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Distributed Data Clustering Using Expectation Maximization Algorithm
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Abstract: In this study, a distributed expectation maximization (DEM) algorithm is first introduced in a general
form for estimating parameters of a finite mixture of components, This algorithm is used for density estimation
and clustering of the data distributed over the nodes of a network. Then, a distributed incremental EM algorithm
(DIEM) with a higher convergence rate is proposed. After a full derivation of distributed EM algorithms,
convergence of both DEM and DIEM algorithms is studied based on the negative free energy concept. It is
shown that these algorithms increase the negative free energy incrementally at each node until reaching the
convergence. Finally, the proposed algorithms are applied to cluster analysis of gene-expression data.
Simulation results approve that DIEM remarkably outperforms DEM.
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INTRODUCTION

Recent advances in sensor, high throughput data
acquisition and digital information storage technologies
have made it possible to acquire, store and process large
volumes of data in digital form in a number of domains.
For example, biologists are generating gigabytes of
renome and protein sequence data at steadily increasing
rates. Organizations have begun to capture and store a
variety of data about various aspects of their operations
(e.g.., products, customers and transactions). Complex
distributed  systems  (e.g., computer  systems,
communication networks, power systems) are equipped
with sensors and measurement devices that gather and
store, a variety of data that is useful in monitoring,
controlling and improving the operation of such systems.

Distributed data mining (DDM) has recently emerged
as an extremely important area of research. The objective,
here, is to perform data mining tasks (such as association
rule mining, clustering, classification) on a distributed
database, that i1s, a database distributed across several
sites (nodes) connected by a network. Research in this
field aims at mining information from such databases while
minimizing the amount of communication between nodes.
For example, Wolff and Schuster (2004) presented an
algorithm for distributed association rule mining in peer-
to-peer systems. Datta er al. (2006) extended K-means
clustering to the distributed scenario.

The EM (expectation maximization) algorithm
(Ordonez and Omiecinski, 2005, McLachlan and Krishnan,
1997; McLachlan and Peel, 2000; Neal and Hinton, 1999,
Verbeek er al., 2003), is an important method of density
estimation in which some of the variables are assumed to

be missing or unobservable. Recently there has been
some research on distributed density estimation using the
EM algorithm. Nowak (2003 ) developed a distributed EM
algorithm for density estimation in sensor networks
assuming that the measurements are statistically modeled
by a mixture of Gaussians. Kowalczyk and Vlassis (2003)
proposed a gossip-based distributed EM algorithm for
Gaussian mixture learning named Newscast EM, in which
the E and M steps of the EM algorithm are first performed
locally, the global estimate of means and covariances are
then obtained through a gossip-based randomized
method. Lin er al, (2003) has also developed a privacy-
preserving distributed EM algorithm for mixture modeling.
This method performs clustering on distributed data and
meanwhile, controls data sharing and prevents disclosure
of individual data items or any results that can be traced
to an individual site. All the above methods have
assumed the components to be Gauwssian. Here, a more
general case is considered in which components belong
to an exponential family.

Assume that the data set distributed over the nodes
of a network can be modeled by a finite mixture model.
Here, a general distributed expectation maximization
algorithm (DEM) 15 proposed first to estimate the
parameters of this mixture without transferring the nodes
data to a central unit. Then, a distributed incremental EM
algorithm (DIEM) is developed with a higher convergence
rate. Afterwards, convergence of both DEM and DIEM
algorithms are studied based on the negative energy
concept used in statistical physics., The proposed
algorithms are then applied to cluster analysis of gene-
expression data which is distributed in a network. The
proposed methods can also be used as general distributed
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data mining algorithms for density estimation and
clustering of the data distributed over the nodes of a
network.

Problem statement: Consider a network of M nodes and
a d-dimensional random vector Y, =[Y.....Y!]'" which
corresponds  to node m. Each data (observation)
¥, =[¥,--¥, 1" of the node m is a realization of the random
vector Y. Assume that distribution of the measurements
is represented by a finite mixture of components:

p(v,18)=} o, p(y,9) (1)

where, o, ={c, .., are the mixture probabilities at node m,
@, is the set of parameters defining the jth component
and J is the number of mixture components. Assume that o= (¢},
and 8=9l{e, 1. The mixture probabilities {e,, ;] may be
different at various nodes while the parameters ¢, are the
same throughout the network. The set of data points of
the mth node is represented by v_ ={y,. 177 in which N_ is
number of observations at node m. It 1s assumed that
observations of each node are independent and
identically distributed.

This study describes a distributed algorithm  for
computing a maximum likelihood estimate; ie., 6
maximizing the log-likelihood function:

where, pivlp) denotes the evaluation of an exponential
density with parameter vector O at the point v.

Consider a set of missing variables 2 = (z, ;)
corresponding to Y = {y,,}. Each =, =z z,.l is a

N

(@)= i:lng

(2)

[iﬁr.m{yr.; lg,)

j=

binary vector indicating by which component the data vy,
is produced. We would say vy, is produced by the jth
component of the mixture if forall r # j, 2, =
Assume that z, is a realization of the random vector Z,.
The pair x,,; = (V,.., Z,;) 15 regarded as the complete data
and we write X = {Y, Z} in which X = {x,,}. The random
vector X 1s also defined as X, ={Y .. Z,.].

Define €, the set of parameters at the t-th iteration of
the EM algorithm. Define the conditional expectation:

Q (8:6')=E, [logp(x10)1y.6 | = Elﬂgp{y,zl a)p(zly.8') (3)

where, p(x10) denotes the joint density of v and z with
parameters 0.

EM (expectation maximization) is an iterative
algorithm to obtain the maximum likelihood estimate of the
finite mixture parameters. At the E step of the EM

8335

algorithm, the QQ function is calculated and at the M step,
the parameter vector 0 is estimated such that the Q
function is maximized.

The data at each node are assumed to be statistically
independent in this study. If the data are (spatially or
temporally) correlated, then the simple independent
likelihood model can still be employed by interpreting it as
a pseudolikelihood (Besg, 1986). Under mild conditions
the maximum pseudolikelihood estimates tend to the true
maximum likelihood estimates as the number of data tends
to infinity.

Distributed EM algorithm: Here, distributed density
estimation based on a finite mixture model is described.
The EM algorithm is wsed in a distributed approach in
order to estimate the parameters of this model. Here, a
general  distributed EM  algorithm is  proposed for
estimating the parameters of a finite mixture model whose
components belong to the exponential family. Then this
algorithm is expressed in the special case of Gaussian
mixture model.

A general distributed EM algorithm: Here, a general
distributed EM algorithm is developed to estimate the
parameters of a finite mixture model. The distributed EM
algorithm cycles through the nodes of the network and
estimates the parameters € such that the log-likelihood
function represented by Eq. 2 is maximized.

At each node, the local conditional expectation of
complete data log-likelihood is defined as:

Q. (8:6, ) =E,[logp(x, 18)1y,.8, ] (4)

where, 8. is the vector of estimated parameters at node m
and iteration t and p(x @) denotes the probability
distribution of the random wvector X, given 0. Total
conditional expectation can be written as:

Q[6:9)....0), | =iQ... (e:0] (3)

If the mixture components belong to the exponential
family, calculating Q is reduced to calculating a vector of
sufficient statistics that can be incrementally updated.
The reason behind this 1s that with models in the
exponential family, the inferential import of the complete
data can be represented by a vector of sufficient
statistics. Denoting this vector of sufficient statistics as
S(y.z)=Y 5(y.z), the E step of EM algorithm can be
implemented by computing s' = E,[5(y.z)] and the M step
can be performed by setting ©' to the 8 which maximizes
the likelihood function given s'.
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Fig. 1: Communication cycle in a typical network

In the case that the data set 15 distributed
over the nodes of a network, s' will be given by
g Zm'“m in whichs_ =E_[5 (v, .2 )k
The distributed EM algorithm works as follows: The
values of parameters that should be estimated are first
initialized. The distributed EM algorithm, at each node,
first updates conditional expectation of complete data log-
likelihood and then estimates the parameters of the finite
mixture in order to maximize this expectation. In other
words, at each iteration t, node m receives the sufficient
statistics 8" from the previous node, calculates the local
sufficient statistics using: s, =E.[5,(¥..2,)] and updates
S as:

s'=5""+5 —g (6)
s 15 then transmitted to the next node and this procedure
is continued until convergence is reached. Figure 1 shows
the communication cycle in a typical network.

The amount of variations of the log-likelihood
function is considered as a stopping criterion in this
algorithm. If this value is less than a certain threshold &,
the algorithm will stop. Here, after updating the
parameters using the data of each node m, the value of
local log-likelihood function corresponding to that node
1s calculated:

N, I

L"(8")= Zlug[zﬂ:u_j ply,. | E}'j;l] (7)
i=l =l

Whenever, the difference L™(8)-L"(8') becomes less

than the convergence threshold, the algorithm will stop.

Instead of likelihood variations, parameter variations can

be also used as another stopping criterion,

Since, scalability is an important feature of
distributed algorithms, here scalability of the proposed
DEM is analyzed and compared to that of the centralized
EM algorithm; in which all nodes send their data 1o a
central unit,

Assuming that N, is the number of bytes
communicated between two nodes per time step, it can be
found that the communication in bytes for the centralized
method in which all nodes send their data o the center of
the network is M (1+2+...++M/2)N, =0(M"*). The worst
case in this method 1s that the centralized unit is not in
the center of the network, but is at the end of it. The
communication in  bytes for such a case 1s
(M—1+M-2+__ +1)N, =0O(M"). Ones the centralized unit
receives all data, it can run the standard EM algorithm.

For the proposed DEM, the communication and
computation are executed iteratively. The communication
cost 1s related to the number of loops, i.e., the accuracy
of the estimated results. By denoting T as the number
of loops, the communication in bytes for the DEM is
MN,T = O{M). Therefore, unlike the centralized method
the proposed DEM is scalable. The peer-to-peer
distributed EM algorithm which will be presented later in
this study has even better scalability features.

It the data are possibly correlated, then the DEM
algorithm can stll be applied with the independent
likelthood structure employed here. In that case, the
independent likelihood can be interpreted as a
pseudolikelihood (Besg, 1986) and under mild conditions
the maximum pseudolikelihood estimates tend to the true
maximum likelihood estimates as the number of data tends
to infinity.

The distributed EM algorithm for a Gaussian mixture
maodel: The distributed EM algorithm proposed by Nowak
(2003) is a special case of the general DEM algorithm that
was presented in the earlier. Here, the study of Nowak
(2003) is reviewed briefly in which components are
assumed to be Gaussian. In this case, the function (@ can
be rewritien as:

H, 1

Q,.0:00)=Y ¥V wi doga, +logNiy, lu.Ly  (8)

in which

L R Ia:II.IN{}rI;II |l.l.:." :'E:u :I {_E”
o Z|_| ﬂ-;'u..nH { :"'.-au.l IH:u.n 'E':'u.: }

where, Niviy, ) denotes the evaluation of a Gaussian
density with mean p and covariance X at the point v.

[n this case, the sufficient statistics vector is defined
il

s ={w' .a' .b" Y}

(i} e ® i) P =l

in which:
M,
wr _:Zw' i {Iﬂ]



J. Applied Sci., 9 (5): 854-864, 2009

ﬂ':'n,_i = E“’ :n.i,_i}llln.i {I ]:]
1=1
Mo

b:“.| =EW:'||.|.|Fi|.I {IE}

In the DEM algorithm the following processing and
communication procedure is performed at each node. At
iteration t+1, node m receives the value of w!,a) and b
from the earlier node and calculates its local sufficient
statistics as:

oSN
Z"_-|u'::n.nN(}lm.i IJ"I:1"E:1}
Wi = YWl (4
Then, the value of sufficient statistics are updated by:
w I|-rI = “r:+w.:|-|r.li - II|II|III:r|.| {I-ﬁj
“I:I = HI; + E'l':l-:.li _“':ll.1 {']ﬁ}
bi" =bl+b, —b (17)
The mean and covariances are calculated as:
L]
HIJ = _JI (18)
W
1
I.
T =) (19)
|
And node m updates its mixture probabilities:
| aull M)
=l 1+l £
u‘m._i _N_Ewﬂl.i._] l :]

m =1

At last the updated values of s ={wi.al,bl}_, are sent
to the next node and this procedure 1s repeated.

A distributed incremental EM: After presenting a general
view of the EM algorithm, Neal and Hinton (1999) has
developed an incremental EM algorithm. Thiesson e al,
(2001) has also used the incremental EM algorithm for
data mining in large data bases. Here first, the incremental
EM algorithm is introduced briefly and then a distributed
incremental EM (DIEM) algorithm is proposed.

857

The incremental EM: An incremental EM algorithm
attempts to reduce the computational cost by performing
partial E-steps. Let ¥ = {¥,.....¥x| denote a particular
partition of the data into mutually disjoint blocks of data
cases. The incremental EM algorithm iterates through the
blocks in a cyclic way. At each iteration, a partial E-step
15 performed by updating only a part of the conditional
expectation for the complete data log-likelihood (the
Q-function) before performing an M-step. A generic cycle
of the incremental EM algorithm is shown below.

E-step: Select the data block y, to update the parameters
as follows:

Compute Q, {E";E'l} =E [IUEP[K 1)1 }'hrﬁl_l]

1

Set Q,(6:0')=Q,(6:0"" )for j# k

Construct Q[6:6' ) = EQL (6:0')

M-step: Choose 87" as the value that maximizes Q(8; 6.

Motice the way in which the E-step incrementally
constructs the Q-function to be maximized. In each
iteration. the algorithm only computes a fraction of the

(Q-function under consideration, namely the Q, associated
with the block of data Y,. For all other data blocks, the
algorithm reuses previously computed contributions to
the Q-function. In an efficient implementation, we
incrementally update the Q-function by adding the
difference between the new and old Q, components:

Q(ep')=Q(e:6)+Q, (6:0')-Q, (B:67") (21)

MNote that this algorithm has an additional cost
beyond EM, which is the storage of Q, for all blocks
k = 1.... K. As in the EM algorithm, if the statistical model
i5 a subfamily of an exponential family, then the E-step
can be cast as constructing expected sufficient statistics
for the statistical model.

The proposed distributed incremental EM: Here, both the
aforementioned incremental EM algorithm and partitioning
of the measurements of each node i1s used to establish a
distributed incremental EM possessing a  faster
convergence rate. Basically, measurements of each node
m are partitioned into K disjoint blocks and then the
mixture parameters are estimated using a distributed
incremental EM algorithm. Here, the measurements of
sensor  moare represented by v, = {v......v, %, so that
each vy, represents a block of data and K, 15 the number
of blocks at node m. The distributed incremental EM
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algorithm proceeds through the nodes cyclically and
performs an incremental EM algorithm at each node using
the local data at that node and the vector of sufficient
statistics received from the earlier node. It should be
noted that the procedure given here does not necessarily
require a cyclic communication structure. The following
processing and communication procedure 18 performed at
each node.

At iteration t+1, node m receives s' ={w},a\,bl}_, from
the earlier node and calculates w,, ., using the block of
datay,:

L+|
W ki

o N(YL ||.l;1l"..'.}
o, Ny lul E)

I m.n

(22)

I, b

Y

(23)

i I wl
m ko T E W1II.L.|.I

Mote that the index k represents a block of data and
we have: vy, ={v., .}, The values of a,, andb
corresponding to the block of data Y, are also calculated:

(24)

Nll.l
1 — 1 |
an|..]..j - Z wm.l:._i.i ¥ ki
1=1

(25)

rnL_| Zwlhkjl-:rlmkl

Then using the following incremental relations and
the vector of sufficient statistics obtained for the block of
data y,, the values of w".a." and a)! are updated:

W|i+ = w +“‘m ki W::"_h_i {2{:}
al! =aj+ap -al (27)
bHI — h‘ + hl: &1 bl {EE]

mL kL) mk.

Since. we use incremental EM. here the values of
Wi 2y and b oat the earlier iteration should be saved.
At this node the following means and covariances are
calculated:

I
mk. g

(29)

(30}
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And the mixture probabilities of node m are updated:

S+
_ W m.k. |

(31)

mi, k

In the sequel. this procedure is continued for other
data blocks of node m. After processing all K, data
blocks, the updated values of {w:.zl‘i,h'il are sent to the
next node and this procedure is repeated. Figure 1 shows
the communication procedure in a typical sensor network.

Convergence analysis: The convergence behavior of
standard EM in the Gaussian mixture case has been
examined by Thiesson er al. (2001) and Xu and Jordan
(1996), Ma er al. (2000) has also shown that the
incremental EM algorithm converges o a fixed point.
Usually, the EM fixed points are points of local maxima of
the log likelihood, although saddle points are also
possible. The standard EM algorithm converges linearly
in general and can display super linear convergence for
well separated Gaussian mixtures.

Here, the results of Neal and Hinton (1999) and
Thiesson et al. (2001) are used to prove the convergence
of DEM and also DIEM algorithms.

The EM algorithm performs maximum likelihood
estimation for a set of data in which some variables
cannot be observed. In Neal and Hinton { 1999), a function
F is introduced which resembles negative free energy and
it is shown that the M step maximizes this function with
respect to the model parameters and the E step maximizes
it with respect to the distribution over the unobserved
variables., Here, the function F is used to analyze the
convergence behavior of the DEM and DIEM algorithms.
It will be shown that in these algorithms, each node
improves the local part of F corresponding to itself and
leaves the other parts unchanged. If data sets of different
nodes are assumed to be independent, F is the sum of
local F's, denoted as F_, of all nodes of the network:
F=Y"" F,. The goal here is to show that F monotonically
increases and eventually converges to its maximum value.

Convergence analysis of the DEM algorithm: As
mentioned before, the M step of the EM algorithm
maximizes the Q) function:

B! :mgmémQ{B;El'] (32)

in which:

Q[H-:H F{Inﬂp{}' z16 I\.rﬂ] Elngpvrlﬁ-p{rl}ﬂ'] (33)
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In the distributed EM algorithm, assuming that data
sets at different nodes are independent, the QQ function
can be written as a sum of local Q functions.

06! (34)

[14]

B
B,)=3 Q.1

mi=|
B, is the vector of estimated parameters at node m and:

Q.(0:8,)=E, [logp(x,,18)ly,.0,]

(35)
=Y logp(x, 18)piz, |y, .6)

Finally, the update equation of the distributed EM

algorithm can be written as:

g+ =urgmémD{B;E!:....,B;ﬂ] (36)

Here, convergence of DEM is proved based on the
negative free energy concept. Assume that function F is

defined as:

F(p.8)=E [logply.z18)]+ H(p) (37)

In which H{p)=-E[llogpz}] is the entropy of
pley=plzly.8) Tt has been shown by Neal and Hinton
(1999) that E and M steps of the EM algorithm increase
F(p.8) monotonically and finally the algorithm converges
to (P8 where, 0% is the local maximum (or saddle
point) of the log likelihood function. The F function
represents the negative free energy initially introduced in
statistical physics.

It the data set of different nodes are independent, the
joint probability density function of Y and Z can be
written as p(yv.zI®=]] ply,.z,18,. Based on the
independence assumption we also have |5=n,,,ﬁ...'{1r'...}~
Therefore, F can be written as F(P.e)=Y F (p,.6,). in
which:

E, [logp(x, 10, )]+H(5,) (38)

P m

The vector of estimated parameters at node m is
denoted by 0, P. is the conditional probability density
function of 2z, given vy, and 8, ie., P, =Pz, ly,..8) and
Hip,) is the entropy of P. defined as Hip.,)=-E; llogp,].

Since, each node has its own estimated parameters,
the function F can be described as:

H':u ::I {39:'

Il
F{ﬁiﬂ::-“-ﬂ;,-]} = ZF:nEI-jm"

mi=l
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To complete the convergence proof, we proceed as
follows. At each node m, the E step maximizes the value of
F.(P.-9.) with respect to P, by setting p. =piz,1y,.0, )
while the wvalues of F(p.8).j#m keep unchanged.
Therefore, since the values of other F,’s are fixed. the total
F increases. Hence, at each E step, the value of F is
increased by improving P

It is easy to show that the M step will also increase
the function F. As it was mentioned before, if the P, s are
assumed to be fixed, the M step updates 8 by maximizing
the following Q function:

Ell—l = urgmﬁlj. Q{EI;E;....EL'.}’} 1:4{-}}

The sum of log likelihood expectations in Eq. 38 is the
() function.

ikl
Quo:ay,..8, =Y Q 8:8)=Y (E, [logp(x,18)1y,.0, D (41)

Since, the second term of Eq. 38 1s the entropy and 1t
is independent of 8, maximizing the () function at M step
is equivalent to maximizing the F function. Therefore, the
distributed EM is a nondecreasing algorithm that
incrementally improves the value of F at each node.

In theorem 2 of Neal and Hinton (1999, it has been
shown that if F(p.®) has a local maximum at P* and 6%,
then L(0) has a local maximum at 6% as well. Similarly, if F
has a global maximum at P* and 0%, then L has a global
maximum at 0% Regarding this theorem, because (1)
F(p.8) represents an upper bound of F(p.8) and (2) DEM
is a nondecreasing algorithm, the function F will
eventually converge to its maximum at P* and 0%
Consequently, L(8) will converge to its maximum at 6%
and DEM is indeed a convergent algorithm. In the next
section, this convergence analysis is extended to improve
convergence of the distributed incremental EM algorithm.

Convergence analysis of the DIEM algorithm: The M
step of DIEM can be rewritten as:

2

F

..... B! (42)

BI+I —

mgm&m(}{ﬁ;ﬂ', L0y,)

where, B, is the set of estimated parameters at node m
based on the earlier data block and 8, is the set of
estimated parameters using the next block of data. Like
DEM, the function () is defined as:

vl
Q(8:6].....8,) =Y Q, (8:6)) (43)
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Where:
and
Q,, (8:8,)=E, [logp(x,,10)] )
= E]ngp l::xm-k lB} p 1"'Il:n.]-. l Fm-k"B:uj

We also have:

F (5.6]....6},) = Z (P ©),) (46)
Where:

]Jru B:.u-} Z m,k [pm L‘ 1||
. (47)

Pl [Iﬂgp I:T':ln.l: IH:-n }] + H(f"m.l.))

K
k=l

The DIEM algorithm, at each node m, increases the
total F function by processing each block's data. The E
step maximizes E,, (p.,.8,) with respect to P.s by setting
Pus =Py, 8 and  keeping  F, (P8, )ik
unchanged. This makes the function F, nondecreasing.
Consequently, since the value of F (§,.8,).n+m does not
change, the total F function will be increased by
performing the E step.

It 15 easy to show that the M step also increases the
F function. As mentioned before, if P, 's are assumed to
be fixed, the M step updates 0 by maximizing the
following Q function:

;. (48)

mi?

g —drgmaxl:_l (8:8,.

By)

The first term of Eq. 47, i.e., expected log likelihood of
the complete data, is the (Q,, function. Since, the second
term of this equation is the entropy of P.. and
independent of B, maximizing the Q function at the M
step, is equivalent to maximizing the F function. Therefore,
both E and M steps of the DIEM algorithm incrementally
increase the value of F at each node until the convergence
is reached. This proves the nondecreasing property of the
DIEM algorithm.

MNote that as in the DEM convergence analysis, since
we have shown that the DIEM is a nondecreasing
algorithm, after some iterations the function F will

860

converge to its maximum at P and 6*; hence L(8) will
converge to its maximum at 6%, Consequently, DIEM
represents a convergent algorithm so that at each node 1t
increases the value of F until it 1s maximized at 0% based
on the assumption that F(p*.8*) is a maximum or upper
bound of F(p.8).

Applying distributed EM to cluster analysis of gene-
expression data: DNA microarray technology has now
made it possible to simultaneously monitor the expression
level of thousands of genes during important biological
processes and across collections of related samples.
Elucidating the patterns hidden in gene expression data
offers a tremendous opportunity for an enhanced
understanding of functional genomics. However, the large
number of genes and the complexity of biological
networks greatly increase the challenge of comprehending
and interpreting the resulting mass of data, which often
consists of millions of measurements. A first step toward
addressing this challenge 1s the uvse of clustering
techniques, which is essential in the data mining process
to reveal natural structures and identfy interesting
patterns in the underlying data. Cluster analysis seeks to
partition a given data set into groups based on specified
features so that the data points within a group are more
similar to each other than the points in different groups.
A very rich literature on cluster analysis has developed
over the past three decades. Many conventional
clustering algorithms have been adapted or directly
applied to gene expression data and also new algorithms
have recently been proposed specifically aiming at gene
expression data.

Model-based clustering approaches
(McLachlan er al., 2002; Yeung et al., 2001; Fraley and
Raftery, 1998; Ghosh and Chinnaivan, 2002; lang et al.,
2004) provide a statstical framework to model the cluster
structure of gene expression data. The data set is
assumed to come from a finite mixture of underlving
probability  distributions, with  each  component
corresponding to a different cluster. The parameters of
these components are usvally estimated by the EM
algorithm. When the EM algorithm is converged, each
data object 15 assigned to the component (cluster) with
the maximum conditional probability.

However, microarray data deposited in the public
domain, demand decentralized access o these data
(Stratowa, 2003; Chernyi et al., 2004). Since, the
corresponding datasets have already been cleaned and
validated, an obvious choice is their storage in a
distributed data warehouse. Powerful data mining
techniques can then be applied o discover hidden
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patterns and to extract knowledge from microarray data.
Considering the ever-increasing amount of microarray
data and the increasing computing requirements for large-
scale data mining and analysis, using efficient distributed
data clustering algorithms with reasonable computational
cost for microarray data analysis is inevitable,

In the case that the data set is distributed in a
network, centralized EM algorithm is not applicable. Here,
the proposed DEM and DIEM algorithms are applied to
cluster analysis of gene-expression data. In this study,
distributed EM 15 capable of performing clustering on
extremely large or geographically distributed set of gene
expression data. Here, the performance of distributed EM
and DIEM algorithms are compared with each other.

Although the use of Gaussian components to
simulate data is clearly not ideal, the Gaussian model has
been shown to be a reasonably good approximation for
suitably normalized real data (Yeung er al., 2001). Here,
the case where the data are generated by two types of
samples 15 considered and both umivariate and
multivariate (two dimensions) Gaussian components are
treated.

Here, a two dimensional microarray data is first
considered to evaluate performance of the proposed DEM
and DIEM algorithms to estimate parameters of the
mixture model by which the data is produced.
Convergence rate and computational cost of these
algorithms are also studied. A multivariate data model 15
considered next to evalvate the proposed methods
classification performance. From a biologist's perspective
what matters most in the context of clustering 1s whether
the algorithm classifies the microarray data correctly or
not. The aim of vsing artificial data is to provide a
framework in which the prediction accuracy of the model
based clustering approaches is studied. The focus is on
correct data clustering implied by misclassification rates.
Finally, convergence rate of DIEM and DEM algorithms
are compared based on different K values and various
gene-expression data dimensions.

Here, a two dimensional microarray data set simulated
from a two component Gaussian mixture model is
considered first. A network of 100 nodes 1s used in this
study. Each node contains 1000 data points that are
partitioned into 10 disjoint blocks of data. True and
estimated parameters of the components are shown in
Table 1 and 2, respectively. As it is seen, good estimates
of the true values have been obtained. The values offered
in these tables are the mean value of the estimated
parameters at all nodes of the network.

Figure 2 shows log-likelihood values of DIEM and
DEM algorithms as a function of number of transmitted
bits. Number of transmitted bits corresponds to number
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Table 1: True mean and covarianoe matrices
True distribution
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Table 2: Fitted mean and covariance matrices
Estumated distnbution
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Fig. 2: Log-likelihood  values of DIEM and DEM

algorithms

of messages passed between nodes. As it is seen in
Fig. 2, convergence rate of DIEM is much faster than that
of DEM. Here, the convergence threshold is assumed to
be £ = (.1, At this simulation, the DIEM algorithm has
converged after 724 iterations while DEM has reached the
same  log-likelihood  value after 367  iterations.
Computational cost of DIEM 1is also considerably less
than that of the DIEM algorithm. DEM has converged in
153.12 sec while the DIEM has converged in 79.45 sec.
Other simulations have shown similar results. Present
experiments are performed on a 1.86 GHz dual-core Intel
CPU with enough random access memory (RAM) to avoid
paging.

Note that when the algorithms are converged. all
nodes of the network have relatively the same values of
estimated Gaussian mixture parameters which can be
reached using any node of the network.
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Fig. 3: Average misclassification rates versus sample size
of each node (5td = 0.75)

In the next simulation, a multivariate model is
considered in which the underlying clusters have the
same covariance structure. Here, a model is considered in
which clusters are spherical. This data set is analyzed for
a range of different degrees of separation of the clusters,
known as 'c-separation’, as defined by Dasgupta (1999).
Three different cases was considered in which Gaussian
components are c-separated with c<2 (linearly separable),
two-separated (almost linearly separable) and c-separated
with ¢<2 (overlapping). The synthetic data was generated
by fixing, without loss of generality, the centers to be at
(0,00 and (1,1) and considering a range of different
standard deviations (SD = (.75, 0.5, 0.25). Thus, a model
with 51D = 0.75 corresponds to ¢ = 4/3(<2), which indeed
indicates the case of overlapping clusters (Dasgupta,
1999). Finally, we consider a wide range of sample sizes at
each node that are typical for the current and future
microarray studies,

A network of 20 nodes is considered in this study.
To ensure robustness of the proposed methods, all
simulated data were randomly generated 5 times and the
resulting misclassification rates recorded.
Misclassification rates obtained uvsing the DEM and
DIEM algorithms for the above mentioned three cases are
shown in Fig. 3, 4 and 5. These figures show that both
DEM and DIEM  algorithms  possess  small
misclassification rates. In other words, these algorithms
were able to cluster the gene-expression data efficiently
using the proposed distributed clustering methods.

In the next simulation, performance of DIEM is
studied based on different K values and various gene-
expression data dimensions. A network with 100 nodes
(M = 100) is considered in which each node has 1000 data
observations (N, = 1000). The observations are generated
from two Gaussian components. Here, we consider the
case in which observations of different nodes do not
come evenly from the two components. In the first
40 nodes, 30% of observations come from the first
Gaussian component and other 70% of observations come
from the other Gaussian component. In the next 30 nodes,

= WA
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Fig. 4: Average misclassification rates versus sample size
of each node (5td = (.5)
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Fig. 5: Average misclassification rates versus sample size
of each node (5td = (0.23)
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Fig. 6: No. of iterations of the DIEM algorithm for four
data sets and different K values

observations come evenly from the two components. In
the last 30 nodes, 70% of observations come from the first
component and other 30% of observations come from the
second Gaussian component.

Figure 6 shows number of iterations of the DIEM
algorithm required to reach convergence as a function of
number of data blocks (denoted by K). Each curve in
Fig. 6 represents a particular data set with dimension d for
d=1, 2,4, 8 Asitis seen, by increasing the number of
data blocks, number of iterations will decrease. In other
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Fig. 7: Speedup factor obtained for different K values

words, increasing number of data blocks results in
increasing the convergence rate. This result is vahid for all
of data sets.

In order to compare computational cost of the
algorithms as well as their convergence rate, a speedup
factor 15 defined here. A speedup factor 15 computed as
the elapsed time for the DIEM algorithm to reach
convergence divided by the elapsed time for DEM 1o
reach convergence. Thus, a speedup factor greater than
| means the algorithm improves performance. In Fig. 7, the
speedup factor 1s shown for earlier data sets and different
data blocks. As it is seen, increasing the value of K
results in the speedup factor increasing. The results
shown in these Fig. 6, 7 are the average value of the
results obtained through 5 different runs of the DIEM
algorithm.

CONCLUSION

In this study, a distributed incremental EM algorithm
was proposed for density estimation and clustering of
data distributed over the nodes of a network. A general
distributed EM algorithm was first introduced. A
distributed incremental EM algorithm was then proposed
with a faster convergence rate. In this method, the data
set of each node is partitioned into disjoint blocks of data
and partial E-steps are performed on these blocks.
Convergence of both DEM and DIEM was also analyzed
based on the negative free energy concept. It was
shown that these algorithms increase the negative free
energy incrementally at each node until reaching the
convergence.

As future study, lazy EM algorithm (Thiesson e al.,
2001) can be used to improve the DEM algorithm and
reduce the computation cost at each node. Another field
of research is how to choose initial values of the mixture
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parameters. In the proposed methods, initial values of the
parameters are chosen randomly. Distributed k-means
clustering may be used to choose more proper values for
these parameters.

In the algorithms proposed here, E-step of the EM
algorithm 1s performed in a cvclic distributed approach.
Other noncyclic structures may also be used. For
instance, methods have been developed for gossip-based
randomized distributed sum or average calculation
(Kempe et al., 2003; Mehyar et al., 2007). These methods
may be used to develop distributed EM algorithms in
which the E-step is performed in a different
communication structure. These items are currently under
investigation and will be reported later.
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