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Abstract: Tn this study, supply chain demand is forecasted with different methods and their results are
compared. In this research traditional time series forecasting methods including moving average, exponential
smoothing, exponential smoothing with trend at the first stage and finally two machine leaming techniques
mcluding Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), are used to forecast the
long-term demand of supply chain. By using the data set of the component supplier of the biggest Tranian's car

company this research is then implemented. The comparison reveals that the results producing by machine
learmng techmques are more accurate and much closer to the actual data in contrast with traditional forecasting

methods.
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INTRODUCTION

This study is concerned with forecasting an Tranian’s
car components supplier company, a time-series with
trend and seasonal patterns.

Some machine leaming techmques, including artificial
neural networks and support vector machines, are
compared to the more traditional time-series forecasting
methods, including moving average, exponential
smoothing without and with trend as MAPE (Mean
Absolute Percentage Error) index. These methods are
chosen because of their ability to model trend and
seasonal fluctuations present in suppliers’ data. The
objectives of this study are three-fold: (1) to show how to
forecast wholesaler sales using ANNs and SVMs and
(2) to display how various time-series forecasting
methods compare i their forecasting accuracy of
wholesaler sales.

The reasons for this study are both theoretical and
practical. Theoretically speaking, how to improve the
quality of forecasts 1s still an outstanding question
(Granger, 1996). For data contaiming trend or/and seasonal
patterns, failure to account for these patterns may result
in poor forecasts. Over the last few decades several
methods such as moving average, Halt method, Winters
exponential smoothing, Box-Jerkins ARIMA model and
multivariate regressions have been proposed and widely

used to account for these patterns. ANN is a new
contender in forecasting sophisticated trend and seasonal
data. Franses and Draisma (1997) suggested that ANNs
be used to investigate how and when seasonal patterns
change over time.

Industry forecasts are especially useful to
wholesalers who may have a greater market share. For the
supply chains, Peterson (1993) showed that larger retailers
or wholesalers are more likely to use time-series methods
and prepare industry forecasts, while smaller retailers
emphasize judgmental methods and company forecasts.
Better forecasts of wholesaler sales can umprove the
forecasts of individual retailers because changes in their
sales levels are often systematic. For example, around new
years, sales of most retailers increase. Moreover, models
of forecasting individual store sales will often include
assumptions about mdustry-wide sales and market-share.

Indeed, accurate forecasts of wholesalers' sales have
the potential to improve individual stores' sales forecasts,
especially of larger retailers who may have a significant
market share.

In the past decade, ANNs have emerged as a
technology with a great chance for identifying and
modeling data patterns that are not easily discernible by
traditional statistical methods in many fields of science,

such as computer science, electrical engneering and
finance. Q1 and Maddala (1999) and Qi (1999) showed that
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many studies in the finance Iliterature evidencing
predictability of stock retuns by means of lnear
regression can be improved by a neural network.
Q1(1996) did comprehensive survey of ANN applications
n finance.

ANNs mcreasingly  used
management, marketing and retailing. The reader 1s
referred to Krycha and Wagner (1999) for
comprehensive swvey of ANN applications
management and marketing. Zhang et al. (1998) provided
a comprehensive review of ANNs' usage in forecasting.

Jeong et al. (2002) have presented a computerized
system for implementing the forecasting activities

have also been n
a

in

required i SCM. For building a generic forecasting model
applicable to SCM, a linear causal forecasting model has
proposed and its coefficients have efficiently determined
using the proposed genetic algorithms (GA), canonical
GA and guided GA (GGA). Compared to canomcal GA,
GGA adopts a fitness function with penalty operators and
uses Population Diversity Index (PDI) to overcome
premature convergence of the algorithm. The results
obtained from two case studies show that the proposed
GGA provides the best forecasting accuracy and greatly
outperforms the regression analysis and canonical GA
methods.

Willemain et al. (2004) forecasted the cumulative
distribution of intermittent (or wregular) demand, i.e.,
random demand with a large proportion of zero values,
over a fixed lead time using a new type of time series
bootstrap. To assess accuracy in forecasting an entire
distribution, they adapted the probability mtegral
transformation to intermittent demand. Using nine large
industrial datasets, they showed that the bootstrapping
method produces
distribution of demand over a fixed lead time than do
exponential smoothing method and Croston’s method
(Croston, 1972).

Hilas et al. (2006) used forecasting models for the
monthly outgomg telephone calls in a University Campus.
In this study, three different forecasting methods,
mcluding  Seasonal  Decomposition,  Exponential
Smoothing and SARIMA method, have been used.
Forecasts with 95% confidence mtervals were calculated

more accurate forecasts of the

for each method and compared with the actual data.

Hill et al. (1996) showed that ANNs significantly
outperform traditional methods of forecasting when
forecasting quarterly and monthly data. Although
theoretically speaking ANN may improve on the
traditional time-series methods in forecasting a series with
trend and seasonal patterns, Nelson ef al. (1994) found
that ANNs do not model the seasonal fluctuations mn the
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data very well. Foster et al. (1992) found that exponential
smoothing is superior to ANNs in forecasting yearly data
and comparable m forecasting quarterly data. Monthly
data were not used in their study. Winters exponential
smoothing model, in particular, has been found to provide
superior forecasts in a variety of contexts. Dugan e al.
(1994) showed that the Winters model can outperform
both the Census X-11 and the random walk models in
predicting a variety of income statement items (i.e., sales,
earnings before interest and taxes, interest expenses,
earmngs before taxes, tax expenses and earmngs before
extraordinary items). This result was derived from a
15-year sample (1971-1985) of 127 manufacturing and
retailing firms. Alon e# al. (2001) compared artificial neural
networks and traditional methods mcluding Winters
exponential smoothing, Box-Jenkins ARIMA model and
multivariate regression. The results indicated that on
average ANNs fare favorably in relation to the more
traditional statistical methods, followed by the Box-
Jenkins model. The derivative analysis has showed that
the neural network model is able to capture the dynamic
nonlinear trend and seasonal patterns, as well as the
interactions between them.

In the 1980s, the overall impression was that for
immediate and short-term forecasts ARIMA models
provide more accurate forecasts than other econometric
models (O'Donovan, 1983). This perception was real-
firmed when more recently, Dugan et al. (1994) showed
that the ARTMA model forecasted income statement items
more accurately than Census X-11 and random walk
models.

For time series with a long listory, Box-Jenkins and
ANNs provided comparable results (Sharda and Pati,
1992; Tang et al., 1990). The ARIMA model is the same or
superior to ANNs in terms of MAPE in a variety of
applications. Despite its old tradition, the Box-Jenkins
approach is a formidable competitor in the forecasting
area.

Support Vector Machines (SVM), a more recent
learming algorithm that has been developed from
statistical learning theory (Vapnik, 1995; Vapnik et al.,
1997), has a very strong mathematical foundation and has
been previously applied to time series analysis
(Mukherjee et al., 1997; Ruping and Morik, 2003).

We use two machine learning techniques, including
Artificial Neural Network (ANN) and Support Vector
Machines (SVM) for forecasting long-term demand. As
benchmarks of comparison to machme leaming
techniques, we forecast same data with traditional time
series forecasting methods, including moving average,
exponential smoothing and exponential smoothing with
trend.
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At the end of this study, Robustness of presented
forecasting methods is examined using a new data set. Tt
15 shown that machine learming techmques can forecast

more accurate than traditional time series forecasting
methods.

ARTIFICTIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are a class of
generalized nonlinear nonparametric models inspired by
studies of the bram and nerve system. The comparative
advantage of ANNs over more conventional econometric
models is that they can model complex, possibly nonlinear
relationships without any prior assumptions about the
underlying data generating process (Hormik et al., 1989,
1990; White, 1990). The data-driven nature of ANNs
makes them appealing in time series modeling and
forecasting. ANN models overcome the limitations of
traditional forecasting methods, mcluding
misspecification, biased outliers, assumption of linearity
and re-estimation (Hill et al., 1996). ANNs have been
shown to be universal approximators, a property which
makes them attractive in most forecasting applications. In
additon, ANNs are more parsimomious than linear
subspace methods such as polynomial and trigonometric
series in approximating unknown functions.

Despite the many desirable features of ANNs,
constructing a good network for a particular application
is a non-trivial task. It involves choosing an appropriate
architecture (the number of layers, the number of units in
each layer and the connections among units), selecting
the transfer functions of the middle and output units,
designing a training algorithm, choosing initial weights
and specifying the stopping rule.

It is widely accepted that a three-layer feed-forward
network with an identity transfer function in the output
unit and logistic functions in the middle-layer units can
approximate any continuous function arbitrarily well given
sufficient amount of middle-layer units (White, 1990).
Thus, the network used in this research is a three-layer
feed-forward one that is shown in Fig. 1.

The inputs (similar to the regressors used in the
multivariate regression model) are connected to the
output (similar to the regress and) via a middle layer. The
network model can be specified as:

S =X, o) +e =0y + E@]F(Zﬁqxq +Bo) &
= i

where, S, are the wholesaler sales at time t; X is a vector
of regressors that are exactly the same as the ones used in
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Fig. 1: A three-layer feedforward neural networlk
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Fig. 2: MAPE mdex change trend graph

the multivariate regressions. n is the number of units
in the middle layer, is a logistic transfer function
F (a) = 1/1+exp (-a)), ¢, represents a vector of coefficients
{or weights) from the middle to output layer units and [,
represents a matrix of coefficients from the input to
middle-layer urts at time t. The details of the specification
and estimation of our ANN model is shown below:

Imtial parameter values: The nitial values of «, and 3,
are generated using a uniform distribution. Because
of high records in the data set, it 13 not very
important to use sophisticated method in order to
generate initial value for ¢, and 3,

Traiming algorithm: The ANN network is tramed
using the Levenberg-Marquardt's algorithm which
has been found to be the fastest method for training
moderate-sized feed-forward neural networlks of up to
several lnmdred weights (Demuth and Beale, 1997)
Number of middle-layer umts

Although we can use Bayesian regularization in the
tramning algorithm in order to measure how many network
parameters are being effectively used by the network
regardless of the total number of parameters in the
network (MacKay, 1992), but we experimented with
several different numbers of middle-layer units and
mumber or layers and found that the final number of
middle-layer units and final number of layer are set to
three and three, respectively. Results of each case MAPE
index are shown n Fig. 2.
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SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) are a newer type of
universal function approximators that are based on the
structural risk minimization principle from statistical
learning theory (Vapnik, 1995) as opposed to the empirical
risk minimization principle on which neural networks and
linear regression, to name a few, are based. The objective
of structural risk minimization is to reduce the true error on
an unseen and randomly selected test example as
opposed to NN and MLER, which minimize the error for the
currently seen examples. Support vector machines project
the data into a higher dimensional space and maximize the
margins between classes or minimize the error margin for
regression. Margins are soft, meaning that a solution can
be found even if there are contradicting examples in the
training set. A complexity parameter permits the
adjustment of the number of error versus the model
complexity and different kernels, such as the Radial Basis
Function (RBYF) kemnel, can be used to permit non-linear
mapping into the higher dimensional space.

The technique corresponds to minimization of the
following function:

Y, -T{x)

F(f) = %i

=

102
—||f

Where:

¥ —fix)

B 0 if|Y, - fix)|<e
- otherwise

Y, - f(x)|

13 Vapnik's & Insensitive Loss Function (ILF). An
umportant point is that this function assigns zero loss to
errors less than, & thus safeguarding against over-fitting.
In other words, this function doesn't fit a crisp value but
mnstead fits a tube with radius € to the data. This 1s similar
to fuzzy description of the function. The other important
aspect of this loss function that it minimizes a least
modulus but not least squares. The € parameter also plays
an important role by providing a sparse representation of
the data, as we shall see later.

Vapnek (1998) showed that the minimizer of the
objective function under very general conditions can be
written as:

fix)= iCIK(X,Xl)

where, ¢, are the solution of a quadratic problem.
X is equal to(x, %) is the so-called kernel function that
defines the generalized immer product and 1s a commonly

used tool to perform nonlinear mapping. Several choices
for the kemel function are available, such as Gaussian,
sigmoid, polynomial, splines. The only item defined by
the data is the coefficients ¢, which are obtained by
maximizing the following quadratic form:

Cl

N N N
Min(E(c)) = % 2 ceKix,x,) - Zc‘Y‘ + :—:E
i=1 i=1

i,j=1
Subject to the constramnts:

H
Zc‘:o,—ESqSE,i:I...N
P N N

where, parameters C and € are regularization parameters
that control the flexibility or complexity of the SVM. These
parameters should be selected by user using resampling
or other standard teclhmiques. However, it should be
emphasized that, in contrast to the classical regularization
techniques, a clear theoretical understanding of C and is
still missing and is a subject of theoretical as well as
experimental efforts.

Here, an appropriate kernel function 1s found for
SVM that it can forecast with least error. In order to
achieve to this aim, 4 different kernel function, including
linear, polynomial, RBF and sigmoid, are examined. Errors
of these forecasts are measured as MAPE mdex.

Based on result presented in Fig. 3, the best type of
kernel function for this kind of data is linear. The output
of different kernel functions and their solving time are
shown mn Fig. 3 and 4 respectively.

195 191.635
190 185475
185
g 180
175 171.828 171.283
176
165 |_|
1604 T T v
RBF Linear Polynomial Sigmoid

Kernal funetions

Fig. 3: Output of different kernel functions

= 1200 1092.5
‘E 1000
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}g 400
(8 202 6'&'3 T 8'El4 L} T
RBF Linear Polynomial  Sigmoid
Kernal functions

Fig. 4: Solution time of different kernel function
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BENCHMARK STATISTICAL METHODS

Moving average: This method considers the average of n
previous periods as a forecast for the next period. The
problem 1s determining optimum value for n In this
research, we considered a range of values for n and then
determmed MAPE index in order to select best value of n.
We found 150 as optinmum value for n and MAPE
=167.7526 consequently. Result of using this method is
shown in Table 1.

Exponential smoothing: These models use a weighted
average of past values, mn which the weights decline
geometrically over time to suppress short-term
fluctuations in the data. The following formula 1s used to

forecast:

E,=F +aA -F)

Where:
F., =Forecasted demand at time t+1
A, =Real demand at time t

By using this method on data set, the demand was
forecasted and found that the best value for ¢ 15 0.010.

With this value, forecasting error was measured and
determined 167.797 as MAPE index in the best
combination (Table 2).

Table 1: Result of using moving average technique

n MAPE n MAPE
2 179.2480 100 167.954
3 178.9230 150 167.753
4 176.9800 200 168.004
5 175.3200 250 167.990
10 171.9890 300 168.631
20 172.1426 400 168.978
30 170.8380 500 169.527
40 169.4190 600 169.255
50 168.7600 700 168.849
60 167.9443 800 169.350
70 168.0770 900 170.012
80 168.1070 1000 170.023
Table 2: Result of using exponential smoothing technique

o MAPE o MAPE
0.001 167.850 0.150 170.510
0.002 168.092 0.200 170.775
0.003 168.045 0.250 171.092
0.005 167.850 0.300 171.438
0.010 167.797 0.350 171.793
0.020 168.098 0.400 172.161
0.030 168.492 0.450 172.553
0.040 168.841 0.500 172.953
0.050 169.154 0.550 173.333
0.100 170.105 0.600 173.700

Exponential smoothing with trend: The simple exponential
smoothing method may provide an adequate future
forecast 1f no trend, seasonal or cyclical effects exit. If a
trend 1s present, the method can be extended to adjust
tow variable, the average level and the trend level. With
assumption of existence of trend in data series, formula 1s
used and then measured MAPE index m order to
determining «* and p*.

THI = B(FM - Ft.) + (1 - B)Tw FTL+1 =F

1
v T aTHI

Where:

T, =Demand trend at period t,,

F., =Forecasted demand at time t,,

A, =Real demand at time t

Ft,, = Forecasted demand with trend consideration at
period t,,

Using this method, the best value for ¢ and [ were
found 0.02 and 0.05 respectively. In this combination,
forecasting error 1s determined 170.081 as MAPE index
(Table 3).

Comparisons and models validity: Tn order to assess
stability of proposed methods, they are tested on raw data
sets and MAPE index is calculated for their results again.
The least amount of MAPE which is resulted from each
method is shown in Table 4. Results show that proposed
ANN 1n this research can be applied in more efficient way
than previous classic methods for forecasting demand in
supply chain.

Table 3: Result of using exponential smoothing with trend technique

P

o 0.05 0.10 0.15 0.20 0.25

0.01 170.116 171.228 174.940 180.873 187.036
0.02 170.081 173.813 177.830 181.227 186.638
0.03 170.950 174.481 178.418 184.865 191.736
0.04 171.617 175.199 180.652 186.577 191.122
0.05 172,122 176.193 181.492 186.049 190.122
0.10 173.253 176.452 179.242 181.738 184.775
0.15 173.131 175317 177.489 180.427 184.003
0.20 173.020 174.889 177.332 180.467 183.921
0.25 173.149 175.046 177.605 180.744 184.042

Table 4: Comparison and models validity by MAPE index

Forecasting Testing data Training data
techniques set (rank) set (rank)
Moaving average 167.753 (2) 180,604 (3)
Exponential smoothing 167.797 (3) 179.791 (9
Exponential smoothing 170.081 (4) 187.051 (5)
with trend

Support vector machines 171.282 () 178.540 (2)
Artificial neural network 163.310 (1) 169141 (1)
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CONCLUSIONS

In this study, some machine learning techniques,
including artificial neural network and support vector
machines, are used to forecast demand n supply chain.
The process contained two steps. In the first step, an
artificial neural network with three layers and three middle
units was trained by using sensitivity analysis, then 4
different kernel function was used for finding best kernel
function and parameter combination in SVM algorithim,
then three traditional forecasting methods was used to
forecast. Forecasting errors measured by using MAPE
index in all methods. Results showed that artificial neural
network can forecast precisely better than other methods.
Best parameter combination of each method is used to
comparison and model validity in the next step. In the
second step, efficiency of proposed models measured
with raw data. Results showed again that artificial neural
network can forecast precisely in comparison with other
traditional forecasting methods and SVM.

Rank of each method in both training and testing
steps shows that results of SVM method are improved so
that its rank 13 2, after ANN method. This finding shows
that structure of data in testing set has changed probably
so that linear kernel function could forecast better than
past.
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