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Abstract: Tn this study, a transform domain based adaptive noise cancellation algorithm is proposed to enhance
noise carrying speech signals. The algorithm deals with situations where the microphones should locate in
close proximity, as they cancel out the crosstalk effects. In other words, the source of the noise signal 1s not
available separately and is independent of the desired speech signal. This is the case in mobile phones and
hands-free systems, where the smallness of the dimension of the applied speech enhancement system 1s
desirable. In the proposed algorithm the Discrete Sine Transform (DST) 1s used as self orthogonalizing
transform to address the eigen-spread problem of adaptive filter, whereas Least Mean Mixed-Norm (L.MMN)
adaptation algorithm and Symmetric Adaptive Decorrelation (SAD) structure are applied to improve the
convergence rate of the adaptive filter and make a considerable inprovement in the performance of the noise
cancellation procedure. Also, the Voice Activity Detection (VAD) is used to reduce the computational costs
and decrease the execution time. However in this study, there was an utmost attempt to consider all of the
practical problems, while the mimmum simplifying assumptions are made. The simulation results have proven
the robustness of this algorithm compared with commonly used algorithms, in the sense of SNR and MSE
improvement and speech intelligibility.
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INTRODUCTION Primary
Signal __J--_____.““s"r S, +HN, Output
. source O ME —
It can be mathematically shown that the convergence S, \
rate of the steepest descent based adaptive algorithms
such as LMS and LMMN 1s highly dependent of the Unknown )
elgen-structure of the correlation matrix (Cowan, 1987). channel HN,
The problem of a poor eigen-structure is commeon in noisy Vs
acoustic environments because of the presence of multi- - Adaptive
path signals (Tinati et al, 2008). In fact, in such cases, the gﬁrliz T T filter
correlation matrix may even be ill-conditioned. Tt has been N, 7 .

shown that a self-orthogonalizing transformation of the
mput speech signal to adaptive filter can result m a
gradient algorithm whose convergence rate is essentially
mdependent of the underlying eigen-structure of the
signal correlation matrix (Beaufays, 1995). For this reason
the Discrete Sine Transform is used as orthogonalizing
fimetion to enhance the LMMN algorithm in our adaptive
noise canceller system.

In general, standard Adaptive Noise Cancellation
(ANC) mechamism 1s composed of two main elements: the
primary microphone and the reference microphones
(microphone). The primary microphone is the microphone,
which contains the desired speech signal that 1s corrupted
by a distorted version of the noise signal of reference
microphone. The noise cancellation procedure involves

Fig. 1: Block-diagram of the conventional adaptive noise
canceller

using the reference noise signal, to estimate the noise
component of the primary signal. This estimation 1s then
used to cancel out the noise component of the desired
speech signal at the primary microphone. In this
mechanism, it 18 assumed that the reference microphones
are far enough from the primary microphone so that the
desired speech signal of the primary microphone does not
leak into the reference microphone. The block-diagram of
the conventional adaptive noise canceller is illustrated in
Fig. 1.
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In many applications, such as in mobile and hands-
free phones, speech enhancement systems are expected
to be small in size (Bouquin, 1996, Martin, 2001). Hence
the distance between reference and primary microphones
should be very small (in the range of mm) But
microphones located in close proximity, undergo serious
crosstalk effects due to signal leakage (Zeng and Abdulla,
2006). In other words, the performance of Multi-Channel
Adaptive Noise Canceller (MANC) is highly dependent
on signal leakage, from primary microphone to reference
microphones, so that, the higher the signal leakage
intensity, the lower the performance and convergence rate
of MANC. Therefore, the necessity to develop such a
robust algorithm that depends less on the amount of
signal leakage and crosstalk effect between microphones
is obvious.

So far, several two-channel Crosstalk Resistant ANC
(CRANC) methods have been investigated by
Mirchandani et al. (1992), Kuo and Peng (1999) and
Madhavan and Bruin (1990), but they are relatively
computationally expensive and somewhat unstable.
Zeng and Abdulla (2006) proposed a new Multi-Channel
Crosstalk Resistant ANC (MCRANC) that extends the
two-channel CRANC method to Multi-channel
processing. Although results of the given conditions are
good, but it assumes that the environment remains
unchanged during detected Voice Periods (VP), which is
not a correct assumption in non-stationary environments.
Furthermore, 1t assumes that the adaptation algorithm
converges to its steady-state values during Non-Voice
Periods (NVP). However, this assumption would not hold
in practical applications of ANC, specifically when the
NVP is so small and therefore the adaptive mechanism
would not have enough time (not sufficient iterations) to
get converged.

In this study, a transform domain robust multi-
channel crosstalk resistant ANC based on Symmetric
Adaptive Decorrelation and Least Mean Mixed-Norm
adaptation algorithms is proposed. Tt has been shown that
using SAD algorithm in the proposed method would
mnprove the MSE performance and the output speech
signal quality, while applying LMMN algorithm in the
adaptation mechanism would significantly improve the
convergence rate of the adaptation procedure, even if the
NVPs are very small in length. Furthermore, the Voice
Activity Detection is used to control the noise
cancellation procedure mn the manner described later, so
that computational cost will decrease significantly.

MATERIALS AND METHODS

Transform domain adaptive filtering: Transform domain
adaptive filtering can lead to an improvement in the
convergence properties of the standard TLMS algorithm.
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Let s be the input the vector to LMS FIR filter. In what
follows, the orthogonal transform of s is indicated by §
and is computed as:
=Ts (D
where, T 1s the orthogonal transform. The optimal weights
1n transform domain are given by (Beaufays, 1995).
Wi = (T Wy, (2)
where, W, and W, are the optimum weight vectors in
transform domain and time domain, respectively.

Tt can be mathematically shown that the convergence
rate of the steepest descent based algorithms such as
LMS and LMMN are highly dependent of the eigen-
structure of the correlation matrix (Cowan, 1987). The
problem of a poor eigen-structure arises because of the
correlation between signals arriving at the microphone
array. On the other hand the self-orthogonalizing
transformation of the input array vector can result in a
gradient algorithm whose convergence rate is essentially
independent of the underlying eigen-structure of the
signal correlation matrix. Since discrete sine transform, is
real valued and provides good orthogonalization
property, we use this transform in the proposed structure.

Defimng x as the received signal (output of
microphone array), its DST can be calculated by:

opt

3

. it . ( kng
Sy = ¥ s(n)sin L k=12 N
)= Xs) {NHJ

where, N 1s the No. of microphone elements.

Symmetric adaptive decorrelation: The performance of
speech enhancement systems, based on adaptive filtering,
is highly dependent on the quality of the noise reference.
In other words, the noise signal in the reference and
primary microphones must be sufficiently coherent to
obtain desired noise reduction. Furthermore, any leakage
from the primary speech signal mto the reference
microphone must be avoided, since it results in signal
distortion and poor noise cancellation (Gerven and
Compernolle, 1995). To illustrate the problem, the block
diagram of a system with signal leakage followed by the
feedback implementation of SAD structure, is shown in
Fig. 2. In Fig. 2, the signal leakage problem from channel
1 to channel 2 and vice versa is shown within the red
dashed box. In this box, h; and h, are the column vectors
of the corresponding impulse responses of the unknown
channels, which need to be estimated by the adaptive
mechanism. In continue for the sake of estimating this
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Fig. 2: Block diagram of a system with leakage followed by the SAD structure

unknown leakage chamnels, the feedback implementation
of SAD structure is obtained by placing two adaptive
filters w, and w, mn a feedback loop as shown m Fig. 2.
These filters are also column vectors. The purpose of the
SAD structure is to obtain the clean signals s, and s, in its
output, by processing on the corrupted and mixed version
of these two signals in transform domain, namely ¥ @
and ¥,( . So, the input signals of SAD structure, ¥,1)
and %™ are defined as follows:

(=8 )+ §1Th1 (4

¥2 (1) :§1(n)+§?h2 (3)

The symbol T is used as the transposition operator.
The corresponding outputs in transform domain are 0,(n)
and U,(n) and defined as:

(6)

0y () = §, () — i w,
i, (n) =§,(n) — i/ w, (7
where, 9; and U, are column vectors of the same

dimension as w, and w,. By replacing Eq. 7 into Eq. 6 we
obtain:

i, ()

(8)

= V() -Fw
I—WITWE Fm-y w)

where, ¥; is a column vector of the same size as w,. The
relations for error estimate and tap weight adaptation
formula based on NLMS algorithm for filter w,, are
obtained as follows:

9

&(m=1,(n) =¥, (n)-0}w,

w,(n+1)=w,(n)+Ki,(n)a,

(10}
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Where:

o+ i

W=

In the same manner, we obtain the relations for error
estimate and tap weight adaptation formula for filter w,.

Least mean mixed-norm algorithm: The LMMN
adaptation algorithm is proposed by Chambers et al.
(1994) m order to improve the convergence rate of the
conventional LMS (or NLMS) adaptation algorithm. This
method is based on the modified cost function to be
minimized. The modified cost function is defined as
follows:

T =B} + (- VE{* () (L
where, the mixing parameter v, lies in the interval O<v<1.
For operation m a statistically non-stationary
environment, v may be adapted to match appropriately the
properties of the measured signal. Considering the cost
function defined m Eq. 9, the following recursion formula
for tap weight adaptation of the LMMN algorithm is
obtained:

W +1)= win) + 24y ppgrem) + 20 - Ve’ mkm - (12)
where, w (1) 18 the column vector of the tap weights, x ()
15 the column vector of the same size as w (n) of the input

samples, e (n) is the error signal and Py 18 the
adaptation gain of the LMMN algorithm.

PROPOSED STRUCTURE

Describing multi-path propagation environment:
Suppose the speech signal s (n) and the noise signal n (n)

are generated by independent sources. As shown in
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Fig. 3, these signals arrive at microphone array
iM,, M,,...M,;} through multi-path and are acquired as
s(n) and n(n).

In Fig. 3, H; and H,, are the transfer finctions of the
intermediate media between the speech and noise sources
and the acquiring microphones, respectively. Hence, the
signal at microphone M, is:

xiny=s (n)+n (n) (13
where, i=0, 1, ... N and N is the No. of used microphones.

According to Fig. 3, M, 1s assumed to be the primary
microphone and the signal at this microphone is
denoted as the primary signal. The remaming signals x,(n),
i=1,2, ..N are considered as the N referential signals,

obtained from N referential microphones. From Fig. 3 we
have:

Fig. 3: Speech and noise propagation model

s =h_ (s (14)

n(ny=h_dnpnn) (15
where, hy(n) and hy(n) are the impulse responses
corresponding to the transfer functions, H; and H,,
respectively.

NLMS-based algorithm: The block diagram of the
proposed structure in transform domain, using NLMS
adaptive filter is shown in Fig. 4. As shown in Fig. 4, the
proposed structure employs a conventional adaptive FIR
filter, namely A and two SAD-based adaptive FIR filters,
namely w, and w,, in which the conventional NLMS
adaptation algorithm is applied for the estimation purpose.

The VAD algorithm is applied to detect the NVP and
VP states of the primary signal x; and then to drive the
adaptation algorithms of filter A and the filters of SAD
structure. In simple words, this algorithm detects the
voiced and silence frames of the input speech signal
using Zero Crossing Rate (ZCR), energy and the value of
autocorrelation function of each frame. For the sake of
clarity, an illustrative example of the input and output
signals of this algorithm is shown in Fig. 5.

Figure 6 shows that how the VAD algorithm is
applied to derive adaptive filter A and the adaptive filters
of SAD structure. According to Fig. 6, in each branch of
the VAD output, the active blocks are marked as grey
blocks. If the VAD output is zero, this means that the
primary signal x; contains silence frame and then the
coefficients of filter A will be updated and the SAD
structure is inactive. In the same way, if the VAD output
equals one, this means that the primary signal x; contains
voice frame and then the tap weights of the filters of the
SAD structure will be updated and filter A is inactive. The
output of the system 13 denoted as v..

N ¥, (o) Inverse |y, (n)
» vj o — DST |[—»
A Y transform
—_— W, |
% ‘ %, @
DST ® < VAD >——————1 ——_—— -
I transform _$
: Wi M
! " &M ~¥ Inverse
H yD— oD &— DST |—»
H -
- ¥ 44 1 ¥, (n) transform | y, (n)
X, X . ) 1
J e —r 1
% % / ;
J —’. DST L A7 - 1
- transform | o "' ¥ (@ 1
- - 1
Xy % I’ !
J —_— ) 1
7 1

Fig. 4: Block diagram of the proposed structure
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Fig. 5: An illustrative example of the input and output signals of the VAD algorithm

Output =0 =

A

v

SAD

Output=1

SAD

Output speech

Fig. 6: Operation of the VAD structure (Grey blocks are
active)

So, during NVP of the signal x,, it is assumed that
s(n) and s,(n); 1 = 1, 2,.. N are zero. Therefore, the
referential signals are used to cancel the primary signal.
So, we have:

fi, () = w i} + &(n) (16)
where, w, 1s the weight vector of adaptive filter A, 1e.,

W [ W W T (17)
with

oWy Li=12,N

(18)
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and n,(n) is the vector of referential noise signals.

(19)

fi(n) = [0, (n). , (nd, .., o, (m)]°
Where:

1, (m) =[i ()., @m-1,..80-L+1],i=12...N (20
We need to update the weights of filter A to mimmize
the square sum of error signal &(n) in Fig. 4. Here, the
NLMS algorithm is used to update the weight vector of
filter A. Also, it 1s assumed that the NVP is long enough
so that the NLMS algorithm has enough time to converge
to its optimum weight vector w°, so the error signal &(n)
reaches its optimum value ¢°(n). Thus, we will have:
&°(n) = fi, () — wrn(n) 21
During VP, which just follows non-voiced period, the
adaptive algorithm of SAD structure will start to update
and the weights of filter A will be frozen. So, the error
signal €(n) becomes:

€(n)=B(m +5§,(n) (22)

Where:
(23)

B{n) = -w's(n)+8°(n)

In practice, due to non-stationary noise sources, the
acoustic environment 1s dynamic and changes with time.
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So, the error signal &(n) may have some coherent
component with primary noise signal 0,(n). In other
words, due to non-stationary characteristics of the noise
source, the adaptive filter fails to efficiently cancel out the
noise from the primary signal. This can be interpreted as
the signal leakage from the primary signal X,(n) to the
error sighal €(n). We name this coherent component
g, (n) . So, the error signal e becomes:

&(n) = B(n)+ & () +&_, (n) (24)
and the primary signal is:
%, (n) = § (n) + fi, (n) (25)

As described above,

component & _ (n) is coherent with the primary noise
component i (ny. Inthe other hand, the error component
B(n) 1s coherent with the primary signal component 5, (n) .
To resolve this issue, we have used the SAD algorithm to
efficiently remove the error components from the primary

speech signal.

in one hand the error

LMMN-based algorithm: It 13 assumed that the NVP is
long enough so that the NLMS algorithm has enough time

to converge to its optimum weight vector. However, this
is not a correct assumption in practice, since the NVP
might have so small value in some situations, so that
NLMS adaptation algorithm would not reach its optimum
tap weights. For this reason, the LMMN algorithm is used
to update the tap weights of filter A. As it was mentioned
previously, the LMMN algorithm has higher convergence
rate compared with the conventional NLMS algorithm.

RESULTS AND DISCUSSION

Here, the simulation results for our proposed
transform-domain NLMS-based and LMMN-based
algorithms are obtained and compared with the time-
domain MCRANC algorithm given in (Zeng and Abdulla,
2006). The simulations are performed for three reference
microphones (N = 3).

Furthermore, tap lengths of filters A, w, and w, are
set to 60, 30 and 30, respectively. Also tap lengths of
filters A and B for MCRANC algorithm are set to 60 and
50, respectively. The step size parameter for all NLMS
algorithms is set to 2 and the LMMN mixing parameter is
set to 0.75 The clean speech signal and also the
corrupted speech signal (the signal at primary
microphone) with AWGN noise of variance 0.1 are
shown in Fig. 7. The output signals of three mentioned

Magnitude

Magnitude

2.0 23 3.0 3.5 4.0 4.5

Samples x10*

Fig. 7. (A) clean speech signal and (B) Noisy speech signal at primary microphone
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algorithms, including time-domain MCRANC algorithm
and transform-domain NLMS-based and LMMN-based
proposed algorithms are shown in Fig. 8 Also the mean
squared error plots for these algorithms are shown
in Fig. 9. The error is defined as the residual noise

component after the noise cancellation procedure. As it is
shown form Fig. 8 and 9, the NL.MS-based algorithm has
better error performance than MCRANC, while the
LMMN-based algorithm outperforms these two
algorithms.

10
(A
0.8
0.6
0.4

02

Magnitude

0.0

-0.2

-0.4

-0.6

0.8 2 2 r 2

Magnitude

Magnitude

0.0

2.0

Samples

2.5

45
x10%

Fig. 8: Output speech signals for (A) Tine domam MCRANC algorithm, (B) Transform domain NLMSA-based proposed
algorithm and (C) Transform domam LMMN-based proposed algorithm
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steady state

performance of these algorithms, the MSE plots for the
steady state of them are shown in Fig. 10. It 15 clearly seen
that the residual error of the proposed LMMN-based
algorithm is less than the others and so the cancellation
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ability of this algorithm is the best in both transition and
steady states. As mentioned earlier, the LMMN algorithm
has better convergence rate than the conventional NLMS
algorithm. As it 13 shown from Fig. 11, in the LMMN-
based proposed algorithm the squared error reaches its
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Fig. 9: MSE of residual noise for (A) Tune domam MCRANC algorithm, (B) Transform domain NLMSA-based proposed
algorithm and (C) Transform domam LMMN-based proposed algorithm
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steady state value very fast compared to the MCRANC
algorithm. Figure 11 shows the squared error of the two
algorithms at the begmning of a NVP. So, i situations
that the NVP 15 too small (for example smaller than about
500 samples), the MCRANC algorithm fails to efficiently

=103

remove the noise component, while the LMMN-based
proposed algorithm successfully cancels out the noise
component, even if the NVP 1s too small. This property
will reduce the error propagation m the subsequence
frames.
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Fig. 10: MSE of residual noise in steady state for (A) Time domain MCRANC algorithm, (B) Transform domain NLMSA-
based proposed algorithm and (C) Transform domain LMMN-based proposed algorithm
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Fig. 11: Convergence rate of (A) NLMS-based proposed algorithm and (B) LMMN-based proposed algorithm

CONCLUSION

In this study, a transform domain adaptive noise
cancellation system based on SAD structure and LMMN
adaptation algorithm mmplemented on microphone array,
is proposed. The presented noise canceller can be used in
situations in  which the primary
microphones need to be located in very close proximity.
Mobile phones and hands-free systems are the examples
of such applications in which the smallness of the
dimensions is desirable.

Also, the proposed algorithm 1s robust against
environmental variations such as noise source with non-
stationary characteristics. Finally, the simulations are
presented to evaluate the performance and reliability of
the proposed system. The results show the robustness
and reliability of the proposed multi-chammel crosstalk
resistant noise canceller.
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