, in general, be described using
a finite number of parameters. Therefore, any practical
estimator must use an approximation of some kind.
Many different types of approximations have been
developed: unfortunately, most are either computationally
unmanageable or require special assumptions about the
form of the process and observation models that cannot
be satisfied in practice. For these and other reasons, the
KF remains the most widely used estimation algorithm.
The most common application of the KF to nonlinear
systems 1s in the form of the Extended KF (EKF)
(Martin, 2001). Exploiting the assumption that all
transformations are quasi-linear, the EKF simply linearizes
all nonlinear transformations and substitutes Jacobian
matrices for the linear transformations in the KF

equations. Although, the EKF maintains the elegant and
computationally efficient recursive update form of the KF,
it suffers a number of serious limitations.

Linearized transformations are only reliable if the error
propagation can be well approximated by a linear function.
If this conditon does not hold, the linearized
approximation can be extremely poor. At best, this
undermines the performance of the filter. At worst, it
causes its estimates to diverge altogether. However,
determining the validity of this assumption is extremely
difficult because it depends on the transformation, the
current state estimate and the magnitude of the
covariance. This problem is well documented in many
applications such as the estimation of ballistic parameters
of missiles (Costa, 1994; Chowdhary and Jategaonkar,
2006) and computer vision (Viéville ef al., 1993),

Linearization can be applied only if the Jacobian
matrix exists. However, this is not always the case. Some
systems contain discontinuities in which the parameters
can change abruptly, others have singularities and in
others the states themselves are inherently discrete.

Calculating Jacobian matrices can be a very difficult
and error-prone process. The Jacobian equations
frequently produce many pages of dense algebra that
must be converted to code. This introduces numerous
opportunities for human coding errors that may
undermine the performance of the final system in a manner
that cannot be easily identified and debugged-especially
given the fact that it is difficult to know what quality of
performance to expect. Regardless of whether the obscure
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code associated with a linearized transformation 1s or is
not correct, it presents a serious problem for subsequent
users who must validate it for use in any high integrity
system.

To address theses limitations, Julier and Uhlmann
(1997) developed the UKF. Therefore, it was extended to
parameter estimation applications by Van der Merve
(2004),

Instead of linearizing these non linear functions using
Jacobian matrices, the UKF uses a deterministic sampling
approach to calculate the mean and covariance estimates
of Gaussian random state variables with a minimal set of
sample points called as sigma point ( Kandepu et al., 2008)
through the actual non linear functions. This approach
vields more accurate results compared to ordinary
functions linearization in the EKF.

FILTERS ALGORITHMS

The extended Kalman filter: The Kalman Filter (KF) in its
standard form is a popular choice for any stochastic
estimation problem. However, in most real applications of
interest; the system dynamics and observation equations
are non linear and hence suitable modifications to the
standard kalman filter are required. The Extended Kalman
Filter (EKF) provides these modifications by linearizing
the non linear process and observation models around
the last state estimate. In this way, the EKF gives an
approximation of the optimal estimate and hence can be
considered as the most common and popular approach for
both non linear state estimation and parameter estimation.

Let the process be estimated and the associated
observation relationship be described by the following
non linear state space model:

!':L+| =

fix,.u, )+w, (1)
hix )+v,

Z,

where, X, represents the unobserved state of system u, is
known exogenous input and 2z, i1s the observed
measurement output. The process noise w, drives the
dynamic system and the observation noise 1s given by v,.

The EKF involves the following recursive estimation
of the mean (%) and error covariance (P) of the state
estimate under a Gaussian assumption:

»  Consider the last estimated state #(k|k)

*  Linearize the non linear system dynamics x,., = f(x,,
u +w, around #(kk)

«  Apply the prediction cycle of the kalman filter
algorithm to the linearized system dynamics in order
to calculate a prior state estimate &(k+1|k| and a prior
estimate of the error covanance matrix P(k+11k)

* Linearize the non linear measurement dynamics
¥, = hix )+v, around &(k+1k)

«  Apply filtering or update cycle of the kalman filter
algorithm to the linearized measurement dynamics
in order to calculate the posteriorn state estimate
i(k+1k) and the posteriori estimate of error
covartance matrix Plk+11k)

Let ®(k) and H(k) be the Jacobian matrices of the non
linear process f{(.) and observation h(.) models around the
estimated state, denoted by:

of (x,u)
aﬁ. '.II\.II\.I.u'I {'2.:'
_n(x)

dx |

(k)=

H(k)

The EKF works almost like a standard KF, except for
F and H. which vary in time based on the estimated state
*, Its actual algorithm can be stated in terms of the
following two distinct cycles:

Predict cycle: Predict next state, before measurements are
taken:

Lk+1k)=r{&(kk).u,)
P(k+1[k)=d(k)P(k|k)®" (k) +Q(k)

(3)

Update cycle: Update state, after measurements are taken:

Rk 1k 1) =& (k1K) + K (k1) v, b (& (k+1k)) |
Kik+1)=P(k+1|k}H’ [k+|}ZH{|-.+|]||*{|H||r.}H|:h+|}' +H[k+|}] |
Plk+1k+1) =] 1-K{k+1)H{k+1) [P(k+1]k)

(4)

where, (Q and R are covariance matrices, describing the
second order properties of the state and measurement
noise (1.e., Q = E(ww') and R = E(vv"), where E(.) denotes
the expected operator). K denotes the kalman gain matrix,
used in the update observer.

The unscented Kalman filter: The UKF is based on the
idea that it i1s easier to approximate a probability
distribution than to approximate an arbitrary nonlinear
transformation (Julier and Uhlmann, 1994). The actual
algorithm is based on propagating carefully selected finite
set of points, called sigma points, through the system
nonlinear dynamics and then approximating the first two
moments of the distribution (mean and covariance)
through a suitable method:; such as weighted sample
mean and covartance calculations (Julier and Uhlmann,

1994 Julier er al., 2000). The tflaw in the EKF that results
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from propagating the mean and covariance through linear
approximations of the nonlinear transformation is thus
eliminated in the UKF, leading to theoretically better
performance of the UKF. Furthermore, the UKF
implementation does not need the calculation of any
Jacobian or Hessian matrices, which not only results in
considerable simplicity in implementation, but also makes
the UKF suitable for real-time applications and
applications involving non-differentiable functions. The
accuracy ol the UKF can be compared to that of the
second order EKF, the computational order is comparable
to the EKF (Juher and Uhlmann, 1994; Julier er al., 2000).

The UKF follows the same overall structure as the
EKF. The UKF is fundamentally different in the way it
estimates the noise distributions of the filter, As opposed
to approximating the non-linear transformation of
the noise distributions, the UKF approximates the
transformation by applying the non-linear transformation
to a number of selected points in the state space. These
points are called sigma points and are calculated from the
covariance of the estimation error. The approach is shown
in Fig. 1. The sigma points, circled points in the Fig. 1, are
selected such that they describe the distribution of the
estimation error. The transformed sigma points are then
used to calculate the approximation of the transformed
distribution. This is known as the UT published in
(Julier and Uhlmann, 1997). In the following, the equations
of the UKF are presented.

As with the EKF, we present an algorithmic
description of the UKF. Given the state vector at step k
(we use the same state vector as in Eq. 1), we compute a
collection of sigma points, stored in the columns of the
Lx(2L+1) sigma point matrix ¥, where L is the dimension
of the state vector. In our case, L =7 50 . 15 a 7x15 matrix.
The columns of ¥, are computed by:

(%), = x,
(%) =%, +(JIL+RIP ), i=1.L (5)

(K. ) =%, —(JIL+RP ), i=L+1..2L

where, ,/iL+ AP, is the ith column of the matrix square
root and A is defined by:

h=a'(L+x-L) (6)

where, o 1s a scaling parameter which determines the
spread of the sigma points and % is a secondary scaling
purﬂmeter.

Note that we assume [iL+4)P, is symmetric and
positive definite which allows us to find the square root
using Cholesky decomposition.

:"-ll.ll.
(lﬁ 1_1..
"1-.‘_‘_'._-_‘_._._._,..-"' B '. w
'\- ..... l"_-"’
T ! ."
" 4 oy ."" -"-.r

Fig. 1: The unscented transformation

Prediction cycle: Once y, computed, we perform the
prediction step by first propagating each column of ¥,
through time by At using nonlinear function as:

(%) =1(2.),), i=0.20 (7)

In present formulation, since L. = 7, we perform 15
4th order Runge-Kutta integrations,

Calculate the a priori state estimate:

|

Xl =EW{:'":'(L+|L {EJ

where, W™ are weights defined by:

\’L-:'_"'I =L+ AL) (9)
'WI'"'I =l/2{L+A) i=1..2L

Calculate the a priori error covariance:

Poa = JE‘"'I"".IL:I{{ILHB, _:{k—l] [{Iul }, - 3"‘|\+|:|-I T {:II. { I{'}}

L

=0
where, (Q, 1s once again the process error covariance
matrix and the weights are defined by:

W =L +a+(1+ o +B)
W' =1/2(L+4), i=1..2L

(I

Correction cycle: Transform the columns of ¥, through
the measurement function.

(Zeoi) =h{(x)). i=0.20 (12)
Calculate the predicted observation:
j.“I:iwi'"”[I“I}i {:I:J'}
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Calculate the a posteriori state estimate:
Ky =X Kz, -] (1)

where, K, is once again Kalman gain. In the UKF
formulation, K, is defined by:

Ko =Py P, (13)

Where:

P = iw;“[[z. |-z |[(z) -%] +r

=1 { |ﬁj

P = 3w () -5 ][(2.) -]

il

Note that as with the EKF, R is the measurement
noise covariance matrix.

Calculate the a posteriori estimate of the mean state
and the error covariance:

,o=x, + K (2, -5 (17)
F, =F _KLPJ.Z-KH.T

In present study, we have used the 7 state vectors,
tor both EKF and UKF, which defines the attitude of the
satellite and also the rates at which the attitude is
changing (Matthew et al., 2004). The state vector is
comprised of the four-element quaternion attitude vector
combined with the three-element body rates vector, with
respect to the inertial frame [w'.;,.]. Symbolically, this state
vector can be represented as:

x=[q,9,9,9,0,0,0,] (18)

During the propagation cycle, the quaternion and
angular rate components of the state vector are
propagated separately. The guaternion are propagated
forward in tume utilizing the basic gquaternion dvnamic
equation, specifically

q=10q (19)
2
with

:- {J mll.' _ml\.'l'- {'I"I\.'\". 1
| =0 () ()] w

ﬂ — | iy L9 ELLY {EU}
1 mn _ml'\-'!. {] mlhl
|-, -0 -o 0

and
nf,::[m“ 0w, mm]'

is the local orbital referenced body angular rate written in

the body frame,

This vector can be found vsing the inertial referenced
body rates and the orbital-referenced orbital rate vector
by the following equations:

wy, =0y, — T, (21)

where, T is the quaternion transformation matrix from the
orbital to bodv coordinates:

-

i -ai-aitel 294 +94) 2066 -9:9)
| 2(q0,+9,9,)  2Q4,-94,) g —q +q;+4q;

and w, = [0 -w, 0] is the inertial referenced orbital
angular rate written in the orbital frame.

If we can assume that the satellite has a circular orbit,
then we can find w,, with the equation for mean motion:

o= @3)

a

where, p, is the earth's gravitational parameter and a is the
satellite’s semi-major axis.

The body rates are propagated forward in time
utilizing the dynamic equation of motion for orbiting
satellites:

I= N - lon (24)

Where:

I =diag(l, I, I): the 3x3 moment of inertia tensor
N, = The magnetic torque vector

N, =The environmental disturbance torque vector
N; =The thrusters control torque vector

With these definitions in  mind, the basic
mathematical process for state Kalman Filtering can be
detailed below.

The state transformation matrix @ is defined by:

94 94 |
dq ooy
%0, 96
3 0,

¢’L+| = I'.l ;+ '{tL+I - I'L} {Eﬁj

L]

= w3

i F'-‘].m (26)
I_F:| E,
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The F,, is a(4x4) matrix and is calculated using
Eq. 19, partial derivative of g with respect to each g
becomes:

% 1,99 140 27a
dq, 2 dg, zaq':* { )
N _1pda 1, d0, (27b)
q, 2 dq 2 dg,
dq 1. dg 1 .
o0 —A—|wl, - T, (27¢)
20 ~2%3 T2 ! )
W _lgda 1,91, (27d)
dg, 2 dy, dy,
Thus the matrix is computed by evaluating:
F"=Elﬂ+[1' 1, T, 1] (28)
Where:
Y LI (29)
Finally
Q.4 |
T, =, ":I:'i:l: {3{]‘1]
q, —|
.4, |
"qq, |
5 -, (30D)
[ Y44
(g1
og]
1=, 44 (30¢)
—q.4;
|44,
-4, |
-q; (30d)
T, =0,
. —q:4;
| ~4:4, |

The (4x3) F, matrix 1s computed uvsing partial
derivative of q with respect to @, and can be derived as
follows. Again, it requires a substitution of Eq. 21,

Vil

g _ d (1 (31a)
doy,  do | 2 dan,

L T L T I PR 31b

E?{u:i_lhﬂm:g_l HmL[Lu:* C m,,) (31b)
N _ 1, day 1 (31c)
daf, 2" aw, 2"

The partial derivative (3x4) matrix F,, can be found as
follows:

E, =[&-| E-a ﬁ-ﬂ &-q] {32]

ﬁ{ul-:[[{_Tqu + Ti’lq-l--:l
1C:-| = {im,iﬁHT_,._tq_. - TI.-in}
6 W+T.q, + T.g,)

(33a)

[ 6y e~T,.q, + T4, )
'F:J = 'E:'mi:;ﬂ{_T_a;';h = 1.9:)
i ﬁm:,"r'i_+T,3q3 —T.,) i

(33b)

f“-'-‘n':m"'quJ + Ta.-qz:'-
&, =| 6o Bi+Tq, + T g,)
ey, +T,q, + Tyq,)

(33¢)

._Er[ﬂ,ij,[l!f+T;3q4 + Tﬂql }_

£ =| 60 p(-T,q, +T.q,)
| 6o +T,q, — T.q.)

(33d)

Where:

glel g Lol Lo (34)

The partial derivative (3x3) F., matrix can be found as
follows:

F,= ko, 0 —ko, (35)
L0 00
k=1-ly/ (36)

The process noise covariance matrix Q 1s used to
represent the uncertainty in the linearized model of the
system and how that uncertainty is correlated between
the states. Based on the design of a Kalman filter and
probability definitions, the process noise covariance
matrix Q for step k is defined as follows (Anderson er al.,

2004 ):

Q:Q,ﬂ1+[}!%+(}$% (37)
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Where:
{:. =|n-l:-:l ﬂ-h]- {333}
' l,. S
[0, ES (38b)
Q: ISEL SEL+ F:_,s]
- FuSF;.I: F|:5F;|1 ['J,Ef_'-}
© 7 EsH F_qsafj
@ 0 0
§=10 & 0 (38d)
0 0 o

The variances o’ ... o°, are an estimated variance of
the body rates, This is not a straightforward quantity and
best determined by computer simulation.

The extended Kalman filter approximates the
observation matrix H by:

iz [zrr aT aT aT
H=—-= Z = —Z ——Z —Z ..
dx | dy, o, oy, o,

(39)
aT  aT BTE}

& i

diy,  dw  dom,

L4

where, z 1s measurements of system state, either sun-
SENS0r Or I'I'IHgI'IE[IJI'I'IEIE.T

This basic process has introduced several variables
that merit further explanation. The covariance matrix (P)
essentially is a time-referenced estimate of the accuracy of
both the system model and the measurements. The
correction cycle depends heavily upon these accuracies
in order to determine how much to trust either the
propagated state or the entered measurements. The state
transformation matrix (@) is an approximation of the
change that the state undergoes over the specified time
interval. The process noise covariance matrix () 1s
derived from the expected error in the filtering process.
The observation matrix (H) 15 a measure of how dependent
the measurements are upon the state of the system. The
measurement noise covariance matrix (R) entails the
expected error in the states themselves, derived from the
precision of the system model.

ATTITUDE DYNAMICS

The dynamic equation of motion for an orbiting
satellite 1s (Hashida, 2004):

liv= N, + N, + N, —@x(lo+h)-h (40)

Where:
m:g=[m‘ o, m] = Inertially referenced body
angular rate vector
L% 4 By I!?
[ = 11 = Moment of inertia tensor of
LE] L LE
rx |':h Il’i
spacecraft (MOI)
h:[h, h, hr]l = Reaction  wheel  angular
momentum vector
Ny =[N, N, N,] = Gravity-gradient torque vector
N, =[N, N, ”4;] = External disturbance torque
vector such as aerodynamic
torque and solar radiation
pressure rgue
N,, =|:N|||'-. N, NW]' = Applied torque wvector by

3-axis magnetorquers

For an axially symmetric satellite with Y/Z wheels and
the principal moment of inertia axes along the body axes,
the off-diagonal products of inertia elements in the MOI
tensor will be zero. The deployed boom along the Z-axis
also increases the MOI elements Ixx and Iyy o a much
larger and equal value. This value is called the transverse
MOIL, 1.

The complete set of dynamic equations of motion can
then be written as follows:

L, =N

mx ar E

+ N, —3m, (1, -1 _JI,.T, —m},{l w +h )+ Lu,[l,my + h_1 1

o, =N+ Ny o+ 3l =TT, T, +w (0 o +h )-wiluo)-h,

Ly, =N

i + Hll.-' - ml\.hﬁ - h‘.'

(41)

The spacecraft attitude is parameterized by
quaternion denoted q = (gl g2 g3 g4) which has a
corresponding rotation matrix T in (22). The attitude
kinematics, which couple w and q are given by Eq. 19 and
20.

SIMULATION RESULTS

In order to examine its operability and performance,
EKF and UKF were programmed in the computer language
MATLAB/SIMULINK. These simulation results were all
completed during sun-lit portions of orbit, when both the
sun sensors and magnetometer were providing data to the
filter.
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In order to test the EKF before launch, a simulation of
the operating environment of the satellite must first be
developed. This simulation is required in order to generate
realistic measurements for the EKF to utilize as an input.
The simulation used to generate the input measurements
for all analysis detailed herein is an Alsat-1 flight orbit
code. It has been used on various satellites engineered by
Surrey Satellite Technology Ltd. This orbit propagator
generates simulated magnetometer and sun sensor inputs
of two types. First, the orbit propagator generates these
magnetometer and sun sensor inputs in the local orbital
frame. These filter inputs are what is considered the
orbit propagator predicted values. This input from the
simulation will be necessary during actual satellite
operations. The second set of input data generated by the
orbit propagator is a set of measured values. These values
simulate measurement input from the magnetometer and
sun sensor and so this set of input is in the body frame.
From this second set of inputs, the measurement inputs,
are only simulating values that will come from onboard
sensors during the actual operation of the satellite, this
data will not be generated by the simulator during actual
satellite operations.

In addition, a standard of comparison is necessary in
order to determine the veracity of the EKF results.
Another well-tested program developed by Surrey
Satellite Technology Ltd. was utilized for this purpose.
This simulation is an attitude propagator, which models
the actual satellite dynamics and outputs Euler angles and
Euler rates over a specified period of time. This simulation
simply uses Euler's Moment Equations and the
quaternion dynamic equation to propagate expected
angles and rates. Due to the construction of this model, it
is quite simple to simplify the model to discount all
disturbances torques etc. or to precisely model gravity
gradient (including boom deployment), magnetic
(including commanded magnetic moment), drag, reaction
wheel effects and other disturbance torques.

We consider our satellite 1s operating in a 98° inclined
circular LEO at an altitude of 686 km. The spacecraft is
estimated to have a mass of 90 kg and essentially be
configured as a rectangular shape 0.65x0.65%0.6 m with a
6m (to the centre of gravity) gravity gradient boom and
3 kg tip mass. The microsatellite is Nadir pointing. These
requirements specify several operating constants for the
EKF: a summary of operating constants is presented.

A 2006 IGRF B-field model was used to obtain the
ceomagnetic field values.

Note that the assumed integration time step (At,,) 15
| S unless otherwise specified. The inertia tensor is boom

deployed.

Several other practical consideration merit mention,
The integration in the state propagation 1s accomplished
by numerical integration. This cvclic process is
computationally intensive. Therefore, to reduce the
computational demand without sacrificing significant
accuracy, an Adam’s 2nd order numerical integrator will
be implemented rather than a more complex and accurate
integrator.

Another practical consideration concerns the nature
of the computer code. Since, the code will be implemented
on a satellite, the code must be extremely robust. Most
importantly, the ADCS computer code must not crash the
satellite’s onboard computer at all expenses. Therefore,
error checks are conducted many times throughout each
cycle of the EKF. If an error is detected, the ADCS
algorithm is immediately exited and a message relayed 1o
satellite operators to allow human operators to deal with
the problem rather than the onboard computer crashing as
a result of the error. Finally, the nature of the assumptions
underlying the development of the EKF permits a small
amount of error to creep into the quaternion calculations.,
In order to negate this error, the quaternion must be
normalized after every instance where they are calculated.
This includes both the guaternion calculation in the state
propagation step and in the state update step.

Finally, several other initialization parameters deserve
an explanation. The covariance matrix (P) embodies an
approximate error associated with attitude estimates. The
first four diagonal elements of the covariance matrix
represent the estimated error of the quaternion, while the
next three diagonal elements give the estimated error of
the angular rates. It is important to note that the
covariance matrix 1s merely an initialization; over time, the
matrix changes as the EKF converges. The process noise
covariance matrix (Q) is another initialization parameter
that deserves mention. The process noise covariance
matrix contains information relating an estimate for the
error associated with the system equations. From a strict
mathematical standpoint, the process noise covariance
matrix also changes with time. However, these changes
can be ignored due to their small magnitude. The first four
diagonal elements of the process noise covariance matrix
represent the error associated with the quaternion
dynamic equation. while the next three diagonal elements
are the estimated error associated with Euler’s moment
equations. The process noise covariance matrix error
estimates is le™ for both quaternion and rates. Lastly, the
measurement noise covariance matrix (R) contains the
error expected to be associated with measurements.
Note that the measurement noise covariance will change
as the sun sensor 1s switched on and off. However, the
measurement noise covariance 15 otherwise constant over
tme.
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Table |: Orbit characteristic

Orbits. Circular il
Inclination (%) a8 '
Altitude (km) 680
Sampling period (sec) 10 =
Table 2: Initial uncertainty of quaternions and angular rate (Initial covanance =
matrix P) =
Characteristics Values -E _
[nitial quaternion g 1y Y )
Initial quaternion g (0.1 = :
Initial quaternion g (0.1) R § ‘
Initial quaternion . 0.1y 4651
Initial angular rate w, (rad)’ -r{.u., 1’ o 06| '
| 160° il I
o 3 |r R 4.7
Initial angular rate w, (rad) (o) i":-ﬁf] 0 204 4010 &0 £00 L Q00 1200
::, Time (sech
Initial angular rate w, (rad)’ | {0, 1) X ]
180"
!
Fig. 2: Comparison between UKF and EKF for estimated
state g,
Table 3: Process noise intensity of quaternions and angular rate (Svstem
noise covariance matrix (})
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Intensity for q, term V ) ]’ le™ -.ﬁqT"' .10 I)
| A kg-m’ 12-T, r' |
1 = ] o 'D'Di | | |
Intensity for q. term | s . [‘:J—'-"‘T = i | .
kg m 2T, 3 000 M r‘WWﬂT"‘
] [ | |
; | s § .05 | | | \
Intensity for q; term V ) ] le -ﬁ1T - 1 |
| kg-m’ 12-12 : -0.10| 1 l||| | |
| R . | o , 2 =015
Intensity for g. term | §° . [‘h g Tt AT = 1 1
kg-m : : : -0.20 | |
12 |
: ) -0.25 v
Intensity for w, (rad)y’ | s L L)
“‘lg it }' |: -0.30
il 200 4{1} 6l LN [} 204}
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Initial angular rate w, | s : lﬁ;ﬁz Time (sec)
[kg-m*) Iy
s , le™ . AT Fig. 3: Comparison between UKF and EKF for estimated
Initial angular rate w. | = - :
(kg -m*) I state q,
? . ; 1.0
Table 4; Inertia tensor {Satellite configuration 1)
Inertia tensor Values 08 | i
L = diag (L,1,1.)" (kg.m?) (158, 158, 5)" = i o
Table 5; Measurement emor varance (Mepsurement noise covariance = 04 | :
matrx k) E : | | | |
Error variance Values 5 02| W I
Magnetometer measurement error variance XY/Z axis (uT)™ (0.3 3..., I 1.4 I Al |
' . 5 —— - T, T 'x!
Sun sensor measurement error varance XY/7Z axis (°) i1y R = |' . r-""——-t‘-r*_r'"'-—-"
2 [ |
02r W4 \ |
The measurement and system nolse covariance |_|-’ : v
: - . 04
matrices were chosen as diagonal and adjusted through v
simulation to give a kalman filter with the best filtering 0.6 -
3 5 i ; 0 200 400 600 200 1000 1200
properties smallest tracking error. In all simulations the .
LM I 500

following wvalues were used throughout. These

measurements are shown in Table 1-5.
The simulation results are represented in Fig. 2-9, Fig. 4: Comparison between UKF and EKF for estimated

the black graph shows the true values of quaternion, the state q,
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Fig. 5: Comparison between UKF and EKF for estimated
state q,
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Fig. 7: Attitude error estimated state .

red graph represents the EKF outputs and finally the blue
one gives the UKF outputs. The EKF an UKF outputs
for estimating quaternion (q,, g.. g; and q,) are shown in

Adtitude error (ga)
&
Fad

14 [
06 | | Y
L]
-5 )
ol ; ) ; ; "
i 200 400 B0 B0 [0 [ 200
Time (sech

Fig. 8: Attitude error estimated state q,

(1.6

Attitude error (g4)
-

i 200 401} 600 LY MM} 1204}

Time {sec)
Fig. 9: Attitude error estimated state g,

Fig. 2 for q,, Fig. 3 for q., Fig. 4 for g, and Fig. 5 for q,. The
quantities obtained from the both filters are compared
with the real states in black line as showed in the Fig. 2-5.
It can be seen that the performance of the EKF and the
UKEF is identical; this is to be expected since they both
assume additive white noise. However, the UKF have
shown better performances in presence of the severe
nonlinearity in state equations.

The attitude error calculated between the real
quantity and estimated one are illustrated in Fig. 6 for q,,
Fig. 7 for q., Fig. 8 for q. and Fig. 9 for q., it is clear that
the attitude converge to zero quickly. We can see from
Fig. 6-9 that the more severe the nonlinearity of the state
dynamics 15 the more error occurs in states estimation
obtained by EKF. The new Kalman filter UKF has also
shown better performances in presence of the severe
nonlinearity, as seen in the blue graph in Fig. 6-9 for error
estimation.
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DISCUSSION

The UKF as a tool for state estimation has been
compared to the standard method for nonlinear state
estimation the EKF. The state estimation methods have
been compared using the same tuning parameters to make
the comparative study as credible as possible.

The UKF has been shown to be superior to the EKF
in many state estimation, dual estimation and parameter
estimation problems (Van der Merwe er al., 2004), It has
also been used in many applications, such as state
estimation for road vehicles (Julier er al., 1995), induction
motors (Akin, 2003), quuteminn motion {(Joseph and
Viola, 2003), visual contour tracking (Li and Zhang, 2002)
and parameter estimation for time series modelling
(Wan et al., 2000)) and neural network training.

In present study, we have used the new alternative
filter to space application and the results obtained show
the performance of UKF over EKF. The UKF was able to
converge with poor initial estimates of the parameters,
while the EKF was shown to have a greater tendency to
diverge due to poor initial estimates of the parameters.
In general, it can be expected that the performance of the
UKEF is better than that of the EKF, since it propagates the
state noise more accurately.

CONCLUSION

In this study, we have argued the principle difficulty
for applying the Kalamn filter to non linear systems is the
need to consistently predict the new state and
observation of the system. We have introduced another
approach of filtering, called the unscented filter, which
eliminates the need explicitly derive Jacobian matrices,
permitting the implementation of highly complex nonlinear
system models previously considered intractable. The
benefits of the algorithm were demonstrated in realistic
example and we anticipate that the technique described
should find widespread application in control and

estimation applications.
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