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Abstract: This study aims to solve Vehicle Routing Problem with Time Windows (VRPTW), which has received
considerable attention mn recent years, using hybrid genetic algorithm. Vehicle Routing Problem with Time
Windows 18 an extension of the well-known Vehicle Routing Problem (VRP) and involves a fleet of vehicles set-
oft from a depot to serve a number of customers at different geographic locations with various demands within
specific time windows before returning to the depot eventually. To solve this problem, this study suggests a
hybrid genetic algorithm combined with Push Forward Insertion Heuristic (PFIH) to make an initial solution and
A-interchange mechansm to neighborhood search and improving method. The proposed genetic algorithm uses
an integer representation in which a string of customer identifiers represents the sequence of deliveries covered
by each of the vehicles. Part of initial population is initialized using Push Forward Insertion Heuristic (PFTH)
and part is initialized randomly. A A-interchange mechamsm mterchanges the customers between routes and
generates neighborhood solution. At the end, in order to prove the validity of the suggested model, fourteen
instances of Solomon’s 56 benchmark problems-selected randomly- are solved and compared with the other
meta-heuristic methods. The results indicate the good quality of the method.

Key words: Vehicle routing problem with time windows, genetic algorithm, push forward insertion heuristic,

A-interchange mechanism

INTRODUCTION

Vehicle Routing Problem with Tiune Windows
(VRPTW) is a kind of important variant of Vehicle Routing
Problem (VRP) with adding time windows constraints to
the model. VRP is one of the most attractive topics in
operation research and deals with the determination of the
least cost routes from a central depot to a set of
geographically dispersed customers. Vehicle Routing
Problems (VRPs) are well known combinatorial
optimization problems arising in transportation logistic
that usually involve scheduling in constrained
environments. In transportation management, there is
requirement to provide goods and/or service from a
supply point to various geographically dispersed points
with significant economic implications. Since VRP has
many various applications, many researchers have
attempted to develop solution approaches and techniques
to solve this problem (Pisinger and Ropke, 2005; Laporte
and Semet, 2001; Braysy and Gendreau, 2005).

In VRPTW, shown in Fig. 1, a set of vehicles with
limited capacity 1s to be routed from a central depot to a
set of geographically dispersed customers with known
demands and predefined time windows to minimize total
traveling distance and capacity and time windows
constraints are not violated.

Fig. 1: Typical output for VRPTW

Due to its inherent complexities and usefulness in
real life, the VRPTW continues to draw researchers'
attention and has become a well-known problem in
network optimization, so many researchers have
developed different solution approaches based on the
following methods:

»  Exact algorithms

»  Classical heuristics developed mostly between 1960
and 1990

s Metahuristics whose growth has occurred nearly in
20 years ago
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In terms of exact algorithms, Achutan et al. (2003)
presented modern branch and cut techniques for routing
problems. There are also other exact approaches proposed
n the literature for the VRPTW, however no algorithm has
been developed to date that can solve the optimality of all
VRPTW with 100 customers or more. It should be noted
that exact methods are more efficient in situations where
the solution space 1s restricted by narrow time windows;
since there are fewer combinations of customers to define
feasible routes (Gambardella et al, 1999). So many
researchers have mvestigated the VRPTW usmg Classical
heuristics and Meta-heuristics approaches. Classical
heuristics perform a relatively limited exploration of the
search space and typically produce good quality
solutions within modest computing times. These methods
can be broadly classified mto tlwee categories: (1)
Constructive heuristic, (2) Two-phases heuristics and (3)
Improvement methods. Constructive heuristics gradually
build a feasible solution while keeping an eye on solution
cost, but do not contain an improvement phase (Petch
and Salhi, 2003). Tn two-phase heuristics the problem is
decomposed into its two natural components: clustering
of vertices mto feasible routes and actual route
construction, with possible feedback loops between the
two stages. Two-phase heuristics will be divided in two
classes: cluster-first, route-second methods and route-
first, cluster-second methods. In the first case, vertices are
first orgamzed mnto feasible clusters and a vehicle route 1s
constructed for each of them. In the second case, a tour
is first built on all vertices and is then segmented into
feasible vehicle routes (Wren, 1971). Finally, improvement
methods attempt to upgrade any feasible solution by
performing a sequence of edge or vertex exchanges within
or between vehicle routes. In metaheuristics, the emphasis
1s on performing a deep exploration of the most promising
regions of the solution space. The quality of solution
produced by these methods is much higher than that
obtained by classical heuristics, but the price to pay is
mcreased computing time. In a major departure from
classical approaches, metaheuristics allow deteriorating
and even infeasible intermediary solutions in the course
of the search process. According to the Fig. 2, designing
the methods
causes the new generation of methods which can produce
results that are effective among the solution quality and
the computation time.

Various heuristic methods are found in literature for
VRPTW (Tan et al., 2001; Thangiah, 1999). In this area,
Czech and Czarmas (2002) solved VRPTW with
simulated annealing, Rochat and Taillard (1995) and
Briysy and Gendreau (2002) solved VRPTW with tabu
search and Tan et al. (2007) applied multiple ant colony

based on heuristics and metaheuristics

80

(%) abave the R
best solution Classical
heuristics
I
[
1
h 4
New generation Ny _ ____ _ o
of methods

Fig. 2: The difference between classical heuristics and
metaheuristics

system for VRPTW. There are some other efficient studies
that use genetic algorithm for VRPTW (Ombuki et al.,
2006, Berger and Barkaow, 2003; Tan et al, 2006,
Alvarenga et al, 2007). In applying genetic algorithm,
Blanton and Wainwright (1993) presented two new
crossover operators, Merge Cross#l and Merge Cross#2
and showed that the new operators are superior to
traditional crossovers operators. A cluster-first, route-
second method using genetic algorithm and local search
optimization process was done by Thangiah (1999).
Comparative studies of the performance of genetic
algorithm, tabu search and simulated annealing for the
VRPTW are given (Tan et al., 2001; Thangiah, 1599).
Other heuristics that have been applied to the VRPTW
include constraint programming and local search
(De Backer et al., 2000, Shaw, 1998). Other very good
techniques and applications of VRPTW can be found in
(L1 et al., 2005, Kim et al., 2006, Tan et al., 2007, Cerda
and Dondo, 2007; Trnich et al., 2006, Crevier et al., 2007).

So, this study tries to design efficient methods based
on heuristics and metaheuristics for solving the VRPTW.
To solve this problem, this study suggests a hybrid
genetic algorithm (whit special operators) that 1s
combined with Push Forward Tnsertion Heuristic (PFTH) to
make an initial solution and A-interchange mechanism to
neighborhood search and 1mproving method. The
proposed genetic algorithm uses an integer representation
in which a string of customer identifiers represents the
sequence of deliveries covered by each of the vehicles.
Part of mitial population (50%) 13 imtialized using Push
Forward Insertion Heuristic (PFIH) and part is mitialized
randomly. A A-interchange mechanism interchanges
customers between routes and generates neighborhood
solution. Finally, the suggestive algorithm 1s applied to
solve some of benchmark Solomon’s (1987) 56 VRPTW
100-customer instances that are selected randomly and
the results are compared with the other meta-heuristic
methods produced by Tan et @l (2001) and Thangiah
(1999).
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MODEL DESCRIPTION

The Vehicle Routing Problem with Time Windows
(VRPTW) is given by a special node called the depot, a
set of customer C to be visited and a directed network
connecting the depot and the customers. Also
homogeneous fleet of vehicles is available. They are
located at the depot, so they must leave from and retum
to the central depot. Tt is assumed that there is no
limitation on the number of vehicles that can be used, but
i order to facilitate the model formulation it 1s denoted by
K the maximum possible size of the fleet. The actual
number of vehicles will be found after solving the model
whose number is equal to the number of routes in the
traffic network. Let us assume there are N+1
customers, C= {0, 1, 2, ... N} and for simplicity, the depot
1s assumed as customer 0. Each arc m the network
corresponds to a connection between two arcs. A route
is defined as starting from depot, going through a number
of customers and ending at the depot. A distance d; and
travel time t; are associated with each arc of the network.
The travel time t; may include service time at customer 1.
Every customer 1n the network must be visited only once
by one of the vehicles. Since each vehicle has a limited
capacity q.(k = {1,..., k}) and each customer has a varying
demand m;, g, must be greater than or equal to the
summation of all demands on the route traveled by that
vehicle k. On the other hand, any customer i must be
serviced within a pre-defined time interval [e, 1], lunited by
an earliest (&) and latest arrival time (1,). Vehicle arriving
later than the latest arrival time are penalized while those
arriving earlier than the earliest arrival time incur waiting.
Figure 3 shows the time window of customer i. Assuming
that waiting time is permitted at no cost and e; = 1; = 0 that
is, all routes start at time 0. Vehicles are also supposed to
complete their individual routes within the total route time
which is essentially the time window of the depot.

GENETIC ALGORITHM FOR VRPTW

This study suggests an efficient method of solution
for VRPTW such that the objective is met and the
constramnts are satisfied. The algorithm that 1s adapted to
use in this study 1s Genetic Algorithm (GA), a class of
adaptive heuristics based on the drawing concept of
evaluation-survival of the fitness, developed by Holland
(1992) at the University of Michigan. A GA starts with a
set of chromosomes referred to as initial population. Each
chromosome represents a solution to the problem and the
mnitial population 1s either randomly generated (in which
case 1t would take longer for the algorithm to converge to
the solution) or generated using some from heuristic (in
which case the population is a already closer to the
solution and would hence take less time to converge).
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Fig. 4: Chromosome representation

This study uses some heuristics to generate initial
population that will be explained later. A selection
mechamsm will then be used to select the prospective
parents based on their fitness computed by evaluation
function. The selected parent chromosomes will then be
recombined via the crossover operator to create potential
new population. The next step will be to mutate a small
number of newly obtained chromosomes, i order to
introduce a level of randomness that will preserve the GA
from converging to a local optimum. The GA will then
reiterate through this process until a pre-defined number
of generations have been produced, or until there was no
improvement in the population, which means that the GA
has been found an optimal solution, or until a pre-defined
level of fitness has been reached.

Chromosome representation: A solution to the problem
is represented by an integer string of length N, where, N
is the number of customers which need to be served. All
routes are encoded together, with no special route
termination characters m between and chromosomes are
decoded back into routes based on capacity of each
vehicle and maximum allowable operating time. For
instance.

Figure 4 shows the chromosome representation for
following routes with three vehicles and 12 customers:

. Route No. 1: 0-3-2-4-5-0
»  Route No. 2: 0-10-6-1-12-11-0
. Route No. 3: 0-9-8-7-0

Initial population: An initial population 1s built such that
each individual must at least be a feasible candidate
solution, i.e., every route in the initial population must be
feasible. In this study part of population i1s mmtialized
using heuristics (50%) and part 1s imtialized randomly. A
fast and simple heuristic procedure to distribute all
customers in the vehicles, if used to obtain the part of first
individual generation, can reduce significantly the GA
time necessary to reach the reascnable local mimima.
Because of this, the heuristic method proposed by
Solomon (1987), called Push Forward Insertion Heuristic
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(PFTH), has been frequently used by many researchers
with this purpose. Detailed description of the PFIH
method described by Thangiah (1999). In PFIH methoed,
the relation (1) defines the first customer in each new
route. Once the first customer is selected for the current
route, the heuristic selected from the set of unrouted
customers the customer which minimizes the total
msertion cost between every edge i the current route
without violating the time and capacity constraints.
¢; = -audy + Pb; + y(p/360)dy) (D
In Eq. 1, « is the 0.7 (empirically calculated by
Selomen (1987)), B the 0.1 (empirically calculated by
Solomon (1987)), v the 0.2 (empirically calculated by
Solomon (1987)), d,, the distance from customer 1 to the
central depot; by the upper time and P is the polar
coordinate angle of the customer i After the initial
feasible solution (S;) is formed using PFIH, by letting
it and its feasible random neighbors VSeN, (5;) using
A-interchange that is described later, a portion of starting
population 1s completed. The rest of the population 1s
generated totally on random basis and starts by inserting
customers one by one into an empty route in a random
order. Any customer that violates any constraints is
deleted from current route. The route 1s then accepted as
part of the solution. A new empty route is added to serve
the deleted and other remaiming customers. This process
continues until all customers are routed and a feasible
initial population is built. The reason for having this mixed
population is that a population of members entirely from
the same neighborhood cannot go too far from there and
hence give up the opportunity to explore other regions.
This study uses a A-interchange mechanism that
moves customers between routes to generate
neighborhood solution for the VRPTW. Given a
feasible solution for the VRPTW represented by:

S=1{R,. . R, R, R}

where, R, is a set of customer serviced by a vehicle route
p. A A-interchange between a pair of routes R, and R, is
a replacement of subset 5,cR, of size |3 |<A by another
subset S,cR, of size [S,]<A. to get the new route sets
R.. R} and a new neighboring sclution:

Where:
(2)

R/ =(R,~S)US,R,=(R,~85,)US

Figure 5 shows the mstance of operator Eq. (2, 1) on
two routes. The neighboring N,(S) of a given solution
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Fig. 5: Operator (2, 1) in 2-mnterchange mecharnism

S is the set of all neighbors {S'} generated by the
A-interchange method for a given A. In one version of
the algorithm called GB (Global Best), the whole
neighborhood 1s explored and the best move 1s selected.
In the other version, FB (first best), the first admissible
improving move is selected if one exists; otherwise the
best admissible move 1s implemented.

Selection: This study uses a ranking-based selection
method applied by Correa et al. (2001), given by the
following formula:

Select(R) = {rjER’,jP_|:—1+\"1+4.deﬂ +P) }} (3)

2

where, R 1s a list R = {r,, r,, ..., 1}, with P individuals
sorted in increasing order by fitness value, md is a
uniformly-distributed random number between (0, 1) and
the symbol [b] denotes the greatest integer smaller than
or equal to b. Formula (3) returns the position in the list R
of the mdividual to be selected. The formula is biased to
favor the selection of individuals in early positions of the
list-1.e., the best (smallest fitness) individuals.

Crossover: The classical crossover (one-point crossover,
n-point crossover ... ) 1s not appropriate for sequencing
problem, like the TSP or the VRP. Use of them may cause
the offspring do not have a wvalid sequence, due to
duplication and omission of vertices. So, this study uses
the Heunistic and Merge crossover for recombination
phase that are applied earlier by Tan ef al. (2001) and
Thangiah (1999).

Heuristic crossover: This operator deals with distances
between nodes: for example, according to Fig. 6, a random
cut was made on two chromosomes and we will compare
the genes immediately after the cut.

Let us say that B 1s to be the first gene in the child.
Gene G has to be swapped with B in parent 2 to avoid
subsequent repetition. Now we compare the distance
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Parent:[H K J[CJE |F [D|BJL]JAJI1]G] 1]

Parent2:|A [B |CID|E|F|G|H]|I | J] K] L]

Fig. 6: Heuristic crossover

between B and the first two subsequent genes, L and H
and choose the one which is geographically closer to B.
Once again, in parent 2, the gene which was chosen with
the remaining one 1s swapped to avoid duplication. This
process 1s continued until a new chromosome of length N
1s formed. It must be mentioned that, just one child is
produced from two parents by heuristic crossover. So for
producing another child from them, the merge crossover
operator 18 used and operated on two parents.

Merge crossover: This operator operates on the basis of
time precedence, defined by the tume
corresponding to each node. Similarly, the first gene 1is
chosen randomly and the following genes will be the one
whose time window comes earlier.

The probability that a pair of selected parents will
mate 15 called the probability of crossover. When a couple
of parent chromosomes is determined as non mating, they
will be copied verbatim into the next generation. In this

window

study, the probability of crossover 1s set to 80%.

Sequenced Based Mutation (SBM): In this operator, first,
a link is randomly selected and removed from children
solution that are produced after crossover phase from
parents. Then, the customers that are serviced before the
break point on the route of child-solutionl are linked to
the customers that are serviced after the break point on
the route of child-solution 2 (c.f. the black nodes in Fig. 7).
Finally, the new route replaces the old one in child-
solution 1. A second new chromosome can be created by
inverting the role of the children. In a feasible solution,
are typically
scheduled at the begiming of a route. Conversely,
customers with late time windows are typically scheduled
at the end of the route. Hence, by linking the first
customers on a route of child-solution 1 to the last

customers with early time windows

customers on a route of child-selutien 2, the time window
constraints are likely to be satisfied. Figure 7 shows the
applying of SBM operator on the child-solution 1.
Unfortunately, the new solution is rarely valid,
because some customers are duplicated or unrouted in the
process. For example, in Fig. 7, two customers are now
located on two different routes and two other customers
are unrouted. Accordingly, a repair operator 1s applied to
the new chromosome to generate a new feasible solution.

P
/

s \x..o_/‘é:::p

Child-solution 2
Child-solution 1 selution

’I'I? ‘\‘
bda---Yo

[s) New solution

Fig. 7: Applymng SBM operator on child-solution 1

4
, o+-—-30

Fig. 8: Applymg repair operator on new solution at Fig. 7

This operator deals with the mfeasible soluttion m the
following way:

»  If a customer appears twice in the new route, one of
the two copies 1s removed from the route. If a
customer appears once in the new route and once in
an old route, the customer is removed from the old
route

o If a customer is unrouted, then this customer is
inserted at the feasible insertion place that minimizes
the additional cost and satisfies capacity and time
window constraints. Obviously, there is no
guarantee that there is a feasible insertion place for
each one of them. If this situation occurs, the new
solution is discarded and an old child-sclution will be
restored

Figure 8 shows the applying repair operator on new
solution at Fig. 7.

Acceptance: In this study the offspring that produced by
crossover and mutation is inserted into the population
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only if they have a better (smaller) fitness than the worst
mdividual of the current population and don’t cause
repetition in population.

Improvement phase: Improvement phase is a scheme
for randomly selecting a portion (10%) of the population,
decoding the chromosomes into solutions and then
mnproving those solutions by a few iterations of
removal and reinsertion. Tn this phase 1-interchange (FB)
and 2-interchange (GB) are used to improve the selecting
chromosomes.

EXPERIMENTAL RESULTS AND COMPARISON

This study describes computational experiments
carried out to mvestigate the performance of the proposed
GA. The algorithm was coded in MATLAB 7 and run on
a PC with 1.6 GHz CPU and 512 MB memory. Here,
fourteen instances of Solomon’s 56 benchmark problems
(Solomon, 1987)-that are selected randomly- have been
solved and are compared with the other meta-heuristic
methods that are reported by Tan ef al. (2001) and
Thangiah (1999).

Solomon’s 56 benchmark problems: The Solomon’s
problems consist of 56 data sets, which have been
extensively used for benchmarking different heuristics in
literature over the years. The problems vary in fleet size,
vehicle capacity, traveling time of vehicles, spatial and
temporal distribution of customers. In addition, the time
windows allocated for every customer and the percentage
of customers with tight ime-windows constraint also vary
for different test cases. The customers’ details are given
in the sequence of customer index, location in x and y
coordinates, the demand for load, the ready tume, due date
and the service time required. All the test problems
consist of 100 customers, which are generally adopted as

Table 1: Summary of results and comparisons with the best solutions

the problem size for performance comparisons in
VRPTW. The traveling time between customers 1s equal
to the corresponding Euclidean distance. Solomon’s
data 1s clustered into six classes; C1, C2, R1, R2, RC1 and
RC2. Problems in the C category mean the problem is
clustered; that 1s, customers are clustered either
geographically or according to time windows. Problems
in category R mean that the customer locations are
uniformly distributed whereas those in category RC
imply hybrid problems with mixed characteristics from
both C and R. Furthermore, for C1, R1 and RC1 problem
sets, the time window 1s narrow for the depot, hence only
a few customers can be served by one vehicle.
Conversely, the remaining problem sets have wider time
windows hence many customers can be served by main
vehicles.

Experimental results: Here, fourteen instances of
Solomon’s 56 benchmark problems (Solomon, 1987)-
selected randomly-have been solved and compared
with the other meta-heuristic methods that are reported by
Tan et al. (2001) and Thangiah (1999). Table 1 presents a
summary of presented results and compares them with
the best known solutions that are reported 1in the
literature (Ombuki ef o, 2006) and with the results
that are produced by other popular methods reported
by Tan et al. (2001) and Thangiah (1999). Distance costs
are measured by average FEuclidian distance. The
column labeled Best Known gives the best known
published solutions; column present approach gives
the best solution produced in 5 runs and column
other methods gives the results reported by Tan ef al.
(2001) and Thangiah (1999) by other heuristics. Bolded
numbers in Table 1 indicate that the obtained solutions
are the same as the best lmown or indicate an
improvement on the best currently known results in the
literature.

Other methods (Tan ef ai., 2001; Thangiah, 1999)

Best known (Ombuki et af., 2006) Present approach
Rimulated Tabu Genetic
Problem No. Distance cost Vehicle No.  2-Int annealing (SA)  search (TS) algorithm (GA) Distance cost Vehicle No.
c101 828.94 10 82894 828.94 828.940 828.94 828.94 10
c102 828.94 10 923.37 923.37 901.520 868.80 828.94 10
Cl106 828.94 10 1052.07 1052.07 941.154 828.93 828.94 10
201 591.56 3 591.55 591.55 591.550 5981.55 591.56 3
C203 588.49 3 112510 1208.94 727.221 747.93 591.17 3
R104 1007.31 9 1184.38 1184.38 1057.020 1128.29 1017.50 10
R108 963.99 9 1256.61 1186.34 1039.340 1091.69 971.91 10
R205 994 42 3 1370.68 1344.20 1150.340 1131.18 1087.80 4
R211 910.90 2 123248 1140.65 946.354 932.49 1101.50 4
RC101 1696.94 14 1948.94 1940.57 1734.170 1728.30 1690.60 15
RC102 1554.75 12 1803.95 1777.92 1562.620 1603.53 1470.26 13
RC105 1633.72 13 192019 1809.78 1597.670 1688.77 1611.10 15
RC203 1060.45 3 1627.74 1522.68 1179.670 1189.06 1064.80 5
RC207 1062.05 3 153985 1497.54 1295.900 1304.48 1040.67 4

84
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Fig. 9: Convergence diagram of RC102 problem
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Fig. 10: Best solution of C106 problem

According to Table 1, the results obtained by the
model are superior to other methods namely 2-INT, SA,
GA and TS. Further, they are better than those results in
all selected instances. It must be mentioned that the
results presented in Table 1 are based on the following
parameters:

*  Population size = 100

¢ Generation No. = 1000

¢  Crossover rate = 0.80

+  Mutation rate = 0.20

*  No. of chromosomes that are selected for undergomg
improvement phase =10

Figure 9 shows the convergence behavior of the
fitness function of the RC102 problem i 1000 generations.
Also, Fig. 10 and 11, for instance show a typical
output for problems C106 and C201. Finally, according to
produced results by present model, suggestive method
in general are quite good and effective as compared to the
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Fig. 11: Best solution of C201 problem

best published results and the results that are produced
by other metaheuristics and the average GA performance
1s good.

CONCLUSION

This study aimed to solve Vehicle Routing Problem
with Time Windows (VRPTW), which has received
considerable attention in recent years, using hybrid
genetic algorithm. Vehicle Routing Problem with Time
Windows 1s an extension of the well-known Velicle
Routing Problem (VRP) and involves a fleet of vehicles
set-off from a depot to serve a number of customers, at
different geographic locations, which various demands
and within specific ime windows before returning to the
depot eventually. According to solve this problem, this
study suggested a hybrid genetic algorithm (with
special operators) that is combined with Push Forward
Insertion Heuristic (PFIH) to make an mitial solution
and A-interchange mechanism to neighborhood search
and improving method. The proposed genetic algorithm
used an integer representation in which a string of
represents the sequence of
deliveries covered by each of the vehicles. Part of initial
population (50%) was initialized using Push Forward
(PFIH) and part 1s wmtialized
randomly. A A-interchange mechanism mterchanged

customer  identifiers

Insertion Heurstic

customers between routes and generates
neighborhood solution. Also A-interchange mechanism
15 used m two strategies (FB) and (GB) for more
improvements on portion  of solutions at the end of
each generations. At the end, in order to prove the
validity of the suggestive model, fouwrteen instances of
Solomon’s 56 benchmark problems-that were selected

randomly- were solved and compared with the other
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meta-heuristic methods namely and 2-INT, SA, GA and
TSreported by Tan et al. (2001)and Thangiah (1999).
Also the obtained results were compared with the best
known solutions reported in the literature. The results
show very good quality and tune saving of the
method. Finally, according to results produced by
this model, suggestive methods m general were
quite good and effective as compared to the best
published results and the results that are produced by
other metaheuristics and the average GA performance 1s

good.
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