——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 9 (4): 759-764, 2009
ISSN 1812-5654
© 2009 Asian Network for Scientific Information

Combining Several PBS-LLMS Filters as a General Form of
Convex Combination of Two Filters
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Abstract: Combination approaches can improve the performance of adaptive filters. Recently a convex
combination of adaptive filters was proposed to improve the performance of LMS algorithm. Our proposal in
this study is to use the PBS-LMS algoerithm instead of LMS algorithm in the structure of convex combination.
Our simulations showed that this structure not only has the optimality of first one, but also, it has the features
of PBS-LMS algorithm such as regularity. By using PBS-LMS algorithm 1n this structure we saved n total
number of samples needed by filter to converge about 22.2%, for example the fast filter converged to the steady
state in 352 samples, the slow one in 397 samples and the overall filter in 309 samples. Also, this scheme was
generalized, combining multiple PBS-LMS filters with different adaptation step sizes.
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INTRODUCTION

The Least Mean Square (LMS3) algorithm has been
extensively used in many applications due to its simplicity
and robustness (Haykin, 2002). There are two main
difficulties concerning LMS algorithm. The first arises in
situations with a high eigenvalue spread in the correlation
matrix of the input process. The second difficulty is the
inherent balance between speed of convergence and final
misadjustment in stationary situations that 1s imposed by
the selection of a certain value for the adaptation step size
(Arenas-Garcia et al., 2003).

To solve the second problem some previous articles
try to improve the speed vs precision balance by using
non-quadratic error functions [e.g. the Least Mean Fourth
(LMF) algorithm (Walach and Widrow, 1984)] that get a
faster convergence. Martinez-Ramén et al.  (2002)
combined one fast and one slow LMS filters with the
objective of getting the advantages of both of them: Fast
convergence and good tracking capabilities from the fast
LMS filter and reduced steady-state error from the slow
one. The mean-square performance of this structure have
been studied by Arenas-Garcia ef af. (2006). In particular,
they showed that the combination filter structure is
universal (Singer and Feder, 1999; Merhav and Feder,
1998) in the sense that it performs, in the mean-square
error sense, as well as the best of its compenents. Arenas-
Garcia et al. (2003) proposed to use multiple filters in this
structure which is the natural extension of the convex

combination of two LMS filters (CLMS) of Martinez-
Ramén ef al. (2002). Zhang and Chambers (2006) used thus
combination for the first time together with the fractional
tap-length method to solve the optimal filter tap-length
search problem in a high noise environment, where,
SNR=0 dB.

Our proposal m this study 1s to use PBS-LMS
algorithm (Eshghi and DeGroat, 1995) instead of LMS
algorithm in the structure of this convex combination.
PBS-LMS algorithm (parallel bnary structured-LMS3) 1s a
parallel algorithm for implementing adaptive filters. The
basic advantage of this algorithm owver other parallel
algorithms 1s that in those algorithms coefficient vector 1s
updated at any time step, but in PBS-LMS algorithm the
coefficient vector i1s updated after s time steps. Therefore
by applying this algorithm the number of calculations for
updating coefficient vector decreases significantly and
speedup increases (Majdar and Eshghi, 2004).

MATERIALS AND METHODS

Convex combination of adaptive filters: The CLMS filter
(Martinez-Ramodn et al., 2002) uses a convex combination
of the weights of the two LMS filters as shown in Fig. 1.
The output signals and the output errors of both filters
are combined 1n such a way that the advantages of both
component filters are retained: the rapid convergence from
the fast filter and the reduced steady-state error from the
slow filter. The output of the overall filter is:
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d(n)

Fig. 1: The structure of convex combination of two LMS filters

¥y = A0y, () + (1 - Ay, (n) (1
where, y,(n) = w;" (n)*(n) and w,(n), x(n) and A(n) are the
adaptive filter weight vector, input vector and mixing
scalar parameter for i = 1, 2 respectively. The idea is that
if A(n) is assighed appropriate values at each iteration,
then the above combination would extract the best
properties of the mdividual filters w,(n) and w,(n). Both
filters operate completely decoupled from each other,
using standard TLMS adaptation rules:
w, (n+1D=w,(n)+ e n)(n) (2

where, e,(n) is the error produced by each filter at time
step 1, 1.e., e(n) = d(n) — w;"(n)<(n) and d(n) is the desired
output.

The CLMS filter uses a convex combination of the
weights of the two LMS filters:

W, ()= Mmpw, (n) + (1 - Mnyyw, (n) (3)
where, parameter A(n) is kept in interval [0, 1] by defining
itas:

A(n) = sgmia(n)) = 1/(1 + ™) (4
The combination parameter 1s adapted to mmimize the

error of the overall adaptive filter, also using LMS
adaptation rule:

~ 3¢, ()
a(n+1y=ain)+ m

(1= M) (w, (m) — w, ()" < (n)

=)+ =Wl mxm) (s

In the above equation, p, must be fixed to a value
much higher than p, so, the combination 1s adapted even

760

faster than the fastest of the LMS filters. Note that the
update of a(n) in Eq. 5 stops whenever A{(n) is too close to
the limit value of zero or one. To overcome this problem,
we shall restrict the values of a(n) to lie inside a symmetric
interval [-a’, a'], which limits the permissible range of
An)to[1-A7, A7), where, ™ = sgm(a”) is a constant close to
one. In this way, a minimum level of adaptation 1s always
guaranteed.

This scheme has a very simple interpretation: in
situations where a high speed would be desirable, the fast
LMS will outperform the slow one, making A(n)
approaches towards 1 and w.,(n)=w,(n). However, in
stationary intervals, it is the slow filter which operates
better, making A(n) get close to 0 and w(n)=w,(n).

Tt is possible to further improve the performance of
the basic combination algorithm by using the good
convergence properties of the fast filter to speed up the
convergence of the slow LMS filter. Arenas-Garcia et al.
(2003) did this by step-by-step transferring a part of
weight vector w, to w,. So, n this case, the adaptation
rule for the slow filter becomes:

wyin+1)=a(w; )+ e, (mxm+{1-w n+1) (6)

The weight transfer must only be applied when the
fast LMS is performing significantly better than the slow
one.

Although the CLMS algorithm requires the
introduction of some extra parameters, we will see that
their selection is very easy and is not critical and optimal
values are not very dependent on the particular concrete
scenario in which the filter 18 being applied by Arenas-
Garcia et al. (2003).

PBS-LMS algorithm: Eshghi and DeGroat (1995) describe
the PBS-LMS algorithm. This algorithm 1s a parallel form



J. Applied Sci., 9 (4): 759-764, 2009

x(n-M+1)

Fig. 2: Transversal adaptive filter

of the LMS algorithm. In this method instead of updating
weight vector at any iteration, we reformulate the
updating formula of the L.MS algorithm in such a way that
we will be able to calculate the weight vector at time n+s
with respect to the weight vector at time n. Now suppose
that there 1s a transversal filter of order M, as depicted n
Fig. 2. The output of this filter at time n is:
y(my=x"(myw(n) N
If din) denotes the desired output at time n, then the
error at this time is defined as:
e{r)=d{n} - y(n) (8)
The difference vector for s step update, Aw(nts), is
defined as:

Aw(n +8) =win+s)-win) (9
The look-ahead error p is defined as:
pn+k)=x"m+kwn)—d*m+k) k>0 (10
The weighted input vector X{n+k) is defined as:
K+l =-pxn+k) k20 an

where, B, is an ordered set of integer numbers which
indicate the positions of I’s m the binary presentation of
positive number 1.

The scalar ¢ 1s defined as:

-----

(12)

For any positive number 1, ¢, 1s the set of all pairs of
adjacent elements of B, when it has more than one
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Fig. 3: The block diagram of PBS-TL.MS algorithm

element, 1e., |B| > 1 Ifb, has only one element, 1e.,
|B.| =1, then ¢, 18 NULL.
The PBS-LMS algorithm is as follows:

Let a, and b, be the smallest and the largest elements
of B, respectively, 1.e., a, = min(B,) and b, = max(B,)
For all numbers r with s bits:

*  Assign p(nta,) for the right most 1 in the number
at a® position

Assign X(n+b,) for he left most 1 in the number
at position

Calculate vector v,:

Xn+a)pmn+a,) if r=2~

v, =1, . (13)
(n+ b’)[@,gm,c(l’ _])}p(l‘l +a,) QW

Add all v/s from r =1 tor = 2° - 1 and obtain the
difference vector, Aw(n+s) as:

2,1

Aw(n+s)= E vir) 14

Then calculate the weight vector for s step update,
le, wints), as:

w(n+8)=w(n)+Aw(n +s)

(15)

The block diagram of the algorithm 15 shown in
Fig. 3.
The calculations that must be performed in each

block are as follows:
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In the X block the %(n+i) terms are calculated as:

in+iy=—ux(n+1i) i=1,_,

(16)

Tn the C block the ¢ coefficients are computed as:

i=1,..., s—1 (1 7)
j=l...1-1
In the P block p's are calculated as:
pn+ky =x"(n+kwm -d*n+k) k=0 (18)

In the D block v/s are computed and summed to
produce.

RESULTS AND DISCUSSION

Present proposal is to use the PBS-LMS algorithm in
the convex combination structure to utilize the properties
of thus algorithm. The proposed algorithm has a parallel
structure in two senses. One is the sense that it updates
the weight vector for s step ahead. The second sense is
the effect of two filters that are working in parallel. The
structure of proposed scheme 1s shown in Fig. 4.

To show the effectiveness of owr algorithm, we
carried out computer simulation. Two filters are used with
different step sizes, one with large step size and the other
with a small step size. As the input for both filters, we use
a random process with different eigenvalue spreads.

To produce this random process, a random variable
ulc) is applied to an Auto Regressive (AR) filter. u{l) is a
Gaussian white noise random variable with zero mean and
variance of o, The AR filter has a transfer function
(Eshghi and DeGroat, 1995) in the form of:

(19)

H(z)=—+——
@ l1+az!'+bz?!

The output of the AR filter is a zero mean random
process (RP), x(k). The variance of the random process,
0,, is 0, = po, where:

1+b

p=(l+by -a’) b (20

In order to have zero mean, unity variance RP, the
variance of the white noise u(k) is selected to be:
(21)
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Fig. 4: The structure of proposed scheme

The 22 correlation matrix of the above filter has two
eigenvalues. These eigenvalues are:

po|

2
x

HLJG (22)
1+b

and

1-_&
1+b

2
%

(23)

lmn:[ ]0

The eigenvalue spread of the correlation matrix 18
defined as:

(24)

which 1s a function of filter variables a and b. By choosing
a constant value for a, b is calculated in order to have a
defined eigenvalue spread. In our experiment, we select
the large step size p, = 0.02, the small step size p, = 0.005,
the step size of mixing scalar parameter p, = 20, the tap
weight vector of PMS-LMS of order of M = 8 and the
look-ahead s = 4. The eigenvalue spread 1s considered to
be A = 10. The MSE (Mean Square Error) is shown in
Fig. 5.

Figure 5a, depicts the MSE of the slow filter, Fig. 5b
shows the MSE of the fast filter and Fig. 5S¢ the MSE of
the convex combination. The results show that the error
of the slow filter 15 less than the fast one. On the other
hand the fast filter converges to the steady state faster
than the slow one. The overall filter, 1.e., the convex
combination of two filters, has the features of both filters;
1t has less error than the fast filter and converges to the
steady state faster than the slow one. For example to
reach an MS3D (mean square distortion) of order of
0.001, with a random process of eigenvalue spread of
10, 426 samples 1s needed n slow filter, 368 samples in
fast one and 317 samples in the overall filter, hence saving
25.6% of samples. The results are summarized in Table 1
and 2.
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Fig. 5: The error of (&) the slow filter (b) the fast filter and

(¢} the convex combination of two filters

Combining several PBS-LMS filters: The main topic of
this study is the extension of the C-PBS-LMS (convex
combination of two PBS-LMS adaptive filters) algorithm
to allow the combination of an arbitrary mumber of
individual filters as depicted in Fig. 6. When doing so, the
weight vector of the combined M-C-PBS-LMS algorithm
becomes:

w, ()= A mw, () (25)

L. being the total number of PBS-LMS filters that
are placed mto the combmation and withe weight vector
of the i-th PBS-LMS filter with p, adaption step size
(as before, p>p=.. > ). As we previously explained for
the CL.MS algorithm, the T, component filters operate, in
principle, completely decoupled and adapted using
standard LMS rule.
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Table 1: Number of samples for convergence of MSE=0.001 in different
adaptive filters

Eigenvalue spread

Different adaptive filters 2 5 10 20

CLMS (Martinez-Ramén ef ., 2002) 427 411 368 352
PR3-L.MS (Eshghi et ad., 1995) 512 487 426 397
Proposed scheme in this study 392 372 317 309

Table 2: Percentage of improvement of the proposed scheme over other

algorithms
Eigenvalue spread (%)
Different adaptive filters 2 5 10 20
CLMS (Martinez-Ramon et af., 2002) 8.2 9.5 13.9 122
PBS-L.MS (Eshghi et al., 1995) 234 23.6 256 222

Fig. 6: Combiming several PBS-LMS filters

During the derivation of the CLMS algorithm, we
were able to see the importance of using a convex
combination and limiting the values of A(n) for the good
performance of the algorithm. Similarly, in this case we will
use a softmax activation function to obtain the weights
assigned to each individual filter:

expla, (m)

26
T expla; ) (26)

A )=

------

which guarantees that O<A;(n)<1 and »,i A (m)=1.
The adaption rule for the mixing parameters is:

(0 +1) = a,(n) + p(dn) —w, (M= () A mw, () —w,, ()" < (n)
(27)

CONCLUSION

In this study, an approach is presented to use the
convex structure to solve the problem of inherent trade-
off between convergence speed and misadjustment in the
PBS-LMS algorithm (Eshghi and DeGroat, 1995) and also
1t generalized to use multiple filters in this structure rather
than using two filters. Simulation results were given to
support the effectiveness of this method.
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