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Abstract: We present a detailed analysis of the lattice Boltzmann method to simulate an mcompressible
fluid flow problem. Thorough derivation of macroscopic hydrodynamics equations from the continuous
Boltzmann equation is performed. After showing how the formulation of the mesoscale particle dynamics fits
in to the framework of lattice Boltzmann simulations, numerical results of isothermal, thermal and multiphase

fluid flow are presented to highlight the applicability of the approach. The objective of the paper is to gain

better understanding of this relatively new approach for applied engineering problems in fluid transport

phenomena.
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INTRODUCTION

Computational Fluid Dynamics (CFD) has emerged as
a powerful tool for the analysis of system involving fluid
flow, heat transfer and associated phenomena such as
chemical reactions, evaporation, condensation, etc
(Santos and Costa, 2009; Suresh and Anthony, 1996;
Su and Dong, 1999; Bolokhoenov et al., 2006). From 1960s
onwards, the aerospace industry has integrated CFD
techniques mnto the design, research and development
and manufacturing of aircraft and jet engines
(Bianco et al., 2009, Coiro and Nicolosi, 2001). More
recently, CFD has been applied to the design of internal
combustion engines, combustion chambers of gas
turbines and fumaces (Kumaran and Babu, 2009, Kumar
and Kale, 2002; Abbassi and Khoshmanesh, 2008).
Furthermore, motor vehicle manufacturers now routinely
predict drag forces, under-bonnet awrflows and the
in-car environment with CFD (Efisio et al, 2008,
Tsubokuraa ef al., 2009; Toumi et al., 2009).

The fundamental law of any fluid flow problems is the
Navier-Stokes equations, which define any single-phase
fluid flow. These equations can be simplified by removing
terms describing viscosity to yield the Huler equations.
Further simplification, by removing terms describing
vorticity yields the full potential equations. Finally, these
equations can be linearized to yield the linearized potential
equations.

Historically, Fimte Difference Method (FDM)
(Richardson, 1911) was the first computational method
used by researchers to solve fluid flow and heat transfer
problem by solving Navier-Stokes equation. However,
due to the frustration on FDM, which cammot be
effectively used on complex geometry, Finite Element
Method (FEM) has been introduced in 1950s (Strang and
Fix, 1973). In 1980s, Finite Volume Method (FVM) was
developed at Imperial College, mainly to solve fluid
dynamic problems (Patankar, 1980). Since then the fiute
volume method is extensively used to scolve transport
phenomena problems. Indeed, the FDM, FEM and FVM
belong to the same family of weighted residual method,
however, they limit their simulation in the range of
continuum fluid.

There are few numerical methods that simulate the
evolution of fluid flow at particle level. Among them are
Direct Simulation Monte Carlo (DSMC) (Bird, 1963) and
Molecular Dynamic (MD) (Alder and Wainwright, 1957)
methods. In these methods, the trajectories of every
particle together with their position in the system are
predicted using the second Newton’s law. From the
knowledge of the forces on each atom, it is possible to
determine the acceleration of each atom in the system.
These methods are deterministic; once the positions and
velocities of each atom are known, the state of the system
can be predicted at any tune in the future or the past. But
remember, a cup of water contains 10¥ number of
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molecules. Even when a gas is being considered where
there are fewer molecules and a larger time-step can be
used, because of the longer mean free path of the
molecules, the number of molecules that can be
considered 1s still limited. However, the question 1s do we
really need to know the behavior of each molecule or
atom? The answer 1s no. It 1s not important to know the
behavior of each particle, it 1s important to know the
function that can represent the behavior of many particles
(mesoscale). As a result, in 1988, the lattice Boltzmann
method (LBM) (McNamara and Zanetti, 1988), a
mesoscale numerical method based on statistical
distribution function has been introduced to replace MD
and DSMC methods.

Historically, LBM was derived from Lattice Gas
Automata (LGA) (Frish et al., 1986). Consequently, LBM
mherits some features from it precursor, the LGA method.
The first LBM model was a floating-point version of its
LGA counterpart. Each particle in LGA model (represented
by single bit Boolean mteger) was replaced by a single
particle distribution function represented by a floating-
point number. The lattice structure and the evolution rule
remain the same. One important improvement to enhance
the computational efficiency has been made for the LBM
was that the linearization of collision operator
(Bhatnagar et ai., 1954). The uniform lattice structure was
remaming unchanged.

The starting point in the lattice Boltzmann scheme is
by tracking the single-particle
distribution function. The concept of particle distribution

evelution of the

has already well developed m the field of statistical
mechanics while discussing the kinetic theory of gases
and liquds (Harris, 1971). The defimtion mumplies the
probable number of molecules in a certain volume at a
certain time made from a huge number of particles in a
system that travel freely, without collision, for distance
(mean free path) long compared to their sizes. Once the
distribution functions are obtained, the hydrodynamics
equations can be derived.

Although LBM approach treats gases and liquids as
systems comnsisting of individual particles, the primary
goal of this approach is to build a bridge between the
mesoscopic and macroscopic dynamics, rather than to
deal with macroscopic dynamics directly. In other words,
the goal is to derive macroscopic equations from
mesoscopic dynamics by means of statistic, rather than to
solve macroscopic equations.

The LBM has a number of advantages over other
conventional computational fluid dynamics approaches.
The algorithm is simple and can be implemented with a

kernel of just a few hundred lines (Azwadi and Tanahashi,
2006). The algorithm can also be easily modified to allow
for the application of other, more complex sunulation
components. For example, the LBM can be extended to
describe the evolution of binary mixtures, or extended to
allow for more complex boundary conditions (Abe, 1997;
Benzi and Succy, 1990; Bemsdorf ef ai., 2000, Azwadi and
Tanahashi, 2007). Thus the LBM 1s an ideal tool in fluid
simulation.

The objective of present study 1s to introduce and
discuss the formulation of LBM in simulating flud flow
problem. The derivation of macroscopic continuity and
momentum equations from mesoscale Boltzmann equation
1s discussed n details. After showing how the formulation
of LBM fits m to the framework of macroscale flow,
numerical results of lid-driven cavity flow, natural
convection in an enclosure and dynamics of droplet on
solid surface are presented to highlight the applicability
of the approach in various fields of fluid dynamics.

LATTICE BOLTZMANN FORMULATION

Isothermal lattice Boltzmann method: Ludwig Boltzmann
(1844-1906) introduced a transport equation based on
statistical mechanics describing the evolution of gas
particle in a system as:

§+c§+a§:Q+Ff (1)
ot ox  de

where, f, ¢, a and Q stand for density distribution
function, mesoscopic speed, acceleration due to external
force, collision function and external force respectively. If
there 1s no external force, Eq. 1 18 no more than a
hyperbolic wave equation with source term given as:

a_f+ Cﬁ =Q (2)
ot dx

Any solution of the Boltzmann equation, Eq. 2,
requires an expression for the collision operator Q. If the
collision 1s to conserve mass, momentum and energy, it 1s
required that:

1
I ¢ |Rde=10 (3)

2
Cc

However, the expression for Q is too complex to be
solved. Even if we only consider two-body collision, the
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collision integral term needs to consider the scattering
angle of the bnary collision, the speed and direction
before and after the collision, etc. Any replacement of
collision must satisfy the conservation law as expressed
in Eq. 3. The idea behind this replacement is that large
amount of detail of two-body interaction 1s not likely to
mfluence significantly the values of many experimental
measured quantities (Wolf-Gladrow, 2000).

There are a few version of collision operator
published in the literature. However, the most well
accepted version due to its sumplicity and efficiency 1s the
Bhatnagar-Gross-Krook collision model (Bhatnagar et al.,
1954) with a single relaxation time. The equation that
represents this model 18 given by:

Q(f)=-(f-£")/t

equilibrium distribution function and t is the time to reach
equilibrium condition during collision process and is often
called the relaxation time. Equation 4 also describes that
1/t of non-equilibrium distribution relaxes to equilibrium
state within time T on every collision process.
Substituting Eq. 4 into Eq. 2 gives:

8f+ of -1 (4)

L
ot ox T

which is known as the Boltzmann BGK equation.
Equation 4 describes two main processes at
The left hand side refers to the
propagation of distribution function to the next node in
the direction of its probable velocity and the right hand
side represents the collision of the particle distribution

mesoscale level.

funetions. In lattice Boltzmann formulation, magnitude of
¢ is set up so that in each time step At, every distribution
function propagates in a distance of lattice nodes spacing
Ax. This will ensure that distribution function arrives
exactly at the lattice nodes after At and collides
simultaneously.

In order to apply Eq. 4 into the digital computer, the
mesoscopic velocity space has to be discretised. This can
be done by discretising the physical space into uniform
lattice nodes. Every node in the network is then
connected with its neighbours through a number of
lattice velocities to be determined through the model
chosen. The general form of the lattice velocity model 1s
expressed as  DnQm where D represents spatial
dimension and Q is the number of comnection (lattice
velocity) at every node (He and Luo, 1997, He and
Doolen, 2002). There are many lattice velocity models

4 3 2
5 1
6 7 8

Fig. 1: D2Q9 lattice Model

published in the literature, however, the most well used
due to its simplicity is D2Q9 and shown in Fig. 1.

After discretisation i velocity space, Eq. 4 can be
rewritten in the following form:

o, O, f-f 5)
%o ax p

where, 1 refers to the number of discrete velocity. o refers
to the direction of mesocopic velocity where o = 0 when
1i=0,0=1wheni=1,3,5,7ando=2wheni=2 4, 6, 8.

The Eulerian expression of the left hand side of Eq. 5
can be transformed mnto the Lagrangian form. To do thus,
we take Buler tume step in conjunction with an upwind
spatial discretization and then setting the gnid spacing
divided by the time step equal to the velocity. This leads
to the well-known lattice Boltzmann BGK equation:

_ £
f,c(X+cwa,t+a)—fw(x,t):_ﬁ (6)
T

where, € is a small lattice time unit in physical unit.

Derivation of macroscopic equations: The equilibrium
distribution function f* i1s choosen so that we can
reconstruct the hydrodynamics of fluid flow. The general
form of ™ can be written as:

ffc“’=AG+BG(c1c-u)+CG(clc-u)2+Dcu2 (7

Here A,., B,., C,.. and D, are the coefficients to be
determined based of Chapmann-Enskog procedure. For
the rest particle, Eq. 7 becomes:

5 =A, +Dgu’ ®)
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£ =A+B (¢ -u)+C (g, -u)2 +Du’ )
£%=A, +B, (c12 -u)+C2(c12 -11)2 +D,u’ (10)

for other particles. This gives:

B,=C =0 (1)

0 0

The symmetric properties of the tensor X,¢,,Cyi... are
needed in the derivation and given as follow:

¢ The odd orders of tensor are equal to zero
+ The second order tensor satisfies 2 CoCop = 2628

g op

where ., is the Kronecker delta and ¢ = 1 and

¢, =2

*  The fourth order tensor has an expression as:
z‘“cmccnﬁccwc019 = QSQBYB
foro=1 and
Elcmc aCaCan = M pe — 8B e
for 0 = 2 where:
Agpye = Topdig + 8,8y + 88,

By considering conservation laws of:

EcElf;q = p

2021 f;ch =pu

results

DDA, +4A +4A, +(2C, +4C, + Dy +4D, +4D,ju’ =p

(12)
Y3 fAc, =(2B, +4B,)u=pu (13)
These give constraints for coefficients A,., B,

C,..and D, as:

A, +4A, +4A, =p (14)
2C, +4C, + D, +4D, +4D, =0 (15)

and
2B, + 4B, = p (16)

To satisfy Eq. 14 we chose A, :%p - A, =ép and
1
1= %p
We next decompose the timescale into slow and fast
timescale. This is to represent two different phenomena
occur at different timescale such as advection and
diffusion:

8 8 2
2.3 .9 17
& a, oy an

where, € plays the role of Knudsen number (Hou et al.,
1995). We also expand f about %

£, =2 +efl + 2 + O(e") (18)

Here Ecz‘“fg‘) =0 and Ecz‘nfg)cd —0 toimply that the

non-equilibrium  distributions do not contribute to the
local values of density and momentum.

Taylor expanding of Eq. 6 and retaimng terms up to
O(eh results m;

e
P
T

(19)

Substituting Eq. 17 and 18 into Eq. 19, the equation to
order of £ and £° are:

at, T

et 0)

=] 2
R B | = Y )
a, a, a1

respectively. Equation 21 can be further sumplified by
using FEq. 20 gives:
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=] 2
a? +(a+(%_v)J(1_lJflg _ @
at, ot 21 T

The first order continuity equation can be obtained
by taking summation of Eq. 20 respect to ¢ and 1

dp
LT v -0 23
o, e (23

Taking the same summation of Eq. 22 gives:

ap
F_g 24
) (24)

Combining Eq. 23 and 43 gives the correct form of the
continuity equation:

E%’+V’-(pu):0 (25)

We next multiply Eq. 20 with ¢, and taking the
summation as above gives:

Ip .
E(pu+v-r[“*)=o (26)

the momentum flux

Where’ Heq = EGEI(Clﬂciﬂ)f‘ii? IS

tensor. Substituting the expression of the equilibrium
distribution, II*® can be written as:

113 =24, +44; +{4C, +2D, +4D, Ju* [8,, +8Cu,u, +{2C, —8C; Ju u s,

27

which are the pressure term and two nonlinear terms. This
gives:

8C, =p (28)
and
24, +4A, = (29)

where, ¢%= 1/3 is speed of sound. Tn order to obtain a
velocity independent pressure and Galilean invariance, we
choose:

AC, +2D, +4D, =0 (30)

and

2C, -8C, =0 (31
This gives the final expression for I1* as:
T2 = c!pd,, +pu,u, (32)

Substituting Eq. 32 mto Eq. 26 results mn Euler
equation as:

%(pu) + V-(puu)=—V(cfp) (33)

and the pressure is given by p = ¢’,p.

We next multiply Eq. 22 with ¢, and taking the
summation respect to ¢ and 1

O onyev1- L= 34
o (Pu)+ ¥ (1 2JH 0 (34)

1

Substituting the expression of the non-equilibrium
distribution and using Eq. 25 and 32 leads to:

I, = —T{—cfﬁaﬁav (puv ) + %(puauﬁ) +9,(2B, -8B, )u d,, +
0

48Y(B2uv)8mﬁ + 48m(B2uB) +43, (Bzum)}
(35)

To maintain isotropy, we set:
2B, -8B, =0 (36)
Recalling Eq. 16, gives the expression for B, and B;:

B -~ (37)

Using Eq. 33 in the form:

2 fon )= 0,2, (60) -0, (603, (ovm,) B9)
0

Equation 35 can be written as:
I, =—t l—c2 9 (pu )8 +la (pu )+18 (pu,)-
o 3 s [y v/ oo 3@ B 3 B a (39)
u,9, (cﬁp) -9, (cfp) -9, (puauﬁuy)}

Combining Eq. 33, 34 and 39 gives the momentum
equation in two dimensions:
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3 1
g(pum) +0, (puauB )= —0,p+ 0, {M(aauﬁ + 0,0, - guw% }

(40)

where:

p2’c—1 (41)

For an incompressible fluid, the momentum equation
becomes:

]
E(pum) + 8[3 (puuu[s ) = 7amp + a[g {H‘(auug + aBum )} (42)

The remaining coefficients are determined as follow:

4 2
Anzap B, =0 C,=0 Dnzfgp
1 1 1 1
A :gp B, :gp Gy *Ep D=——p (43)
1 1 1 1
A =— =—p C,=—p D,=——
2 36p 2 12[3 0 Sp 2 24[)

Finally, the equilibrium distribution functions can be
written as follow:

£ = ip[l,iuﬂ fori=0 (44)
9 2

£ =lp{1 +3(c, u)+ g(cll u)’ - Euz} fori=1,3,5,7 (45)
9 2 2
and

L1 9 3 =
£ =£p{1+3(011 '11)+§(Cl1 '1-1)2 _Euz} fori=2,4,6,8 (46)

From the above derivation, we can see that the
Boltzmann equation can lead to the
macroscopic Navier-Stokes equation by the Chapman
Enskog expansion.

mesoscale

Thermal lattice Boltzmann method: Tn general, the
current thermal lattice Boltzmarm models fall into three
categories: the multi-speed approach (Mc-Namara and
Alder, 1993), the passive scalar approach (Shan, 1997) and
the thermal energy distribution model proposed by
He et al. (1998). The multi-speed approach uses the same
distribution function in defimng the macroscopic velocity,
pressure and temperature. In addition to mass and

momentum, in order to preserve the kinetic energy in the
collision on each lattice point, this model requires more
variations of speed than those of the 1sothermal model
and equilibrium distribution function usually include
higher order velocity terms. However, this model is
reported to suffer severe numerical instability and is not
computationally efficient (Mc-Namara and Alder, 1995).

In the passive scalar model, the flow fields (velocity
and density) and the temperature are represented by two
different distribution functions. The macroscopic
temperature is assumed to satisfy the same evolution
equation as a passive scale, which is advected by the flow
velocity, but does not affect the flow field. It has been
shown that the passive scalar model has Tbetter
numerical stability than the multi-speed model (Eggels and
Somers, 1995).

He et al. (1998) in their model mtroduce the internal
energy density distribution function, which can be
derived from the Boltzmann equation. This model 1s
shown to be a suitable model for sumulating real thermal
problems. However, the complicated gradient operator
term appears m the evolution equation and thus the
simplicity property of the lattice Boltzmann scheme has
been lost. To overcome this problem, current author has
developed the simplest lattice structure for internal energy
density distribution function by neglecting the viscous
and compressive heating effects. To see this, the new
variable, the internal energy density distribution function
1s introduced:

_(emw)' (47)

Substituting Eq. 47 into Eq. 4 results in:

%J’Cg_i:_é(g_gm)ﬁrﬁfq {48)
where
oo % - (49)
b - (c;u)z E (50)
and
q:c;u(%+0_vuJ (51)
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are the equilibrium distribution function for internal
energy, the term due to the extemal force and the heat
dissipation term respectively. Note that the external force
1s remntroduced and two different relaxation times are used
to characterize the momentum and energy transport.
Equation 47 represents the internal energy carried by the
particles and therefore Eq. 48 can be called as the
evolution equation of internal energy density distribution
function. The macroscopic temperature field can be
defined in term of distribution function g as:

T= Igdc (52)

As mentioned earlier, for simulating incompressible
flow, the viscous heat dissipation can be neglected. So
the evolution equation of mternal energy density
distribution function 1s reduced as follow:

dg dg_ L. 53
e S (53)

By omitting the dissipation term, the complicated
gradient operator in the evolution equation of internal
energy distribution function can be dropped.

In the previous section, the equilibrium function for
density distribution f* was derived following the same
procedure as in Lattice Gas Automata (LGA) (Frish et al.,
1986). In other word, our understanding of the basis of
LBM has been restricted by owr knowledge of the
statistical mechanics of LGA. Here, the derivation of
equilibrium  function for energy  density
distribution function will be carried out, starting from the
Maxwell-Boltzmann equilibrium distribution function
written as:

internal

w_ LY | (e-u) 54
f —p{m} exp{ 2RT} (54

where, R is the ideal gas constant, D is the dimension of
the space and p, u and T are the macroscopic density,
velocity and temperature respectively. Recall Eq. 49 and
expanding up to o’ for the internal energy distribution
function gives:

o TR ¢ ¢’ ¢’ 2 jc-u
g =pT| ——=| exp:- + - ==+
2nRT 2RT|| DRT | DRT D |RT

o _Aew) [ 2]
DRT DJZ(RT)Z DRT D |2RT

(55)

Regroup to avoid higher order quadrature gives:
D2 2 . e 2
g™ =pT ! exp4— < 1+Q+(C 11)2_ ki
27RT 2RT RT ~2(RT) 2RT
1
pT
[ZERTJ { ZRTHDRT }
[ 1 } { H[ 2y DJ }
pT
2nRT 2RT DRT RT

¢ 4+D\ (c-u) ¢t 24D
DRT DRT 2RT

(56)

Tt has been proven by Shi et al. (2004) that the zeroth
through second order moments m the last square bracket
and the zeroth and first order moments m the second
square bracket in the right hand side of Eq. 56 vanish. The
exclusion of the second order moments in the second
square bracket m Eq. 56 only related to the constant
parameter m the thermal conductivity which can be
absorbed by manipulating the parameter t, in the
computation. Therefore by dropping the terms in the last
two square brackets on the right hand side of Eq. 56
gives:

1 X& ¢ c-u
M =pT exXpq— I+—+
& P [ 2rRT J p{ 2RT } RT

(LI }

2(RT)" 2RT
(57)
For low Mach number flows, the internal energy

density equilibrium distribution function can be further
simplified by neglecting the terms O(u’) gives:

R ¢’ c-u
geq:pT(anT} eXp{QRTHHRT} o

To recover the macroscopic energy equation, the
zeroth-to second-order moments of g™ must be exact. In
general:

I= Ic"‘g“dc (59

where, I, should be exact for m equal to zero two
respectively. Now a new variables ¢
defined by:

1 Ke ¢’ c-u
—empr| L - 1+ 28 (60)
O =P (QERTJ exp{ 2RTH * RT}

. 1s mtroduced

1517



J. Applied Sci., 10 (15): 1511-1524, 2010

Rewriting Eq. 59 after substituting Eq. 60 gives:

T

}do (61)

For simplicity the microscopic velocity 1s normalized

as ¢=+2RT(
1,{(VZRTL) = [¢, (VZRTE Jexp{-L’| VZRTAL (62)

Equation 62 can be calculated by using the Gauss-
Hermite quadrature. Hence, the Gauss-Hermite quadrature
must consistently give accurate result for quadratures of
zeroth-to-third-order of velocity moment of g™ This
unplies that the second-order Gauss-Hermite quadrature
can be applied m evaluating I.. Therefore Eq. 62 can be
evaluated as follow:

I, (VIRTE)= [ 6, (VIRT (£, 8, by e 02 fexp{ 0] }.exn{ -], |
(VERT) dg, dt,, ...,

RECIB IR

b L L

W0, (V2RT (G, 810Gy )

W, 1is the
corresponding weight coefficient and {, is the Gaussian
abscissa. For two dimensional, D = 2, second-order
Gauss-Hermite quadrature N = 2, the value for W, and {,

are:
\fgz [W,iwzz£ (64)

some modification

where, N 1s the number of abscissas,

After m order to satisfy
macroscoplc energy equation via Chapmann-Enskog
expansion procedure, the discretised internal energy

density distribution function is obtained as:

ipT[H—c-u] (65)

o _
L1234~

This type of lattice structure for mternal energy
density distribution is shown n Fig. 2.

From above derivations, we can see that the
evolution ecuation for internal energy distribution
function can be directly derived from the Maxwell
Boltzmam distribution function.

Multiphase lattice Boltzmann method: Recently, a
number of researchers have used LBM to study

2 1

3 4

Fig. 2: Lattice structure for intemal energy density
distribution function

multiphase fluid flow in some specific engineering
problems such as granular flow and droplet dynamics
(Briant et al., 2002; Swift et al., 1995).

Microscopically, the phase segregation and surface
tension m multiphase flow are because of  the
interparticle forces/interactions. Due to its kinetic nature,
the L.BM is capable of incorporating these interparticle
interactions, which are difficult to implement in traditional
methods.

In general there are three types of lattice Boltzmann
models have been advanced to simulate multiphase flow
systems. The first type is the so-called colored model for
immiscible two-phase flow proposed by Gunstensen et al.
(1991) and based on the original lattice gas model by
Rothmann and Keller (1988) and Gunstensen ef al. (1991)
used colored particles to distinguish between phases. The
color model was further developed by later studies
(Grunau et al., 1993), but it has serious limitations. One of
the most significant problems is that the model is not
rigorously based upon thermodynamics, so it is difficult
to incorporate microscopic physics mto the model
{Boghosian and Coveney, 2000).

The second type of LB approach used to model multi-
component fluids was derived by Shan and Chen (SC
model) (1993) and later extended by others (Shan and
Chen, 1994). In the SC model, a non-local mteraction force
between particles at neighboring lattice sites is
introduced. The net momentum, modified by interparticle
forces, 1s not conserved by the collision operator at each
local lattice node, yet the system’s global momentum
conservation is exactly satisfied when boundary effects
are excluded (Martys and Chen, 1996). Hou et al. (1997)
compared the above two types of models for simulating a
static bubble m a two fluid system and concluded that the
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SC model is a major improvement over the colored model.
The main drawback of the SC model, however, is that it 1s
not well-established thermodynamically. One cannot
mtroduce temperature since the existence of any energy-
like quantity is not known (Hazi et al., 2002).

The third type of LB model for multiphase flow is
based on the Free-Energy (FE) approach, developed by
Swift ef al. (1995), who imposed an additional constraint
on the equilibrium distribution functions. The FE model
conserves mass and momentum locally and globally and
1t 18 formulated to account for equilibrium thermoedynamics
of nonideal fluids, allowing for the mtroduction of well
defined temperatire and thermodynamics (Swift ef al.,
1996). The major drawback of the FE approach is the
unphysical non-Galilean mvariance for the viscous terms
in the macroscopic Navier-Stokes equation. Efforts have
been made to restore the Galilean invariance to second-
order accuracy by incorporating the density gradient
terms mto the pressure tensor (Kalarakis et al., 2002).

Present study focuses on the multiphase LBM which
is based on the work of Shan-Chen which involves
evolution equation of single particle distribution function
f and can be written as:

df, te of, £, —f3 +F (66)
a7 ox T

To simulate multiphase fluids, long-range mteractions
between particles are needed. To do this, an nteraction
force between the nearest neighbors of fluid particle is
incorporated for single component multiphase fluid.
Therefore, the external force F in Eq. 61 1s given as:

8
F= _GW(X,t)Ewqu(X + CAt,t)c (67)

i=0

where, w 1s the weight as in equilibrium distribution
function. G 1s the interaction strength and ¥ is the
interaction potential. There are few types of interaction
potential exist in the literature. Some of them are P(p) =
pal 1-exp(-p/py)] (Raiskimmaki et ai., 2002), ¥(p) = p [20],
¥ 0,0 12(pstp)] (Pam et al., 2004), ¥(p) = ¥ exp(-p/p)
(Shan and Chen, 1993), etc.

Following Shan and Chen (1994), the nonideal
equation of state from the abovementioned external force
and interaction potential can be written as:

el (we)) (68)

One of the advantages of Shan-Chen multiphase
model over other LBM multiphase models is its capability

to simulate the dynamics of droplet on solid surface. The
study of droplet dynamics is very close to the phenomena
in daily lives such as droplet shiding on car’s front glass
or windows, spreading of water on table, droplet falling
and many more to mention. This phenomenon also plays
an important role in real engmeering applications. Coating
of substances, boiling water reactor, injection of ink are
some of them.

Other than cohesive force described earlier, the
interaction between fluid particles and surface 1s needed
to include the adhesive force between these two phases.
The interaction force between the fluid particles at site x
and the solid wall at site x' is formulated as:

8
Fo, =-Gy(x,t)Y ms(x + AL, t)c; (69)

i=]

The coefficient to describe the strength of force
between solid and fluid is different to that of between
fluid and fluid. Therefore we need to use a different two
coefficients to characterize these two types of forces. At
the fluid-solid interface, the solid is regarded as a phase
with constant density s, which is 1 for a solid and 0 for a
pore. Using these definitions, the fluid momentum 1s
changed at each time step according to:

pu'=pu+ F_ +F_ 70)

where, U is the new fluid velocity.
SIMULATION RESULTS

Earlier the formulation of mesoscale lattice Boltzmann
scheme and the derivation of macroscopic Navier-Stokes
equation were demonstrated. Here, the numerical
prediction of lid-driven cavity flow, natural convection in
an enclosure and droplet dynamics on solid surface are
performed to demonstrate the applicability of the scheme.

Lid-driven cavity flow: The lid-driven cavity flow has been
used as a benchmarlk problem for many numerical methods
due to its simple geometry and complicated flow
behaviors. Tt is usually very difficult to capture the flow
phenomena near the singular points at the corners of the
cavity.

In this subsection, the mesoscale LBM scheme is
applied to this lid-driven cavity flow of height I.. The top
plate moves from left to nght along the x direction with a
constant velocity U and the other three walls are fixed In
the simulation, the Reynolds number is defined as:

Re- MY (71)
v
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Fig. 3: Streamlme plots for Re = 1000 and Re = 5000

Two different values of Reynolds number, Re = 1000
and Re = 5000 are chosen and the solutions at steady
state are compared with the benchmark results
(Ghia et al., 1982).

Figure 3 show plots of streamline for the Reynolds
nmumbers considered. They are apparent that the flow
structures are i good agreement with the results
published 1n  the |literature by previous studies
(Ghia et al, 1982; Sidik et ol., 2008, 2009). For Re = 1000,
the primary vortex appears at the cavity center and
circular shaped. In addition to the primary, a pair of
counter rotating eddies develop at the lower
corners of the cavity. At Re = 3000, a third
secondary vortex is evolved in the upper left corner of the
cavity and the size of the secondary vortices become
larger.

The velocity components along the vertical and
horizontal lines through the cavity center together with
the benchmark solutions are shown in Fig. 4a and b. Goeod
agreement between the mesoscale LBM and the
benchmark solutions are observed. It is noted that, the
mesoscale LBM is able to capture the critical points in the
tested problem.

Natural convection in an enclosure: Flow in an enclosure
driven by buoyancy force is a fundamental problem in
fluid mechamics. This type of flow can be found m certain
engineering applications withuin  electronic  cooling
technologies, in everyday situation such as roof
ventilation or in academic research where it may be used
as a benchmark problem for testing newly developed
numerical methods. A classic example 1s the case where
the flow is induced by differentially heated walls of the

(@)

(b)

Fig. 4. Velocity components along the vertical and
horizontal lines through the cavity center for (a)
Re = 1000 and (b) Re = 5000 (lines: LBM, symbol:
Ghia et al., 1982)

cavity boundaries. Two vertical walls with constant hot
and cold temperature is the most well defined geometry
and was studied extensively in the literature.

In this study, we reproduce the phenomenon of
natural convection in differentially heated walls by using
LBM scheme due to vast numerical and experimental data
can be obtained for the sake of comparison. There are two
dimensionless parameters which govern the characteristic
of thermal and fluid flow 1n the enclosure; the Prandtl and
Rayleigh numbers defined as follow:

pr=2 (72)
X

Rq - SBATL (73)
Lyé
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Fig. 5 Streamlines plets for (a) Ra = 10° and (b) Ra = 10°

b

Fig. 6: Tsotherms plots for (a) Ra = 10" and (b) Ra = 10°

where, 7, L and AT are the thermal diffusivity, width of the
cavity and temperature different between left and right
walls respectively. In present study, the Prandlt number
of 0.71 was used to represent the circulation of air in the
systemn. The Rayleigh number is set at 10° and 10°. The
plots of streamlines and isotherms are shown in Fig. 5a, b
and 6a, b.

At Ra =10, streamlines are those of a single vortex,
with its center in the center of the system. The
corresponding isotherms are parallel to the heated walls,
indicating that most of the heat transfer is by heat
conduction. As the Rayleigh number increases (Ra = 10°),
the central streamline is elongated and two secondary
vortices appear inside it. The isotherms initially parallel to
the differentially heated walls at low Re become horizontal
at the center of the cavity at high Re indicating that the
dommant of heat transfer mechanism 1s convection. All of
these findings are in good agreement with previous
studies (Azwadi and Tanahashi, 2006, 2007, 2008,
Azwadi and Syalwullail, 2009, Azwadi er al, 2010
Azwadi and Irwan, 2010; Davis, 1983; Fusegi ef al., 1991).

Droplet dynamics on solid surface: The droplet initially
positioned just touching the solid surface. In this case,
the magmtude of G' has to be determined before the

Fig. 7. Computed results at 35°, 55° and 150 contact
angles. (a) Contact angle 35°, (b) Contact angle
55° and (¢) Contact angle 150°

calculation begins. The value of G' at special contact
angles (0%, 90° and 180°) can be easily determined by
balancing the cohesive and adhesive in different ways.
This gives the value of G' of 327.79, -187.16 and -46-354 for
contact angle of 0°, 90° and 180°, respectively.

The simulated results at three other values of G are
shown m Fig. 7a-c. The contact angle of the computed
figures are then determined using Auto CAD software.
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Fig. 8: Comparison of computed droplet’s diameter to
height ratio with analytical solution

In present investigation, we also calculate the
magnitude of the ratio of droplet’s wetting diameter to the
height of droplet for every contact angle. Then the
computed values are compared with the analytical
solution and shown in Fig. 8. As can be seen from the
Fig. 8, these ratios are in excellent agreement when
compared with the analytical solutions.

CONCLUSSIONS

This study discussed the theory of mesoscale
numerical approach namely the lattice Boltzmann method
in prediction of various types of fluid flow problems
ranging from isothermal to multiphase cases. The
derivations of macroscopic governing fluid flow
equations were demonstrated 1s detaill based on the
kinetic theory of gases. After showing how the
formulation of the mesocale particle dynamics fits in to the
framework of lattice Boltzmann simulations, numerical
results of flow in a lid-driven cavity, natural convection in
an enclosure and droplet dynamics on solid surface were
conducted to demonstrate the applicability of the present
method. All of the predicted results were found to be in
close agreement with the previous similar study reported
in the literature.

The lattice Boltzmann method 15 still undergomg
development. Many models including simulation of flow
1n porous media, solid-fluid flow, were recently proposed.
Although innovative and promising, these existing LBM
methods, require addittional benchmarking and
verification. This would open many new areas of
application.
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