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Abstract: In this study the Regularized and simplified Monte Carlo-Joint Probabilistic Data Association Filter
(RMC-IPDAF) 15 proposed and applied to the classical problem of multiple target tracking in a cluttered area.
To encounter with the data association problem that arises due to unlabeled measurements in the presence of
clutter, we have used the Joint Probabilistic Data Association Filter (JPDAF). The Monte Carlo methods are
used in order to the fact that they have the ability to estimate any general state-space model with nonlinear and
non-Gaussian functions for target dynamics and measurements likelithood. The Conventional implementation
of Monte Carlo-JPDAF (MC-JPDAF) uses the resampling stage in order to reduce the variance of samples
(called degeneracy problem); however this procedure itself causes another problem called sample
impoverishment phenomenon, which 1s unavoidable and the tracking performance will decrease. 50, we propose
to use the regularized resampling stage instead, to counteract this shortcoming. Finally, the target dynamics
model 1s used as the proposal distribution in MC-JPDAF, in order to decrease the computational cost while the
performance of the tracking system is nearly maintained. The simulation results of the proposed system are
presented and compared with those of the standard Monte Carlo implementation of FPDAF and the
performance improvement of the proposed algorithm is proven.
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INTRODUCTION

In state estimation field, many studies have been
performed to develop the classical estimation methods for
linear and Gaussian models and obtain a robust estimator
for the general case of nonlinear and non-Gaussian
maodels. This is because for many application areas, it is
becoming important to include elements of nonlinearity
and non-Gaussianity in order to model accurately the
underlying  dynamics of a  physical  system.
Arulampalan er al. (2002) and Chen (2003} introduced
several methods to encounter with such models, such as
the Extended Kalman Filter, approximate Grid-based
methods and Particle filters. They demonstrate that in the
case of nonlinear and non-Gaussian models for dynamic
and likelihood distributions, the particle filtering method
represents the best performance and is most reliable, in
spite of its higher computational cost.

Multiple Target Tracking (MTT) is not a trivial
extension of single target tracking but rather a challenging
topic of research. In MTT scenarios, there is a
combinatorial explosion in the space of possible multiple
target trajectories due to the uncertainty in the

association of observed measurements with known
targets in each time step. Theoretically, the standard
recursive Bayesian filtering technigques can be applied
directly to the joint state-space of the targets, but
computing the filtered distribution over the multi-target
state and dealing with the combinatorial explosion of
possible states due to the data association ambiguity, 1s
difficult in practice (Lio er al., 2007). Therefore, the main
challenge of realization of an MTT system is to manage
the computational complexity of the problem while still
providing the reasonable tracking performance.

Multiple Hypothesis Tracking (MHT) and JPDAF are
the two major approaches to deal with MTT problems and
were first developed by Reid (1979) and Fortmann er al.
(1983), respectively. In this study the JPDAF approach is
applied to solve the data association problem due to its
lower computational complexity and the ability of online
implementation. In this way, at each time step infeasible
hypotheses are pruned away using a gating procedure. A
filtering estimate is then computed for each of the
remaining hypotheses and combined in proportion to the
corresponding  posterior hypothesis probabilities. The
main shortcoming of the JIPDAF is that, to maintain
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the tractability, the final estimate is collapsed to a single
Gaussian, thus discarding some useful information. This
15 due to the fact that the distribution of interest is
nonlinear and non-Gaussian in general. The linear and
Gaussian models assumption 18 often made by some
researchers o simplify hypotheses evaluation for target
originated measurements. The implementation of JPDAF
using the Extended Kalman Filter (EKF) is an instance.
However, the performance of these algorithms degrades
as the non-linearities become more severe, More recently,
strategies have been proposed to combine the JPDAF
with particle techniques to accommodate general
nonlinear and non-Gaussian models (Schuls er al., 2003;
Frank er al., 2003; Karlsson and Gustafsson, 2001;
Vermaak er al., 2005). The MC-JPDAF developed by
Vermaak et al. (2005), can be considered as the first
comprehensive algorithm that uses the Monte Carlo
methods to implement the MTT while efficiently taking
into account the data association problem. So, the MC-
JPDAF method could be wsed for the general case of
nonlinear and non-Gaussian dynamics and measurement
models. The main shortcoming of the MC-JPDAF is the
sample impoverishment due to the resampling stage and
high computational complexity.

In this study we have used the regularized
resampling, developed by Musso er al. (2001) to
overcome the sample impoverishment problem of MC-
JPDAF algorithm. Furthermore, in order to reduce the
computation complexity of MC-JPDAF, we propose to use
the prior density (dynamics model) as the proposal
density  function instead of the proposal density
introduced by Vermaak et al. (2005). This leads 1o
considerable reduction in computational complexity,
because in each time instance, the particles are sampled
from the simple and known prior distribution and no
further computation is needed to construct the proposal
distribution for each of the targets in each observer. This
simplification is achieved with no considerable reduction
in tracking performance,

MODEL DESCRIPTION

Several models used in MTT scenario are described
here. The evolution of the joint state space of the K
slowly maneuvering targets in the xy plane, is considered
to be of the form described by Bar-Shalom and Fortman
(1988), (the near constant velocity model). Also the state
evolution of each target is assumed to be independent of
the others. So, the state of the kth target in the xy plane
comprises its position and velocity:

k.t
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S0, the matrix form of the state transition equation is:
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where, T 1s the sampling period, A 1s the state transition
matrix and V, is the process noise and assumed to be zero
mean Gaussian distributed with known covariance matrix
defined below (Vermaak er al., 2005):
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The measurements are assumed to be available from
N, observer sensors at locations P',i=1, ..., N, So, the
joint measurement vector from N, observers at each time
interval 1s:

(3)

z=(z'..z" ) where, z' ={3:---1;r]'

where, M’ 1s the total number of measurements in the ith
observer, comprising M'. clutter measurements and M,
measurements arising from the targets to be tracked. In
general, M. and MY varies from observer to other
observer and also in different time instances in the same
observer.

To deal with the data association problem, we
consider  the association  variables presented by
Vermaak er al. (2005). The measurement to target
association hypothesis is defined as A = A'..A™, where,
A =(r, M., M) is the measurement to target association
hypothesis for the measurements at the ith observer. The
elements of the association vector ' are given as:

if measurement | atobserver 1 1sdue

toclutter

if measurement j atobserver i stems

ke (1K)
from target k

The target to measurement association hypothesis
G=(i 3"y 1s defined in a similar fashion, where,
A =(r.M..M.) Is the target to measurement association
hypothesis for the measurements at the ith observer. The

=1

elements of the association vector [ are obtained as

follows:

if target k isundetected at observer i

=i o clutter

M = ) )
, il targetk generated measurement
je {l..M'}

at observer 1
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Fig. I: The parameters set for MTT in a single time step
where there exist K targets and N, observers

The two set of above hypotheses are equivalent. The
parameters set for multi-target scenario for a single time
step is shown in Fig. 1. Considering that the observer
sensors measure the range R, and bearing €', from the
observer o the target, the individual measurements at the
ith observer are ', = (R, 0), j =.1,..., M". If the range and
bearing are assumed to be corrupted by independent
Gaussian  noise, the likelihood for the target jth
measurement, under the hypothesis that it is associated
with the kth target, becomes:

p',l!z'll:r.tj=]"~.'{zll;..ﬂi,:l (6)

where, 8, =diagio, .o ) is the fixed and known diagonal
covariance with the individual noise variances. ; =& .4,
is the mean vector of the Gaussian distribution in Eq. 6
and 1s given by: isjfoieufioweorweuiseuweiu

(7

(5)

where, P', = (x',, ¥') is the ith observer position.

In order to estimate the unknown association
hypothesis within a Bayesian framework, definition of a
prior distribution for these hypotheses is necessary. As
the prior distribution, the one described by Gordon ¢1 al,
(1997) and Vermaak et al. (2005) is used. The prior for the
association hypothesis is assumed to be independent of
the state and past values of the association hypothesis.
For the measurement to target association hypothesis we
assume that the prior factorizes over the observers, i.e.,

p( = p(a') (9)
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And so for each of the observers, the prior is
assumed to be:
piA' )= pir' | M., M )p(ML )piM;) (10
: r |
p(r' I M My} =| N (M{. M) | (11)
B(ML) = (A ™ exp(—AL)/ML! (12)
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p(MLy=| o [P =P, )M (13)
M,

As it is clear from Eq. 11 to 13, the prior for the
association vector is assumed to be uniform over all valid
hypotheses, the number of clutter measurements is
assumed to follow a Poisson distribution with rate
parameter A'. and the prior for the target measurements is
assumed to follow a binomial distribution. P, 1s the
detection probability of each targets in every observer.
The prior for the targel to measurement association
hypothesis follows the same structure. Furthermore, it 18
possible to obtain a factorization form for target to

measurement  association  hypothesis  prior  as
(Vermaak et al., 2005):
i L § 4
p(R) = pMO] o 17, ) (14}
(]
I-P, ifj=0
pir =jIt, _)=i 0 if j=0andje {r'..r'.)
i otherwise
Where:
My =M'—[{1:F £0.0=1.k-1}

MC-JPDAF framework: As mentioned earlier, JPDAF
approach, due to its simphicity and low computational
complexity in contrast with MHT approach, is the most
widely applied method in MTT problems considering the
data association uncertainty. So, we have also chosen
this approach to solve the data association problem in
this study. Several implementation strategies for JPDAF
method have been proposed in literature according to the
application area. Since, the target dynamics and
measurement likelihood models in target tracking
applications are nonlinear and non-Gaussian in general,
the selected Bayesian framework should have the abality
to estimate and track such nonlinear and non-Gaussian
maodels. For this reason, the Monte Carlo implementation
of JPDAF presented by Vermaak er al. (2005) is used in
MTT system. Due to the Particle filtering methods used in
MC-JPDAF, it has the ability to track the arbitrary
proposal distributions.
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The main idea of JPDAF is to recursively update the
marginal filtering distributions for each of the targets
pdx., 2z, 0 k=1, ..., K through the Bayesian sequential
estimation recursion:

Ph[-:r‘l\..l |I1.1-1}=Ipl\.{xh.1 llk.l-l',]}hl:-xl\..l-l III.l.-I-:"::I'::'i'l\..l-l {]5}

Due to the data association uncertainty, the filtering
step cannot be performed independently. In JPDAF the
likelihood for the kth target is assumed to be:

HI

Pz 0 x, 0 =T By + LBz, 1%, ) (16)
i=l =1
where, B, =pii, =jlz, ). j=1.M" is the posterior

probability that the kth target i1s associated with jth
measurement in the ith observer with the posterior
probability that the kth target 15 undetected. Furthermore,
the likelihood is assumed to be independent over the
observers. With the definition of the likelihood as in
Eq. 16, the filtering step is as follows:

(17
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All that remains is to compute the posterior
probabilities of the marginal associations [, as:

)3

{hee Al R, =il

B =pi, =ilz,)= pik1z,,) (18)

where, & is the set of all joint target to measurement
association hypotheses for the data at the ith observer.

As discussed by Vermaak ef al. (2005), the posterior
probability for the joint association hypothesis pik 1z,,)
can be expressed as:

plki 12,00 pADVY M [, (2, 12,0 (19)
I

where, the expression pii') is given from Eq. 14, V'is the
volume of the measurement space for the ith observer
defined as:

Vi=2nR' .

where, R, is the maximum range of the ith observer and
I'={je{1..M}: 1, # 0},

The expression p, (z, lz,,) is the predictive
likelihood for the jth measurement at the ith observer
using the information from the kth target, given in the
standard form by:

pt{ziu Iz, )= ,I-pil"[z'ii.x I ey Tz, dxg (20)
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In Monte Carlo frame work, the predictive likelihood
in Eq. 20 is approximated using the Monte Carlo samples
from the proposal distribution. It is assumed that for the
kth target the set of samples {w." .x" L., is available,
approximately distributed according the marginal filtering
distribution at the earlier time step pJX...|Z...). At the
current time step new samples for the target state are
eenerated  from  a  suitably  constructed  proposal
distribution, 1.e.,

(21)

Xk, 1%Lz, n=10N

As mentioned previously, we propose to use the
prior distribution as the proposal distribution for kth
target, 1.e.,

(22)

G (X IR0 2 ) = TR

Using these Monte Carlo samples the predictive
likelihood in Eq. 20 can be approximates as:

y
Pz, 12,0 = Y 0Pz X)) (23)
b=l
where, the predictive weights are given by:
:-;"',’ %" ) H
“‘Ihl:lll e WLl:lll-I pk[- : |||I:”_ Z“'-":II.I:'LI :] {:24]

g (x0 1x) |"II.}1 n=I
Considering the proposal distribution given in Eq. 22, the
predictive weights will be the same as the importance

weights, i.e.,

(25)

The approximation to the predictive likelihood can
now straightforwardly be substituted into Eq. 19 to obtain
the approximation for the joint association posterior
probabilities, from which approximations for the marginal
target to measurement association posterior probabilities
can be computed according to Eg. 18, These
approximations can be used in Eq. 17 to approximate the
target likelihood. Finally, setting the new importance
welghts to:

) {E |:';.I||I:\I };IuI I:{I": I By
. P L2, kl.“J:'Pk":mu - J. EW'LT 1 (26)
L]L{'R'L.I l HL.I I':lf'll:|

n=l
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leads to the sample set [w.".x"/1,., being approximately
distributed according to the marginal filtering distribution
at the current time step pk (x,,|z,.).
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Considering the prior distribution as the proposal
distribution Eq. 26 simplifies as follows:

ini [NL]
“'rl\..'.

K.t

| (27)
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Regularized MC-JPDAF: The resampling stage is
introduced to reduce the degeneracy problem, which is
prevalent in particle filters. However, the resampling, in
turn causes the problem of loss of diversity among the
particles, called sample impoverishment. This arises due
to the fact that in the resampling stage, samples are drawn
from a discrete distribution rather than a continuous one.
If this problem is not addressed properly, it may lead o
particle collapse, which is a severe case of sample
impoverishment, where, all N particles occupy the same
point in the state space. giving a poor representation of
the posterior density (Arulampalan er al., 2002). The
Regularized Particle Filter (RPF) i1s  proposed by
Musso er al. (2001) to address this problem. The RPF
resamples from a continuous approximation of the
posterior density pk (x,, 2,,):

(28)

M
Pl 12,0~ E“ILI!LIKh[xL..'. —X)
=l

where, K, (x) = I/h™ K(x/n), is the rescaled kernel density,
h=( is the kernel band-width, n, is the dimension of the
state vector x. In the special case of all the samples having
the same weight, the optimal choice of the kernel density
is the Epanechnikov kernel:

n, +2
2c

n'\.

0

1=y if <1

(29)

otherwise

where, ¢, is the volume of the unit hypersphere in JR"™.
Furthermore when the underlying density is Gaussian
with a unit covariance matrix, the optimal choice for the
band-width is (Musso er al., 2001):

h.ﬂ.. = ANHE {'3(]]

A=8c' (n, +4)2m)™ (31)

Although the results of Eq. 29-31 are optimal only in
the special case of equally weighted particles and
underlying Gaussian density, these results can still be
used in the general case to obtain a suboptimal filter.
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Fig. 2: The gating procedure in a sample observer

Gating procedure: Gating (Bar-Shalom and Fortman, 1988)
is ong of the most straightforward and effective methods
to reduce the number of valid hypotheses in JPDAF
framework. In this method, for each target a validation
region is constructed from available information. In other
words, the state of each target in earlier time step is
mapped into the measurement space of each sensor and
only measurements that fall within the target validation
region are considered as possible candidates (o be
associated with the particular target. The details of this
method are not given here. We have used this procedure
in order to further decrease the computational cost of the
MTT system. The best value for parameter £ which
indicates the radius of the valid measurement space is
obtained empirically. For the sake of further clarity, the
procedure of gating in a sample observer (e.g., ith
observer) is shown in Fig. 2. In Fig. 2 the blue circles
stand for the mapping of the previous state of the three
targets in the measurement space of the ith observer
{-_Ek k=1,2.3). The validation regions of each target are
represented by the dashed ellipses around the targets’
positions. The three measurements at the current time
step are indicated as red squares. So, according to gating
procedure, the measurements Z, and 2, are considered as
the possible candidates of association with target 1 and
the measurement Z, is considered as the only possible
candidate of association with target 3. According to
Fig. 2, target 3 has no possible measurement candidate for
association. Also, the measurement 7, has no chance of
association with targets since it lies in any of the
validation regions of three targets.

RESULTS AND DISCUSSION

Here, the simulation results for a two target tracking
system in the presence of clutter and false alarms, using
both the MC-JPDAF and EMC-IPDAF methods, are
presented. In the both algorithms, the proposal
distribution is assumed to be the prior density function.
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. 3: Trajectories for two targets. N = 300, two magenta
points are the observers, solid black lines are the
true target tracks, solid red and green lines are the
estimated trajectories of targets and ellipses are
the estimated 2o confidence regions of the
estimate covariances, (a) MC-JPDAF and (b)
RMC-IPDAF

Fig

In what follows, all location and distance measures are in
meters, all angle measures in radians, all ime measures in
seconds and all velocity measures in meter per second.
As depicted in Fig. 3, two observers are place in locations
(-43, -45) and (45, 45) in the xy plane, with o, = 5. 0, = (.05
and K., being the independent Gaussian noise variances
for range and bearing measurements and the maximum
range of the observers, respectively.

We model the target dynamics with the near constant
velocity model (Frank et al., 2003) with o, =0, = (.05 being
the process noise variances along x and y axes. The
discretization time step for the system is set to T = 1. The
initial states of targets are (-50, 1, 50, -1.5) and (-30, 1, 0,
-0.5). Target detection probability for each observer is
assumed to be P, = (0.5 and the clutter measurements are
assumed to have Poisson distribution with rate A_ = 0.8 for
both sensors. In order to further reduce the computational
cost, a kind of gating procedure is conducted in order (o
prune away the infeasible hypotheses in each time step.
A suitable validation region 1s obtained by setting & = 40.
Parameter £ is defined by Reid (1979). The simulations are
performed for 100 time steps. Figure 1 shows the true and
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Fig. 4: Trajectories for two targets. N = 300, two magenta
points are the observers, solid black lines are the
true target tracks, solid red and green lines are the
estimated trajectories of targets and ellipses are
the estimated 2o confidence regions of the
estimate covariances, (a) MC-JPDAF and (b)
RMC-JPDAF

the estimated target trajectories for MC-JPDAF and RMC-
JPDAF methods, where the number of particles N is set to
100, It is obvious that the performance and tracking ability
of the proposed RMC-JPDAF method is considerably
high due to the regularization stage used, while the
computational complexity and so the execution time are
significantly reduced. However, due to the fact that the
number of particles drawn in each time step from the
proposal distribution is finite, the computed 2o regions
are somewhat large. This can be compensated by
increasing the number of particles. In Fig. 4, the number of
particles is set to 500 and considerable reduction in 2o
regions is obtained. In this case, the higher tracking
performance of the proposed method versus MC-JPDAF
18 apparent.

In Fig. 5, the well known Root Mean Square Error
(RMSE), versus different values for particles number is
plotted for MC-JPDAF and RMC-JPDAF. As it is
obvious, the RMSE and so the estimation variance
decrease as the number of particles increases for both
methods. Forthermore, the RMSE for the proposed
method has smaller values than MC-JPDAF method, for
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Fig. 6: Average execution time for a single time step

different values for particles number. Finally the average
execution time for a single time step (cycle) of the
simulation program versus the number of particles, is
depicted in Fig. 6. As it was expected, the average
execution time increases nearly linearly as the number of
particles increases and this is nearly the same as for the
execution time of the standard MC-JPDAF by
Vermaak ef al. (2005).

CONCLUSION

In this study, a kind of robust MTT system is
implemented using Regularized and simplified MC-
JPDAF tracker. The regularization step is performed to
overcome the sample impoverishment problem due to
the resampling step in MC-JPDAF and the prior
distribution in used as the proposal distribution in
order to significantly reduce the computational cost
of the tracking system. Finally, the simulation results
for the proposed method prove the simplicity and
robustness  of  the  proposed  method
MC-JPDAF.,
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