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Abstract: To control biodiesel reactors with complex and highly nonlinear dynamics, the controller must be able
to handle multivariable problems as well as to adapt to time-varying dynamics. In this work, a multivariable
adaptive predictive model based control (i.e., the centralized adaptive Generalized Predictive Control, GPC)
strategy was simulated on a validated mechanistic transesterification model. The Recursive Least Squares (RLS)
algorithm was used for process model adaptation in the GPC framework. Simulation results revealed the
superiority of the proposed centralized adaptive predictive control scheme as compared to the decentralized
conventional PID controllers in terms of set point tracking, process interactions handling and resultant

controller moves. Good load disturbance rejection properties were also demonstrated by the proposed control

scheme.

Key words: Biodiesel, transesterification reactor, generalized predictive control, recursive least squares,
adaptive predictive control, centralized adaptive GPC

INTRODUCTION

In any typical biodiesel production plant (as shown
m Fig. 1, Tapasvi et al., 2004), the biodiesel reactor 1s the
most crucial unit operation to be controlled as any drift in
the standard operating conditions will upset the entire
production. Recent studies on the control of biodiesel

reactors have been focused on the design and
implementation of decentralized process control
strategies, where multiple Single Tnput Single Output
(SISO) control loops are implemented simultaneously
on the biodiesel reactor (Mjalli and Hussam, 2009,
Mijalli ez al, 2009). As with all decentralized process
control strategies, the downside of these approaches lies
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Fig. 1: Simplified schematic of the biodiesel production process (Tapasvi et al., 2004)
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in the inability of the decentralized controllers to handle
loop interactions in a systematic and efficient mamer. In
cases where loop interactions are severe, decoupling
techmiques are implemented to elinmate interactions
between control loops. However, it is not guaranteed that
these technmiques contribute positively to the overall
performance of the decentralized control scheme
(Seborg et al, 2004). Moreover, the design of
decentralized control systems requires cumbersome loop
pairing efforts. In biodiesel reactors, where the underlying
control problem is multivariable in nature (Mjalli and
Hussain, 2009, Mjalli ef af., 2009), a general multivariable
control strategy, viz., a centralized controller, is a more
suitable approach to handle process interactions
systematically. In this study, the Model Predictive Control
(MPC) technology, specifically the linear Generalized
Predictive Control (GPC) algorithm will be considered,
since it 1s capable of handling process interactions
systematically  (Camacho and Bordons, 1999
Maciejowski, 2002; Rossiter, 2004).

The nature of the fundamental control problem in the
biodiesel reactor 1s further complicated by the complex
heat and mass transfer characteristics involved in the
reactor (Mjalli et al., 2009). Nonlinearities present in the
biodiesel reactor imply the inadequacy of using a single
Linear Time Invariant (LT model in the GPC frame work
to represent the dynamics of the reactor. To overcome
this problem, the Recursive Least Squares (RLS) algorithm
is used in this study to model the process online, so that
accurate representation of the most recent dynamics of
the process can be embedded into the GPC framework in
real time. With the RL S algorithm contimuously modeling
the process online and the GPC algorithm optimizing the
controller moves at every time step, this adaptive
predictive control strategy can deal with unanticipated
situations (e.g., changes n the feed specifications,
unexpected failure of utilities supplied to the cooling
jacket, change in the feed temperature due to
environmental conditions etc.) which can affect the
operating conditions of the reactor, since the new
situations are taken into account in the design of the
controller moves. A conventicnal controller, however, will
not be able to cope with situations not included in its
design.

The design of the control loops based on this
adaptive strategy on the biodiesel reactor 1s shown
in Fig. 2. Here, the temperature is controlled to ensure an
optimal yield of biodiesel and to minimize the generation
of unwanted by-products. This is based on one of the
available technologies as described in Tapasvi ef al.
(2004) which requires biodiesel reactors be operated
below the boiling of methanol (b.p. = 64.7°C). The
pressure is atmospheric and is not controlled. Close

Coolant out

Coolant in, F, »e

Methanol Refined oil

Fig. 2: Simplified schematic of the multivariable adaptive
GPC controller design on the biodiesel reactor
operating at constant atmospheric pressure

control of the temperature is necessary as a high reaction
temperature increases the rate of reaction (Leung ef af.,
2010), but too high a temperature accelerates the
saponification reaction of triglycerides (Eevera ef al.,
2009, Leung and Guo, 2006). In the design of this control
system, the concentration of the methyl ester is also
controlled to ensure the stability, consistency and quality
of the biodiesel. The concentration of the biodiesel
produced in the reactor must lie within the required
specifications proceeding  to
processing.

In this study, a multivariable adaptive predictive
control strategy 1s designed, tested and simulated on
a validated transesterification model developed by
Mijalli et al. (2009). Interested readers on the modeling of
the transesterification reactor are referred to this
published work for more details. In this study, the RLS
algorithm, which identifies a linear multivariable
representation of the transesterification process at every
time step, 18 coupled to the GPC controller in closed loop.
Such a control scheme 1s not only capable of adapting to
operational variations, but also, the interactions between
different process control loops can be efficiently tackled.

before downstream

MULTIVARIABLE ONLINE PROCESS MODELING

The local dynamics of a multivanable process (Le.,
the transesterification process) can be represented by a
Multi Tnputs Multi Outputs discrete time auto-regressive
exogenous (ARX) model. In order to capture the nonlinear
dynamics of the transesterification process i real time, it
1s necessary to estimate online the parameters of an ARX
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model, i.e., the coefficient matrices in a(z™') and b(z™),
with m inputs (u,), n outputs (y,), a bias parameter (d,)
and a stochastic noise variable with normal distribution
and zero mean (v, ):

a(zﬂ)yk :b(zfl)ukerkJrvk (1)

where, a[n=n] and b[nxm] are polynomial matrices in the
z-domain given as:

a(z')=1+3" az" (2)

b (z'l) = Eilbiz" (3)

InEq. 1, k 13 a nonnegative integer which denotes the
sampling instance, k = 0,1, 2..., whereas in Eq. 2 and 3,
« and P are known positive integers and T is the identity
matrix.

Online estimation of the coefficient matrices in Eq. 2
and 3, viz., a_, , €R" andb,_, ;eR""involves the use
of recursive system identification techniques. The RLS
algorithm, which 1s covered extensively in the literature
(Ljung, 1987, Ljung and Gunnarsson, 1990; Ljung and
Saderstom, 1983), is by far the most popular recursive
system identification technique due to its simplicity and
fast convergence when properly applied (Seborg et al,
1986; Shah and Cluett, 1991). With the data of the mputs
(uy) and outputs (y,) of the process being constantly fed
to the RLS algorithm, the RIS seeks to minimize a
weighted cost function, V of the form:

v, =X A e | “)

where, A€(0, 1) 13 the forgetting factor and eR¥™ 13 the
vector of prediction error at the i-th instance.

Various modifications of the RLS algorithm are
available m the literature (Kulhavy and Kamy, 1985,
Ljung and Gumnarsson, 1990, Park et al., 1991, Sripada
and Fisher, 1987; Salgado et al., 1988; Seborg et al., 1986;
Shah and Cluett, 1991), where different strategies were
proposed to improve the tracking performance of the RLS
when the process model parameters are tune-varying.
Among these, Fortescue et al. (1981) proposed a strategy
whereby a time-varying forgetting factor is employed to
maintain the adaptivity of the RLS algorithm. In addition
to this, Cordero and Mayne (1981) suggested an
additional mechanism to ensure that the trace of the
covariance matrix remains bounded even when there is no
new nformation coming mto the RLS algorithm. Tlus form
of the RLS algorithm 1s referred to as the Varable

Forgetting Factor Recursive Least Squares (VFF-RLS)
algorithm throughout this text and is shown here:

B =V é:,,zk (5)
Pz
- ©)
1+z,P,_z,
e
b=l (N

T G[l+ ZEPHZJ

w, =P - YkZEPk—l (8)

p = ka)uk if traoe(Wk/lk)SC (9)
0w, otherwise

ék = ék—l T8y (1 0)

In these equations, v 18 the Kalman gain and P 1s the
covariance matrix of the prediction error. Both o and C are
design constants. The regressor matrix, z and the matrix of

the estimated process model parameters, & are
represented by:

z' = [—y;l,...,—yg,m, ui,l,...,ug,nb,l] (1 1)

&' =[a,...a,,,b,...b, d] (12)

In order to attain numerical robustness in
implementing the VFF-RLS algorithm, Bierman's
factorization of P,= UD,U," (Bierman, 1976} is emploved
(where, U is an upper triangular matrix and D is a diagonal
matrix) and the recursive updates of the covariance matrix
1s accomplished through the factorized components of P.

The VFF-RLS algorithm with UDU" factorization will
be used to design the centralized adaptive GPC controller
in the following section.

CENTRALIZED ADAPTIVE GENERALIZED
PREDICTIVE CONTROL STRATEGY

Intensive research on modern control concepts m the
past decades has led to the emergence of the MPC
technology, where an explicit process model 1s employed
to predict the future output of the process at every time
step. The predicted future output trajectories are then
used to compute a sequence of optimal future input
trajectories, where only the first move 1s implemented on
the process. This entire sequence of calculation is
repeated at every time step.
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Among the many model predictive controllers
available i the control literature as well as in the industry
(Garcia et al., 1989, Qmn and Badgwellb, 2003), the GPC
devised by Clarke et al. (1987b) has become one of the
most popular MPC algonithms (Clarke, 1988). The GPC 1s
known to show good performance properties over a wide
variety of processes and a certain degree of robustness
when implemented for the purpose of adaptive control
(Clarke et al, 1987b). In GPC, the Controlled Auto-
Regressive Integrated Moving Average (CARIMA) model
is employed for prediction:

—1 | T(Zil)vk 13
a(z )yk—b(z )uk+T (13)
where, T(z™") is a design polynomial matrix (Clarke et al.,
1987a, b; Yoon and Clarke, 1995) and A = 1- z . When
T(z ™" =1, the CARIMA model takes the form of an ARX
model with an integrated white noise term. Hence, in the
adaptive framework, the coefficient matrices of a(z™") and
b(z™") in (13) can be updated recursively by the VFF-RLS
algorithm.

The vector of future and past variables at sampling
instance k are defined as:

Yien ¥ Auy
yk 2 yk—l Auk 1
y=| "y =T pAau =
=% : —k : —k-1 :
| Yerw Yia AUy g (1 4)
Aukfl U, Ten
Au,_, u ¥
= k+1 k+2
Au = . u = - =|
| S : 5
| Aty gy Uiernat Ten

where, the notation of arrows pointing right 1s used for
strictly future (not including current value) vectors and
arrows pointing left for past (including current value)
vectors, Au _ (orAu ) is the vector of change in the
input variables , in which the elements are defined as
Ay = uy-u, and r is the vector of set points. The
prediction horizon (N) and control horizon (M) are
positive integers which serve as tuming parameters for the
GPC.

Given the prediction honizon and the control horizon,
the prediction of the future response of the process 1s
given by Eq. 13 (with T(z™") = I), which could be
rearranged mto an explicit expression of the predicted
future output vector ¥,

y =HAu +Kau -+ sz (15)

—k

where, the construction of the H, K and Q
matrices are well known (Camacho and Bordons,
1999, Clarke ef al., 1987a, b; Rossiter, 2004; Yoon and
Clarke, 1995).

To compute the sequence of the optimal future input
trajectories, the GPC control law is obtained by minimizing
the following cost function (71):

T
J:(r—yJW[r —y}—ﬂ.uT RAu (16)
=k Ly =k Sy —k-1 —k-1

where, W eV and e REMEM gre positive definite
diagonal weighting matrices defined as:

(W 0 0 W, 0 0
— |0 W . 0 W, :
W=| . . W=l
: 0 0
:0 0 W 0 0 W, a7
R 0 0 R, © 0
— |0 R 0 R, :
R=|. R=| .
0 - 0
K 0 R 0 0 R,

In Eq. 17, the diagonal elements of the matrix W
consists of the weights (W ..., W) for output residuals,
whereas the diagonal elements of the matrix R consists of
the move suppression weights (R,,..., R,)) for changes in
nputs. These weights are tunable parameters for
obtaimng good performance m the GPC controller.

In the constrained GPC, the GPC cost function T 1s
minimized with respect to Ay _ while satisfying the
following constraints:

min =Y Sl (18)

To solve for the optimal future input trajectories, the
optimization 18 formulated as a Quadratic Programming
{(QP) problem by rearranging Eq. 16 in the form:

Au —k-1 —k-1 (1 9)

—k-1

Subject to AAu  -b<0
—k-1

1, 1
min {EAEHSAu +1TAu J

where, S and f are defined as (Rossiter, 2004):

S=H"WH+R
— (20)
f:HTW{KAuk +Qy -r }

-1 e —k
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The matrices A and b in Eq. 19 can be obtained by
formulating Eq. 18 in the form of linear mequalities, of
which the details can be found (Camacho and Bordons,
1999; Maciejowski, 2002; Rossiter, 2004). Solving the QP
problem m Eq. 19 yields the future input trajectories
whereby only the first input move n the optimal sequence
1s implemented on the process.

Based on the study of Mjalli et al. (2009), the
validated mechanistic transesterification model consists
of two manipulated variables (coolant flow rate, F, and
reactant flow rate, F,) and two controlled variables
(reactor temperature, T and methyl ester concentration,
Cye), respectively. Hence, n desigmng the centralized
adaptive GPC controller, the parameters of a Two Inputs
Two Outputs (TITO) ARX model were estimated online
viathe VFF-RLS algorithm. The polynomial matrices a(z™")
and b(z™") were selected as first order polynomial
matrices, with ¢ = B = 1. Based on process experience, the
sampling time of the VFF-RLS algorithm was chosen to be
35 sec, whereas the constants ¢ and C were chosen to be
10 and 6000, respectively.

As with all recursive parameter estimation algorithms,
it is important to only begin the implementation of the
VFF-RLS algorithm when the inputs and the outputs of
the process are at steady state. In this simulation, a period
of 2300 seconds was allowed after start-up before the
VFF-RLS algorithm was activated. The performance of the
VFF-RLS algorithm was allowed to stabilize after
activation for a period of 200 seconds before model
adaptation m the GPC controller was mitiated.

As alluded to previously, in GPC, there are four
components which can be tuned to give good
performance, viz. the prediction horizon (N), the control
horizon (M), the output weights (W) and the move
suppression coefficients (R). As a general guide, N is
usually chosen such that N-M is larger than the process
settling time, whereas M is chosen to be as large as the
expected transient time (Rossiter, 2004). Both W and R are
positive constants which are tuned based on the actual
control performance.

Based on the general tuning guidelines (Rossiter,
2004) and subsequent fine tuming effort, the followmng
values of the TITO GPC tuming parameters were selected
in this simulation:

10 0.0035 0
N=14M=6 W= R=
[0 1} { 0 0.0035

} (1)
To prevent actuator saturation and aggressive actuator
moves on the coolant and reactant stream, the following
constraints were mmposed on the cost function of GPC:

F%} < {Fk} < {97%} (22)
3% | |F. | |97%

{715%} < [AFDJ(} . {15%} (23)
-15% | |AF,, | [15%

PERFORMANCE OF THE CENTRALIZED ADAPTIVE
GENERALIZEDPREDICTIVECONTROLSTRATEGY

In this study, the performance of the centralized
adaptive GPC strategy in controlling a nonlinear
multivariable process such as the biodiesel reactor was
tested under random, successive set point changes in
opposite directions. Included in this simulation are two
well tuned decentralized Ziegler-Nichols (Z-N)
conventional PID comparison  of
performance to centralized adaptive GPC controller. The
decentralized conventional PID control scheme was
designed based on the loop pairing analysis carried out in
the work of Mjalli et al. (2009), hence the details are
omitted here. Figure 3 and 4 show the reactor temperature
and methy] ester concentration profiles together with their
respective controller moves under successive, random set
point changes.

Figure 3 and 4, generally the centralized adaptive
GPC  controller outperformed the decentralized
conventional PID controllers in terms of the ability to
attain lower overshoot. However, it was observed in the
beginming of the simulation, that the closed loop response
of the centralized adaptive GPC scheme was a little
sluggish in bringing the methyl ester concentration back
to the set point. This is due to the start-up of the adaptive
scheme, where the performance of the VFF-RL S algorithm
had vet to stabilize. Given time, this shortcoming of the
adaptive scheme disappeared as the VFF-RLS algorithm
gathered sufficient process information. In terms of the
ability to handle process interactions, the performance of
the centralized adaptive GPC scheme was comparable to
that of a decentralized conventional PID controller for the
methyl ester concentration loop, while the performance of
the centralized adaptive GPC scheme i the reactor
temperature loop was far more superior to that of the
decentralized conventional PID controller. Generally, the
centralized adaptive GPC controller outperformed the
decentralized conventional PID controller mn handling
process interactions.

Omne of the important qualities of a good controller 15
the ability to produce actuating signals that are realistic
for practical implementations. As can be seen from both
Figure 3 and 4, the decentralized conventional PID
controllers produced aggressive controller moves, which
are not physically realizable n practical implementations.

controllers  for
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Fig. 3: Comparison of the performance and the controller moves between the centralized adaptive GPC controller and
the decentralized conventional PID controller in controlling the reactor temperature
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Fig. 4: Comparison of the performance and the controller moves between the centralized adaptive GPC controller and
the decentralized conventional PID controller in controlling the methyl ester concentration

The centralized adaptive GPC controller, on the other
hand, produced much more realizable controller moves.
The performance of the centralized adaptive GPC
controller was further tested for the ability to reject load
disturbances. Four variables were identified as possible
disturbance variables in the mechanistic
transesterification model (Mjalli ef a/.. 2009), viz.. the
triglveeride concentration (Cygo). feed temperature (T ),
coolant inlet temperature (T.) and stirrer rotational speed
(N). To simulate the efficacy of the centralized adaptive
GPC strategy in rejecting load disturbances, the nominal
values of Cyqo, To. Teo and N were increased as much as
0.1 kmol m~, 2 K., 2 K and 2 rps, respectively 5000 sec
after completion of the set point change tests. Figure 5
and 6 show the reactor temperature and methyl ester
concentration profiles when these disturbance variables
were introduced. From the figures, the reactor temperature
was brought back to the set point by the centralized
adaptive GPC controller in a period of 1000 sec. whereas

the same controller took a longer period (3000 sec) to
bring the methyl ester concentration back to the set point.
For the particular magnitude of disturbances introduced,
the feed temperature had the largest effect on the reactor
temperature, with an overshoot of less than 0.5 K.
whereas for the methyl ester concentration loop, the
triglyceride concentration had the largest effect, with an
overshoot of less than 0.07 kmol m ™. From the figures, it
was also observed that the stirrer rotational speed had
negligible effect on both the reactor temperature and
methyl ester concentration. Although the response for the
methyl ester concentration loop was more sluggish, this
was folerable as the effect of the disturbance variables on
the methyl ester concentration was marginal. Furthermore,
the reactor temperature is the more critical variable to be
controlled and needs faster controller response, since the
absence of proper regulatory control for the reactor
temperature loop can upset the entire biodiesel
production severely. In addition, the controller moves for
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Fig. 5: Effects of various individual disturbance variables, viz., the triglvceride concentration (C,,.). feed temperature
(T,). coolant inlet temperature (T.) and stirrer rotational speed (N). on the performance of the centralized adaptive
GPC controller in controlling the reactor temperature and the corresponding controller moves for the coolant. The
nominal values of C.,. T, T, and N were increased as much as 0.1 kmol m . 2 K, 2 K and 2 rps. respectively
at time = 40000 sec. These disturbances were introduced one at a time. hence shown here are superpositions of
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Fig. 6: Effects of various individual disturbance variables, viz., the triglyceride concentration (C,,), feed temperature
(T,). coolant inlet temperature (T,) and stirrer rotational speed (N). on the performance of the centralized adaptive
GPC controller in controlling the methyl ester concentration and the corresponding controller moves for the
reactant feed. The nominal values of C,.. To. Teo and N were increased as much as 0.1 kmolm >, 2K, 2K and
2 rps respectively at time = 40000 sec. These disturbances were introduced one at a time. hence shown here are

superpositions of four separate runs

both loops were observed to be within a reasonable
range. non aggressive and actuator saturation was not
found.

CONCLUSIONS

A multivariable adaptive predictive model based
control strategy. viz., the TITO centralized adaptive GPC
strategy was simulated on a validated mechanistic
transesterification model. By having a centralized
controller, the effects of all the input variables on all the

output variables are accounted for by the controller and
taken into consideration when calculating the appropriate
input moves to be implemented on the process.
Furthermore. an optimization based control strategy
ensures that the computed moves are optimal. while
respecting various constraints. In addition, no
cumbersome loop pairing analysis or decoupling were
needed in designing a centralized control system as
opposed to designing a decentralized control system. The
properties of the GPC controller were modified by having
the VFF-RLS algorithm to provide accurate real time
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dynamics of the biodiesel reactor to the controller.
Simulation shows that the centralized adaptive GPC
strategy generally outperformed the decentralized
conventional PID controllers in terms of set pomt tracking
and process interactions hendling. Good regulatory
control was also obtained. Moreover, the centralized
adaptive GPC strategy produced excellent controller
moves as compared to the decentralized conventional PID
controllers.

This simulation had demonstrated the efficacy of the
centralized adaptive GPC scheme m controllng a
multivariable and nonlinear transesterification process.
However, the downside of this approach is the added
computational complexity, of which the proposed control
scheme 18 only advocated for critical unit operations such
as the biodiesel reactor. The next phase of action in this
work is to implement this control scheme in a lab-scale
transesterification process.
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