——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 9 (4): 689-697, 2009
ISSN 1812-5654
© 2009 Asian Network for Scientific Information

Java Versus .NET: A Comparative Analysis of Performance, Size and
Complexity of Credit Card Authorization Systems

S. Hafizah Ab. Hamid, M. Hairul N. Md. Nasir and H. Hassan
Faculty of Computer Science and Information Technology,
University of Malaya, 50603, Kuala Lumpur, Malaysia

Abstract: This study presents a comparative analysis of the performance, size and complexity in both the Java
and NET platforms. Two identical prototypes of a credit card authorization engine were developed using the
JAVA and NET programming languages mn order to measure and compare the performance of the authorization
process as well as to measure and compare the size and development complexity of these two programming
languages. The architecture of the singleton design pattern of a credit card authorization system using a multi-
threading techmque presented in this study supports the dynamic tuming of the size of the thread pool at
runtime. Tt can be observed that the performance of the authentication engine in the NET platform is slightly
better than in the Java platform. Lines of Code (LOC) have been chosen as a metric to measure the size of the
multi-threaded credit card authorization system whereby the total length of the multi-threaded credit card
authorization system using a thread pool in NET 1s 5048, while in Java it 1s 5199. The Cyclomatic Complexity
number for the multi-threaded credit card authorization systems indicates that the NET version is slightly less

complicated than the JTava version.

Key words: Multi-threaded, single-threaded, singleton design pattern, shared memory pool, efficiency

INTRODUCTION

Credit card authorization 13 a process whereby the
card 1ssuer decides whether to approve or decline
requests to accept transactions performed by cardholders.
The approval of the transaction is based on a series of
validations of the card’s risk management profile to verify
that the cardholder’s account is open, the transaction
armount 1s within the available credit limit, the transaction
is coming from the legitimate card and many other card-
related validations. The validation of the card’s risk
management profile can be classified into two categories,
namely card restriction validation and online fraud
validation.

Card restriction validation includes the financial and
non-financial verification related to the card whereas
online fraud validation involves cryptographic operation
through the Host Security Module (HSM) to verify the
security aspect of the authorization m order to determine
the legitimacy of the card. The HSM is an external device
connected to the authorization host that keeps the card
issuer’s secret information in tamper-resistant hardware,
which 1s used to perform the verification of the credit card
transaction. Due to various validations being carried out

in the authorization system for each credit card
transaction, the authorization process will take some time
to be completed. Moreover, slow and expensive
input/output operations during the card restriction and
online fraud validation through the database and HSM
also cause some delays in the authorization process.
Besides that, the validation of the security aspect of the
card itself also takes some time to process due to the
complexity of the algorithms mvolved. With the old
payment processing methods of the conventional system,
the credit card transaction takes longer during the
authorization processing. As a result, the performance of
this type of authorization system is affected whenever the
number of authorization processes increases. This causes
some of the simultaneous authorizations accepted at a
single point in time not to be able to respond within the
allowed timeframe. Those failure transactions are
classified as timed out in the context of electronic financial
Services.

In this project, a multi-threaded authorization system
is developed to improve the response time of the credit
card authorization process and to overcome the slow
sequential authorization processing of the single-threaded
model of current credit card authorization systems. This

Corresponding Author: Mohd Hairul Nizam Md. Nasir, Faculty of Computer Science and Information Technology,
University of Malaya, 50603, Kuala Lumpur, Malaysia
Tel: +603-79676435 Fax: +603-21784965

J. Applied Sci., 9 (4): 689-697, 2009

multi-threaded authorization system is constructed in two
different platforms, namely NET and Java, to illustrate the
different implementation approaches to this model in
these platforms. These platforms are chosen to evaluate
the complexity of multi-threading implementation using
modern programming languages. Moreover, these
languages are the architecture that should be deployed in
modern credit card authorization systems. Apart from that,
this project also compares the performance as well as
the effort required to implement the multi-threading
technique in the credit card authorization system i both
plattorms. Throughout this project, multi-threading
implementation enables multiple tasks to be carried out
concurrently during the authorization process. Multiple
threads are wused to perform different validation
processing tasks and they save the 1dle time of waiting for
a reply from the slow I/O events while the other threads
can still carry out their own processing. This can speed
up the throughputs of the process and also reduce the
number of timeout transactions, which ultimately
optimizes the cost of the authorization service.

According to Norton and DiPasquale (1997), a thread
15 an independent flow of control within the process and
it has its own sequence of mstructions to execute. A
thread would share the same address space as the
process. Each process contains at least one thread and
the imtial thread is created automatically by the system
when the process starts up. In the multi-threading
technicue, multiple actions can be performed in a program
that leads to multitasking. Therefore, several operations
derived from the card’s risk management profile can be
executed concurrently within the single memory space of
the process and all the spawned threads can still share the
same system resources during the authorization process
of the credit card transaction. Multi-threading will not
only enable multiple simultaneous authorization requests
to be processed in less time but also optimize the system
resources while waiting for slow T/0 operations in an
authorization process. Apart from that, the multi-threading
technique can provide a better response for the user
(Broberg et al., 2001). Tt allows the user to perform other
tasks simultanecusly while running the authorization
process in the background.

There are two approaches to multi-threading
implementation, which are either through the kernel thread
or the user thread. The significant distinction between
these two approaches 1s related to the context switching
between the multiple threads running in the process.
Context switching is the scheduling scheme to
accommodate the resources for both threads where one
thread’s execution 13 suspended and swapped off and
another thread 1s swapped onto and its execution is

690

resumed. Through the kemel thread, the context switching
is pre-emptively scheduled by the kernel while the context
switching of the user thread 1s tailored based on the
application without any mteraction with the kernel.

In this project, one-to-one mapping of the user thread
to the kernel thread is chosen in the multi-threading
technique because it 18 more efficient compared with the
typical user thread. The typical user thread does not
increase the percentage of CPU time that the operating
system gives to a process (Krisztian et al., 2000). As a
result, the performance of the system 13 degraded when
user threads camot be executed while the kernel is busy.
Apart from that, it is simpler to use this type of thread
because all the aspects of thread management are handled
by the operating system kemel and, furthermore, writing
a good thread management for user threads 1is
complicated.

There are several basic operations used to control a
thread in this project. Like a process, a thread 1s created,
runs and 1s only deleted after it completes its execution.
Since the authorization process is considered a short life
task and also has a high number of requests at any single
of time, there are two types of thread models that can be
used n conjunction with the multi-threading techmque.
These models are thread-per-request and a thread pool.
Thread-per-request creates a brand new thread for each
task and once the thread has fimshed with the task, the
thread 1s disposed of, whereas, through the thread-pool
model, a thread is pulled from the pool of threads and
assigned to the task. Upon completion of the task, the
thread will add itself back to the pool to wait for its next
task assignment.

In this project, the thread-pool model is chosen to
handle the authorization process of the credit card system
because it saves the work of creating brand new threads
for this kind of short-lived task as well as mimmizing
overheads associated with getting a thread started and
cleaning it up after its termination. By creating a pool of
fixed worker threads, each worker thread from the pool can
be recycled over and over again for subsequent tasks.
With this model, the response time of the authorization
process is also reduced because the worker thread is
already started and it 15 simply waiting to be assigned to
a task.

When multiple threads are running together, they will
invariably need to communicate with each other in order
to their The of
synchronization can ensure consistency and access to
the shared data. In this project, specific classes, namely

synchronize execution. use

queue, mutex and timer, have been applied apart from the
platform-dependent thread life cycle and commumnication
methods, to ensure safe threads are implemented into the

J. Applied Sci., 9 (4): 689-697, 2009

Shared memory
pool

Card 1
Card 2
Card 3
Card N

Fig. 1: Singleton design pattern-Shared memory pool

multi-threaded authorization engine as well as to avoid
hitting the commeoen pitfall of concurrency controls that
leads to an undesirable performance penalty. With the
thread synchromization method, the thread-pool
unplementation shows tremendous speed mmprovement
compared with the thread-per-request implementation.
Since the aim of the authorization system is to allow
authorization to be processed i less time, the card
mformation has been loaded from the system database to
the shared memory pool of the system to accelerate the
process of card restriction validation. This is performed to
enable the authorization thread to obtain card mformation
from the shared memory pool through a bmary search
during the authorization process that could help in saving
time instead of reading similar information from the system
database mvolving an expensive /O operation. In order
to allow multiple threads to access the only shared
memaory pool, a singleton pattern is applied in this project.
This design pattern allows only a single instance of a
class to be created during runtime and this nstance could
be reused and made accessible to all the other objects.
Through the singleton design pattern as shown in
Fig. 1, a class 1s constructed with only one mstance that
can be accessed globally within the multi-threaded credit
card authorization system. The singleton design pattemn
is applied to the card object, which is acting as a shared
memory pool that holds all the cards’ information for
authorization purposes. When the listener service is
activated, the listeing thread will load all the information
of the cards into random access memory through a
configurable array. After an authorization has been
received, a worker thread will obtain the only mstance of
the cards” object and perform a binary search through the
related array of the cards™ objects in order to retrieve the
information of the card related to the transaction from the
shared memory for authorization purposes. In this project,
a separate synchronization thread i1s imtialized in the
background of the authorization engine to browse the
system database for any modified card information
requinng updating into the shared memory pool. Once the
modified card information has been loaded to the shared

691

memory pool, the synchromzation thread will update the
system database to mark that the card has been
processed.

A singleton design pattern 1s applied to ensure that
all the workers threads can access the shared memory
pool for card information during authorization. Without a
singleton design pattern, shared memory pool
implementation 1s not possible in an object-oriented
environment. Through the shared memory pool, the
access time is faster and, hence, improves the response
time of the credit card authorization process.

MATERIALS AND METHODS

The research study was conducted from March 2007
until August 2008 at the Faculty of Computer Science and
Information Technology, University of Malaya. Data
gathering has been carried out to collect information from
various sources such as books, journals, articles and
reports from libraries as well as the Internet. Most of the
useful mformation was obtamed from the ISI Web of
Knowledge, TEEE, ACM, SpringerLink, ScienceDirect,
SCEAS System, digital libraries, current solution provider
manuals, payment system manuals
encyclopedia to accomplish the 1mtial research work. The
acquired information was used to determine the project’s
significance, plan, definition and scope. Analyses of the
preliminary resources and testing strategies required in
this project were identified and defined. Through the
project plan and defimition, the effort of the project could
be determined and identified.

With the multi-threading implementation approach,

and online

the authorization system will assign several threads to
perform the processing of the card’s risk management
profile for each credit card authorization. The singleton
design pattern was also revised to confirm that the
software 1s implemented accordingly. Evaluation has been
conducted to measure and compare the performance, size
and complexity between Java and NET in the credit card

authorization process. The performance of the

J. Applied Sci., 9 (4): 689-697, 2009

authorization system using a shared memory instead of a
database during credit card authorization processing was
evaluated. The mformation regarding the size and the
effort required to implement a multi-threaded authorization
system in these platforms was also evaluated.

Multi-Threading Implementation in NET and Java
NET and Java classes generally provide almost the same
functionalities from the developer’s perspective, although
the underlying implementation of threads at the operating
system level may be different, as it 1s not specified i the
run-time specifications. In this project, there are five
aspects of the implementation approach to multi-threading
in NET and Java that will be discussed. These aspects are
thread creation, thread state, thread management, thread
synchronization and thread pool.

Thread creation: There are two main techniques for
creating a thread m Java, either through the Thread
subclass or by implementing the Runnable interface. Both
techniques require a Run method to be defined so that the
new thread can execute this method during its creation.
However, the preferred method 15 to implement the
Runnable interface because it can be used to get around
the lack of multiple inheritances. In NET, a thread is
created through the ThreadStart delegate. The
ThreadStart delegate requires any void method that takes
no parameter as a reference method to be executed by a
new thread during its creation.

In thus project, NET provides more a flexible
approach than Java in terms of thread creation. However,
NET does not allow the passing of parameters from the
main thread to a new thread through this reference
method, which has constrained the NET capabilities
against the Java approach. Although this constraint in
NET could be overcome by the instantiation of a brand
new object every time to pass those parameters to the
new thread for processing, it increases the size and also
the complexity of the program.

Thread state: A new thread will progress through several
states during its life cycle. In Java, these states are new,
active, inactive, suspended and dead (Sun Microsystems,
Tnc., 2004). A thread is new when it has not done anything
vet. A thread is active when it is running and occupies a
processor at the current time. A thread 1s inactive when it
1s runming but it does not actually occupy a processor at
the current time. A thread is suspended when it is not able
to run even if it were given some CPU time. A thread is
dead when it has completed the execution. In NET, these
states are unstarted, running, waitsleepjoin,
suspendrequested, suspended, abortrequested, aborted
and stopped (Microsoft Corporation, 2007). A thread is

692

unstarted when the start method has not been invoked on
the thread. A thread is running when the thread has been
started and not blocked. A thread is waitsleepjoin when
1t 1s started and blocked. A thread 1s suspendrequested
when it is being requested to suspend its execution. A
thread is suspended when it has been suspended. A
thread 1s abortrequested when it 1s being requested to
abort. A thread 1s aborted when it has been aborted after
being requested. A thread is stopped when it has finished
its execution.

In this project, NET offers more methods to control
the additional states as opposed to Java. Although Tava
does provide those methods as offered by NET, most of
them are deprecated methods that could leave the objects
in nconsistent states when the methods are invoked,
such as the destroy, suspend, stop and resume methods.
In NET, this is not the case because the runtime allows
the thread to run until it reaches a point where it may be
safe. However, a suspended thread that still maintains any
locks could probably lead to deadlock when it is not
implemented appropriately. Therefore, those deprecated
methods are not implemented in this project to avoid
undesirable results, although these methods are
considered as thread-safe in NET. Alternatively, other
methods are used to provide similar functionalities as per
those deprecated methods, such as using a volatile flag
variable to terminate the execution of a thread m a graceful
manner instead of using the abort method. Also, methods
such as wait, sleep and join are used to substitute the
suspend or resume methods to be implemented 1 the
multi-threaded application.

Thread management: Java defines a few methods on the
object class to manage threads, namely wait, notify and
notify All (Sun Microsystems, Inc., 2004). The wait method
causes the current thread to wait until ancther thread
invokes the notify or notify All method for the object. The
thread must own the object in order to call wait. The
current thread will place itself n the wait set for this object
and then release all synchronization claims on this object.
The thread becomes disabled for thread scheduling
purposes and lies dormant until either another thread
invokes the notify method for this object, another thread
invokes notify All for this object, another thread interrupts
the thread or the specified amount of time has elapsed.
The comresponding NET versions are Momitor. Wait,
Monitor. Pulse Monitor.PulseAll (Microsoft
Corporation, 2007). In this project, those methods have
been used to signal both the worker or child threads when
there 1s a new authorization job received from the payment
gateway.

and

J. Applied Sci., 9 (4): 689-697, 2009

In Java, the Timer and TimerTask classes can be used
to allow the scheduling of tasks for future execution and
these tasks may be scheduled for one-time execution or
for repeated execution at regular intervals (Sun
Microsystems, Inc., 2004). Corresponding to each timer
object is a single background thread that is used to
execute all of the timer’s tasks sequentially. To termmate
the execution of a timer’s task, the timer’s cancel method
can be invoked. Tn NET, timer objects are lightweight
objects that enable the developer to specify a delegate to
be called at a specified time (Microsoft Corporation, 2007).
A thread n the thread pool performs the wait operation
pending the execution of the callback method. To cancel
a pending timer, the Timer.Dispose method can be
mvoked. In this project, those methods are used to
execute the timeout action when the authorization has
exceeded the permitted execution time frame.

Tn general, both NET and Tava provide a higher level
of abstraction for threaded applications where the
developer does not have to be concerned with the lower-
level details of thread management. Besides that, both
NET and Java offer similar functionalities in aspects of
thread management and the thread timer. The only
difference m thread management 1s that, in Java, these
methods are contained in the object base class, whereas
in NET, they are contained in the Monitor class. For the
thread tiner, Java uses the abstract class TiunerTask to
reference methods for scheduling the execution at preset
times, whereas the NET class uses delegates for
referencing methods and TimeSpan objects for
referencing time, which offer the same capabilities.

Besides that, the thread prioritization has been used
to set the listener to have a higher priority than other
threads in both platforms in this project. In Java, the
runtime allows for more priority levels than NET.
However, neither of the platforms guarantees absolute
thread priorities but both are considered as optimization
methods. Therefore, there is no difference in thread
priornty assignment i NET and Java because both
platforms provide similar functionalities.

Thread synchronization: Tn Java, a mutex is a locking
mechanism guaranteed to be atomic. Only one thread can
access a mutex at a time and each mutex 1s associated with
every object instance. To request a lock, a synchronized
keyword could be used to guarantee that only one thread
will be executing the synchronized code at a tume. In NET,
there 1s no synchronized keyword but Monitor Enter and
Monitor. Exit are used to request a lock. If calls are nested,
the number of occurrences of the Exit invocation must
match the number of times Enter 1s invoked as a count 1s
maintained. The advantage of NET is that it provides the

693

Monitor. TryEnter method that attempts to acquire a lock
after a pre-defined time has elapsed. Apart from that, NET
also provides a mutex locking mechanism. The smmilarity
between a monitor and a mutex in NET 13 only that a
thread can own the lock at any given point in time. The
difference is that a mutex is not restricted to a single
process but any thread mn the system 1s allowed to own
the mutex. In NET, the WaitHandle class 1s used to
handle mutex manipulation and a thread can wait for
multiple mutexes. In this project, these methods have been
used to synchronize the thread execution when saving the
record mto the database or writing the authorization log
into the file.

Another facility available in NET with no
corresponding Java functionality 1s Interlocked access.
The Interlocked methods provide a simple mechanism for
synchronizing access to a variable that is shared by
multiple threads. The Tncrement and Decrement functions
combine the operations of incrementing or decrementing
the variable and checking the resulting value nto one
atomic operation. The Exchange function atomically
exchanges the values of the specified variables. The
CompareExchange function combines two operations,
namely comparing two values and then storing a third
value in one of the variables based on the outcome of the
comparison (Microsoft Corporation, 2007). In this project,
this method has been used in the NET platform to
synchromze the execution of all the child threads during
online fraud validation and also to monitor the status of
child threads during online fraud validation so that it only
proceeds with the authorization processing when all those
threads have completed their own specific validation. In
Java, there 13 no such method available and, thus,
common static variable i1s used to provide a similar
functionality.

In NET, there 15 another special locking facility that
is not available in Java, namely ReaderWriterL.ock. This
locking mechanism allows multiple threads to read a
resource concurrently, but requires a thread to wait for an
exclusive lock m order to write to the resource. In cases
where most accesses are reads and writes are infrequent
and of short duration, ReaderWriterLock provides better
throughput than a simple one-at-a-time lock. In this
project, this method has been used in NET to write the
information to the shared memory pool, whereas in Java,
a synchronized keyword is used to handle the kind of
functionality simce this method 1s only available in NET.

In general, NET provides more fine-gramned control
over concurrency access of multiple threads than Tava.
Hence, it allows for better performance in certain
situations when using facilities like Interlocked and
ReaderWriterLock in NET compared with Java.

J. Applied Sci., 9 (4): 689-697, 2009

Thread pool: A facility specific to NET is the ThreadPool
class. There is no corresponding functionality mcluded in
Java prior to JDK1.4.2 and the developer will have to roll
out his or her own pool. The NET ThreadPool can be
used to make much more efficient use of multiple threads
without having to instantiate a thread object for each
method call. Using thread pooling provides a pool of
worker threads that are managed by the system and it
enables the system to optimize for better throughput for
this process. When a task is complete, a thread from the
pool executes the corresponding callback method.

In this project, a custom thread pool has been
mnplemented in both platforms although a ready-to-use
class 1s provided. This is because there 1s no way to
cancel a work item after it has been queued mn the
ThreadPool class, whereas the custom thread pool
provides better management and control over all the
worker threads m the pool. Although the custom thread
pool 1s chosen in NET, it 1s still simpler to use the queue
class in NET because a lot of the required methods are
provided in its APT without a need to rewrite those
methods from scratch as compared with Java. These
methods include obtaining the number of worl item
counts in the queue as well as managing multiple thread
synchronization access to work items in the queue.

RESULTS AND DISCUSSION

Response time, which 13 the key component that
reveals the performance of the authorization process, 1s
the amount of time taken to perform the risk assessment
during the authorization process of the credit card
transaction. Since response time will determme the
performance of the authorization process, embedded
testing tools have been incorporated as part of the
authorization engine in this project for both the NET and
Tava platforms to collect the timestamp before and after
runming through the identical set of risk management
profiles. The timing testing 1s carried out to obtain the
timestamp of the transaction rurning through the single-
threaded authonzation engine agamst a similar transaction
going through the multi-threaded authorization engine n
both platforms. The other performance testing 1s to
evaluate the response time of the credit card transaction
using the authorization system accessing the shared
memory pool for authentication data against the
authorization system accessing the system database for
authentication data. The result of the testing, which is
recorded in terms of response time, will determine the
performance of the system.

694

System performance: The performance is measured by
evaluating the response time taken to process a batch of
authorizations in both the Java and NET versions of the
multi-threaded credit card authorization system (Table 1).
The response time was measured using the embedded
testing tools that were built in part of both
authorization systems and the payment gateway to obtain

das

the time taken before and after the transaction was sent
and received. The measurement unit for the response time
was seconds.

The testing was carried out to access the response
time of a group of authorizations performed one after
another using the multi-threaded authentication engine
accessing the shared memory pool for authentication data
and the multi-threaded authentication engine accessing
the system database for authentication data. This
authorization will be sent upon receiving a response from
the previous transaction and there is no simultaneous
authorization performed. The number of worker threads
and child threads that were used in the multi-threaded
authorization of the credit card system is also similar:
three and nine, respectively. The test result 1s recorded
based on the best response time taken in five attempts for
each category. This 13 done to mimimize the impact of the
context switching between multiple threads running in the
system over the result obtained and to ensure the
accuracy of the testing performed.

Based on the test result as in Table 1 above, it has
been confirmed that the performance of the multi-threaded
authentication engine is better than the single-threaded
authentication engme m both the NET and Java
platforms. Besides that, it can be seen that the
performance of the authentication engine in the NET
platform 1s also slightly better than the Java platform in a

Table 1: Test result of multi-threaded and single-threaded authentication
engine
Best response time (sec)

Multi-threaded Single-threaded

No. of authentication engine authentication engine
sequential

authorizations NET Java NET Java
10 4.7 5.5 8.1 9.5
20 9.4 10.5 16.5 19.0
30 14.2 15.9 24.8 28.7
40 18.8 21.0 33.0 38.0
50 23.4 26.7 41.1 47.8
60 282 32.7 49.4 56.9
70 327 37.2 57.7 66.9
80 37.6 41.9 65.9 76.4
90 42.1 47.5 T4.7 86.8
100 46.9 53.2 82.3 95.7

J. Applied Sci., 9 (4): 689-697, 2009

Windows environment. From the result, it can be seen
that the performance of the multi-threaded authentication
engine 15 almost double that of the single-threaded
authentication engine m both platforms.

Software size: According to Ramasubbu and Balan
(2007), the eventual product is built by lines of code m a
programming language. Therefore, the line of code 1s a
possible measure for the size of the product due to being
easily understood, easily measured, amenable
automate, having language dependencies, the need for
minor common grotmd rules, being applicable to the entire
life eycle and penalized compactness.

In this project, Lines of Code have been chosen as
the metric to measure the size of the multi-threaded credit
card authorization system using a thread pool in both the
NET and Java platforms. In order to accomplish this
measurement, the model recommended by Fenton and
Pfleeger (1998) has been used as reference. LocMetrics,
which 1s an external tool, has been used to aid in the
calculation. The formula to calculate Lines of Code is

to

defined as below.

Total Length (LOC) = Non-Comment Lines (NLOC) +
Comment Lines (CLOC) + Blank
Lines (BL.OC)

Based on the calculation, the total length (LOC) of the
multi-threaded credit card authorization system using a
thread pool in NET is 5048 whereas in Java is 5199, as
displayed m Table 2. Both programs are considered as
medium-size applications. On the other hand, Table 2
shows that in NET, the size of the program is slightly
smaller because the non-commented lines of code are
slightly fewer than in JTava. The possible reason for this is
because there are more ready-to-use methods in NET as
compared with Java. Therefore, the effort used to develop
the program in NET is reduced.

Software complexity: According to McCabe (1976), more
complex software requires more effort to carry out testing
as it is prone to error. In this project, McCabe’s
Cyclomatic Complexity 1s used to measure the complexity
of the multi-threaded credit card authorization system in
both platforms. This is because it is one of the most
widely used and accepted members of a class of static
software metrics. It measures the number of linearly

Table 2: Lines of code metric

Total length Non-comment Comment lines Blank lines
Platform (1.OC) lines WLOC) (CLOC) (BLOC)
NET 5048 4519 320 209
Java 5199 4715 236 248

695

independent paths through a program module. This
measure provides a single ordinal number that can be
compared with the complexity of other programs and it 1s
intended to be independent of language and language
format. LocMetrics, which 1s an external tool, has been
used to aid in the calculation. The cyclomatic number is
calculated as per the formula below, where F 13 the flow
graph of the code, e 13 the number of arcs of the flow
graph and n is the number of nodes of the flow graph.

viF)=e—-n+2

Based on the result from Table 3 the Cyclomatic
Complexity number for the multi-threaded credit card
authorization system using a thread pool in NET is 537
units whereas in Java it is 546 units. This indicates that
the NET version of the multi-threaded credit card
authorization system is slightly less complicated than the
Java version. The difference i1s due to some of the
synchromzation methods in NET already being built-in as
part of the standard libraries and, therefore, the effort
required to implement the NET version 1s reduced.

Based on the Lines of code measurement, the size of
the multi-threaded credit card authorization system in
NET is slightly smaller than the similar multi-threaded
credit card authorization system in Java. When the size is
smaller, the total memory usage required to load the
program is less. In this project, the total memory usage of
the NET version of the multi-threaded authorization
system after starting up is 22 megabytes, whereas the
initial total memory usage of the Java version of the multi-
threaded authorization system when started up is
32 megabytes. Also, based on the performance results,
the NET version of the multi-threaded credit card
authorization system 1s slightly better than the Java
version because the number of CPU cycles to run the
NET version is lower due to the size of the program in the
NET version being smaller. Besides that, the effort
required to develop the multi-threaded authorization of
the credit card system in NET is also reduced when the
size of the program is smaller compared with a similar
application in Java.

Apart from that, the NET version of the mult-
threaded credit card authorization system 1is also slightly
less complicated compared with the Java version. Based
on McCabe’s Cyclomatic complexity measurement, the

Table 3: Cyclomatic complexity metric

Total No. of Total No. of Cyclomatic
arcs of the flow nodes of the complexity No.
Platform graph (e) flow graph (n) v(F)
NET 811 276 537
Java 828 284 546

J. Applied Sci., 9 (4): 689-697, 2009

mumber of paths of the multi-threaded authorization
system developed in NET is smaller than the number of
paths of the similar application written in Java. This is
because some of the methods of the multi-threading
techniques are provided as part of the built-in standard
library in the NET framework, such as Interlocked and
ReaderWriterLock. These two examples are considered as
optimizer methods provided by the NET lLibrary for inter-
thread commumcatior, which could not be found m the
Java library. Since the number of paths of the multi-
threaded authorization system written in NET 1s smaller,
the number of CPU cycles to run the application 1s also
reduced. Therefore, the performance of the multi-threaded
authorization system in .NET is better than a similar Java
version of the multi-threaded authorization system. With
additional optimization methods provided by the NET
frameworlk, it will not only increase the speed of the
processing but also accelerate the worle of producing the
multi-threaded application in .NET. The effort 15 also
minimized because some portions of the code are written
using the standard library provided in NET instead of
writing similar code from scratch as m Java.

CONCLUSIONS

Nowadays, credit cards are growing in popularity
around the world as a form of payment. Current credit card
authorization was developed on a single-threaded model
whereby the authentication process takes longer to
respond due to the sequential process of the card’s risk
management profile and its limitation of handling a huge
number of siunultaneous transactions. As a result, the
performance of the authorization system was affected
during peak hours. This paper presented a comparative
analysis of performance, size and complexity m both the
Java and NET platforms in order to provide a selution to
improve the response time during the authorization
process.

This research provides a solution to optimize the
performance of the credit card authorzation system
through the multi-threading technique in the Java and
NET platforms. This technique enables the authorization
of credit card transactions to be processed in a shorter
amount of time. From the business pomt of view, a fast
and reliable authorization process will generate more
revenue for the organization, whereas from the customer
pont of view, the authorization process m time builds the
confidence of the cardholder in using the credit card as a
payment method. Tn short, this project provides a win-win
situation for both the organization and the community as
both parties will gain the benefits of implementation of a
multi-threaded credit card authorization system. Besides

696

that, the multi-threaded credit card authorization system
implemented in this project enables several tasks related
to the card’s risk management profile validation to be
executed concurrently during the authorization process.
This will not only provide a better response time for the
authorization process but it will also enable more credit
card transactions to be processed in a multi-threaded
authorization system m a shorter amount of time.

The architecture of the singleton design presented in
this project supports the dynamic tuning of the size of the
thread pool runmng at runtime. The number of fixed
worker threads and child threads can be adjusted to
ensure the utilization of the multiple threads to their
optimal level. This is implemented to ensure the capacity
of the thread pool matches the necessities of the
application based on the estimated volume and velocity
of the credit card transactions processed in a specified
periad.

A shared memory pool is also used in conjunction
with the multi-threading technique. Since multiple threads
are running in a single process space, a shared memory
pool 1s implemented to keep all the card mformation that
will be used for the credit card authorization process in
the random access memory area. This 1s implemented to
allow the authorization process to access the shared
memory pool for card information, which 1s faster than
accessing similar information from the system database
because it involves a less expensive I/0 operation. For
this reason, a synchronization thread is introduced to
maintain the information in the shared memory pool so
that any update in the system database will be reflected in
the shared memory pool. Through shared memory
implementation, the response time of the authorization
process is further improved.

Performance testing has been used to evaluate the
response time of the authorization process under different
circumstances. The response time was measured using
the embedded testing tools that were built in as part of
both authorization systems and the payment gateway to
obtain the time taken before and after the transaction was
sent and received. The measurement unit for the response
time was seconds. The performance of the authorization
system using the shared memory nstead of the database
in both the JTava and NET platforms during credit card
authorization processing was also evaluated.

Apart from that, the size and complexity was
measured to determine the amount of work required in
software development, especially in testing. The
Cyclomatic Complexity number for the multi-threaded
credit card authorization system indicates that the NET
version of the multi-threaded credit card authorization

J. Applied Sci., 9 (4): 689-697, 2009

system is slightly less complicated than the Java one.
Another unique feature implemented in this project 1s that
any changes made to the card are recorded for audit
Both the mult-threaded credit

authorization systems implemented in this project can

purposes. card
accept multiple connections from the payment system at
a single port number. This 1s implemented to allow more
simultaneous authorizations to be received through these
multiple links for load balancing usage in future.

ACKNOWLEDGMENTS

First and foremost we would like to express our
gratitude to the Almighty, who gave us the possibility to
complete the research work successfully. Secondly, we
would like to forward our deepest thanks to our
colleagues, lecturers and technical staff from the
Department of Software Engmeering for their endless
assistance, technical advice and co-operation.

REFERENCES

Broberg, M., L. Lundberg and H. Grahn, 2001.
Performance optimization using extended path

analysis in multithreaded programs on
multiprocessors. J. Parallel Distribut. Comput,
61:115-136.

Fenton, N.E. and S5.1.. Pfleeger, 1998. Software Metrics:
A Rigorous and Practical Approach. 2nd Edn.
PWS Publishing, Boston, ISBN-10: 0534954251,
pp: 320-336.

697

Krisztian, F., U. Rich, R. Steve and M. Trevor, 2000.
Parallelism and interactive performance of desktop
applications. Proceedings of the 9th International
Conference on Architectural Support for
Programming Languages and Operating Systems
ASPLOSTX, 2000, Cambridge, Massachusetts, TUSA.,
pp: 129-138.

McCabe, T.J., 1976. A complexity measure. Software
Engin., TEEE Trans., 2: 308-320.

Microsoft Corporation, 2007. Microsoft developer
network, viewed 15 September 2007.
http://msdn2.microsoft.com/en-us/library/system.
threading.aspx.

Norton, S.7. and M.D. DiPasquale, 1997. Multithreaded
Programming Guide. 1st Edn., Prentice Hall, New
Jersey, USA., ISBN-10: 0131900676,

Ramasubbu, N. and R.K. Balan, 2007. Globally distributed
software development project performance: An
empirical analysis. Proceedings of the 6th Joint
Meeting of the Ewopean Software Engineering
Conference and the ACM SIGSOFT Symposium of
the Foundations of Software Engineering, 2007 ESEC-
FSE ACM, NY., pp: 125-134.

Sun Microsystems, Inc. 2004, JavaTM 2 platform
standard Ed. 3.0, viewed 06 September 2007.
http://java.sun.com/j2se/1.5.0/docs/apifjava/lang/T
hread. State. hitml.

	JAS.pdf
	Page 1

