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Abstract: This study presents an analytical approach to predict the behavior of fiber-remnforced materials with
high shrinkage properties. A simple model formed of a rigid fiber embedded in a cylindrical elastic matrix
presenting high shrinkage properties was analyzed. Tsotropy and homogeneity of the two constituents, the fiber
and matrix, as well as the shrinkage of the matrix were assumed for simplification. The analytical analyses
included the variations of the state of link at the fiber-matrix interface due to its effect on the global behavior
of fiber-reinforced material. The study showed the effect of the bond strength on the bond length, the effect
of the bond length on free shrinkage, the effect of the age of the composite material on the bond length and the
effect of the fiber volumetric fraction on the equivalent mean length.
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INTRODUCTION

Fibers are most often added to cement composites to
mnprove therr fracture behavior. This concept of
reinforcement was used in building materials in the old
days. There is an evidence that asbestos fiber was used
to reinforce clay posts about 5,000 years ago.

The behavior of composite materials formed of a
given binder and a matrix presenting high shrinkage
properties is much related to the state of interlocking,
mechanical or chemical between the {iber and matrix. If the
bond 15 perfect the shrinkage will be inhibited. In this case
the behavior of the material vis-d-vis the tensile strength
and consequently the shrinkage induced cracking 1s not
known, whereas if plain fibers are used the shrinkage
would not be mtubited but the tensile strength of the
resulting composite material would be improved
(Toledo Filho et al., 2005).

The modeling of fibers and the bond properties for
fibers m fiber reinforced concrete has received much
attention in the literature in the past several decades.
Nammur and Naaman (1989) derived an analytical model
of the bond shear stresses at the fiber-matrix mterface m
a pure tensile fiber reinforced concrete specimen. The
derived model predicted the shear stress distribution
along the fiber-matrix, the slip distribution and the normal
tensile stresses m the fiber and the matrix. Perfect
alignment of the fibers as well as square packing was
assumed. The model was finally wsed to predict
numerically the bond shear stress in a given tension
composite using a specific bond-slip curve.

In a previous work performed by Hanayneh (1994), a
parametric analysis of the fiber-matrix interface in materials
with high shrinkage properties was studied numerically.
The study showed the mfluence of some parameters on
the behavior of an elementary model. However, the
applications of this type of analysis were of limited use. Ti
and L1 (2001) modeled the behavior of fiber reinforced
concrete based on the Continuum Damage Mechanics. In
the material, a cement-sand-coarse-aggregate-water mix
was used as the matrix and short steel fibers were used as
the reinforcement. The quasi-brittleness of the matrix and
the fiber-matrix interfacial properties were taken into
consideration. Results show that the model-predicted
stress-strain curves agreed well with those obtained
experimentally.

Lately, many researchers applied experimental
programs to study the use of fiber- reinforced to reduce
plastic shrinkage  in (Boghossian  and
Wegner, 2008, Sivakumar and Santhanam, 2007,
Passuello et al., 2009).

On the other hand, Boulekbache et ol (2010)
investigated the fiber distribution and orientation by
using a translucent fluid model with a yield stress. The
observation confirmed the ability of the developed
method to provide data on the orientation and distribution
of steel fibers within concrete. It was showed that
ortentation and distribution are dependent on the yield
stress of the fluid material. The flexural strength depends
on the fiber distribution and orientation and is
significantly improved when the fibers are oriented in the
direction of the tensile stresses fresh (concrete with good
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worlkability). On the contrary, for concrete with poor
workability, an inadequate orientation of fibers occurred,
leading to a poor contribution of the fibers to the flexural
behavior of the tested specimens, despite the relatively
higher compression strength of the tested concrete
material.

Jay Kim et al. (2008) constructed reinforeing fibers
with three different geometries, 1e., embossed, straight
and crimped, from waste polyethylene terephthalate (PET)
bottles and used them to control plastic shrinkage
cracking in cement-based composites. Pullout tests
evaluated how the fiber geometry and fraction by volume
(0.1-1.00%) affected the rate of moisture loss and
controlled the plastic shrinkage cracking characteristics

Barluenga (2010) demonstrated that inclusion of small
amounts of short fibers has an effective solution to
control cracking due to drying shrinkage of concretes at
early ages. The key point of fiber effectiveness is their
capacity to sew the crack sides, preventing crack opening,
because cracking of concrete matrix induces fiber
actuation. The results showed that as concrete
mechanical capacity develops with age, while fibers have
full properties before being mncluded m concrete matrix,
the interphase between matrix and fibers evolves during
setting and hardening and affects cracking control
effectiveness, due to stresses induced by fibers into the
matrix during concrete hydration.

Other researchers such as Leung ef al. (2006) used
shotcrete and fiber reinforced shotcrete to produce layers
or linings with large surface area versus volume ratios to
restrain shrinkage cracking. A new testing configuration,
consisting of a shotcrete specimen bonded to a steel
T-section and angles was proposed. From the results, the
proposed set-up 1s shown to be a practical and viable
approach for investigating the shrinkage -cracking
behavior of shoterete and fiber reinforced shoterete.

Most of the existing models presented in the
literature are relatively complicated. On the other hand,
the extensive use of fiber remnforced composite materials
made 1t necessary to come up with a material model that
can be easily incorporated into existing design procedures
for professional engineers. This paper proposes a simple
analytical approach that was developed by the authors in
Jordan on a research project that started on July 2008 and
ends on March 2010, which would allow the analysis and
the study of the behavior of fiber-reinforced materials with
high shrinkage properties by varying the parameters
related to the fibers and the matrix. A model formed of a
rigid fiber embedded in a cylindrical elastic matrix
presenting high shrinkage properties is analyzed.
Deformations of the matrix are assumed not to

fibers. Thus, the

lead to deformations 1in the

L-b slip

?ond briy _‘},L

Fig. 1: Representation of the cylindrical model used in the
study

[
»

analytical model presented in this study is most
appropriately applicable to cases of stiff fibers.

DESCRIPTION OF THE MODEL

The model consists of two coaxial cylinders of radii
r; and R, respectively, as shown in Fig. 1. The inner
cylinder represents the rigid fibers with a radius of r; and
the outer cylinder represents the matrix at a radius equal
to R. The length of the model is equal to I. and the length
of the bond between the fibers and the matrix 1s assumed
to be equal to b. Since the cylinder is symmetrical, it will
be sufficient for further calculations to consider one
quarter of the cylinder as shown in Fig. 1.

Assumptions: To simplify the study of the model, the
following assumptions are adopted:

¢ Isotropy and homogeneity of the two constituents:
the fiber and matrix

»  Rigidity of the fiber, i1.e., deformations of the matrix
does not necessarily lead to deformations in the
fiber. This assumption limits the applicability of the
approach to cases of stiff fibers

s Tsotropy of the shrinkage of the matrix

PROBLEM FORMULATION

Equilibrium equations: The deformations of the cylinder
are symmetrical around the z-axis. The stresses are
independent of 6 and consequently all their derivatives
with respect to 0 are equal to zero. The shear stresses 0,4
and 04, cancel one another by virtue of symmetry. The
equilibrium equations in cylindrical coordinate system,
therefore, are limited to:

d G, +86ﬂ L O~ 0
] ] r

r z

=0 (1)
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Constitutive laws-shrinkage: If a material 1s arisotropic,
its shrinkage, if any, will necessarily be anisotropic too.
Depending upon the dimensions of the sample, shrinkage
can equally be heterogeneous and hence a shrinkage
gradient develops: the outer parts of the sample shrink
more than the inner parts at any given moment of time.

As far as the above model 1s concemned, 1t will be
assumed that shrinkage is isotropic. On the other hand,
since its dimensions are assumed to be small, shrinkage
will be assumed to be homogeneous. Consequently,
shrinkage does not depend on coordinates r, z, 6 but only
on time. Proceeding in a manner similar to classical thermo
elasticity, the term for thermal expansion will be replaced
by a term called shrinkage.

In the absence of stresses, amsotropic shrinkage €
results in a contraction:

g = EX,

with € considered here to be dependent only on time. On
the other hand at time t,, for reference shrinkage €, the
material is assumed to behave as an elastic isotropic
material with Poisson’s ratio v and modulus of elasticity
E. Therefore, in a simplified manner, the shrinkage of the
matrix becomes:

1+v Y
g, =—0, ——C
" E

d. +E0
ij E ko]

kM

and inversely the stresses are:

G, = Agy 8, T2UE, - 3KED,

where, 3k =34+ 2p with p= B2 +v), A=v/(1 - 2v) (1+v),
3k = E /(1-2v) and 1n a system of cylindrical coordinates,
the non-zero stresses at time t are:

E —
Ta+va-zv - 3
o (1+v)(1—2v)[(1 V) ent v (g te) - 1+ WE ()
Cgg = m[(l “V)Eg TV iE, tE ) (1+V)E] (4
E

= a- _a+vE]
% (1+v)(172v)[(1 Ve Ve tE)— A+ WE] )

§e= £ (6)

Tt is observed that the expressions for normal
stresses cancel one another for £, =g,, = €5 =€ . This 1s
the case of free shrinkage. On the other hand, for a
symmetrical deformation, the deformation-displacement
relationships are:

- aal (7

eop= T (8)
r

aa‘f &

The equilibrium Eq. 1 and 2, expressed in terms of
displacements, are:

2 _ 2
U, 153Ur7UrJr(1 v) at, Lo 9l g an
o ror ¢ 2(l-v) 92 2(1-v)droz
gu, 21-v)o'u, 19U, 19Ul L1 18y
ot (1-2v) 977 rdr (1-2v)jardz (1-2v)r oz
(12)

Variation of the state of link at the fiber matrix
interface

Bond length and slip length: The study of the varations
of the state of link at the fiber-matrix interface has its
importance due to its effect on the global behavior of
fiber-reinforced material. A case of perfect bond i1s
assumed to take place if the mean bond strength T,
determined experimentally, is higher than the shear stress
0,,; otherwise, slip along the fiber prevails. The modulus
of elasticity E and Poisson’s ratio v will be assumed to be
known and having constant values.

Determination of the shear stress 0_; The shear stress g,
is developed in the matrix due to its inherent shrinkage
and to due to the presence of rigid fiber itself. The shear
stress 0,, can be determined using the displacement
Eq. 3-10.

Determination of the displacements U, U,and the shear
stress 0,,: An approximate solution of the equilibrium
Eq. 11-12 which satisfies the boundary conditions in
displacements which impose that in the case of perfect
bond at the interface, U, (1, z) = 0 and U, (ry z) = 0 was
found in the following forms:
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Ur=k1[r— } (13)

Uz=k{kﬂnl+k{1-gﬂz (14)
T

where, the coefficients Ik, to k, can be determined using
the results obtained from the mumerical method. These
values are: k, =1.1e, k,=¢e k; =025and k, = 0.21. The
shear stress 0,, can be found using Eq. 6, which gives:

o = 2E [0 gk, (15)
2(L+v T T

which yields at the mterface (r = rp)

GIZ _ 0.02Ee 2 (16)
(1+v)r

Determination of the bond length b: Following, perfect
bond takes place in the case where:

O.OZEEZ
(1+v)1

T,

which vields:

(1+v)g, 1 a7
0.02Ee

Z<

if the length of the cylindrical model L 1s introduced,
Eq. 17 becomes:

E<1+\M:b i (18)
L 002EeL

Hence, the following three cases of the state of link can be
identified:

=0 Cage of total sliding along the fiber length

e e

=1 Case of perfect bond along the fiber length

0« E <1 Case of perfect bond along b and slidingalong (L. —b)

Effect of the bond strength T, on the bond length b: The
values considered in this paragraph are taken from a
previous work (Hanayneh, 1994): E = 600 MPa, v = (.175,
;= 04mm, L =42 mm and & = 5x10°. Thus, Eq. 18
becomes:

L 1.871, (19)
L

Figure 2 as well as Eq. 19 show that the bond length
increases as the bond strength at the mterface mcreases.

Effect of shrinkage on the bond length: Let the value of
the bondstrength t,= 0.2 MPa and keep the values of the
other parameters E, v, 1, L and € the same as in the
previous section, then Eq. 18 becomes:

b 1.87 %107 (20)

L 3

This equation as well as Fig. 3 shows that the bond
length is inversely proportional to shrinkage, given that
the bond strength at the interface 1s constant.

Effect of age on the bond length: Although the
modulus of elasticity and Poisson’s ratio undergo slight
variation with time, they are assumed to be constant in
this study. The following relationships relating the effect
of age on the bond strength T, and free shrinkage ¢ are
used:

T, = 0.0155% + 7,74 107t +0.115 ey

£=1.333.JL - 0.3851** (22)
1.2+
1.0
0.8
= 0.6-
0.4-
0.2

00 T T T T T T T T T 1
0.00 0.10 020 0.30 040
Bond strenght (MPa)

Fig. 2: Effect of the bond strength on the bond length
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Fig. 3: Effect of shrinkage on the bond length
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Fig. 4: Effect of age on the bond length

where, t is the time in days.
Reporting the previous relationships mto Eq. 19
gives:

p 0.993x107(0.015551 +7.74510°t% 1+ 0.115] (23)
—<
L 13334/t - 0.385t"

Equation 23 is represented in Fig. 4. Tt shows that the
bond length decreases as age increases, however, this
behavior does not mean that fiber reinforced materials
become weaker. In fact, this depends upon the tensile
strength of the matrix and the bond strength at the
interface.

Estimation of the equivalent mean shrinkage: The 1dea of
introducing the concept of equivalent mean shrinkage to
give an adequate approximation of the shrinkage of
fiber-reinforced material can be made through studymng
the behavior of an elementary cell. In fact, the global
material can be considered as an assembly of elementary
cells in a given direction. Figure 5 shows a representation
of such an assembly. In this study, the shrinkage is
assumed longitudinal and the reinforcing fibers aligned.

In the model which consists of a rigid fiber embedded
in a matrix, the longitudinal shrinkage is not uniform along
the section of the cylinder. In fact, it has been shown that
the shrinkage of the matrix mcreases as the distance from
the fiber increases. In addition, the shrinkage of the rigid
fiber is considered negligible.

The equivalent mean shrinkage will be calculated for
the following two cases:

»  Perfect bond, (&,,),
»  Partial slip.(e,,),

Case of perfect bond along the whole length: This case is
characterized by the following relations:

I+vT,
= ——rf
0.02 Ee

_ Elementary cell

Fig. 5: Assembly of the elementary cells containing the
fibers

and

(U,),=-¢ {0.25h15+ 0_21{ _r_fH
T

T

Therefore, the equivalent mean shrinkage (e,,), can
be written as:

R
(aeq ) = ;)J @andr

° (R -y

and replacing (U,), by its expression and after integration,
the equation becomes:

2e
(e.), —— g {0.125 Rz[ln% + 1.25}— 021LR + 0.0544
(24)

Introducing the volumetric fraction V= (I*4/R) HEq. 24
becomes:

2e 1
(2), = TV [0.125[1.25 + 51anJ+ 0.054V, — 0.21fV, }

(25)

Figure 6 represents the variation of the equivalent mean
shrinkage in terms of Vi

Case of partial slip
Determination of the displacements (U)), and (U,),: In this
case, an expression of o, satisfying the matrix-fiber
interface conditions 1s derived. Assuming that the
displacement U, keeps the same form as n the zone z<b,
the equations pertaining to the problem permit to get the
expression of (1)), All the constants are determined by
considering the continuity conditions between the zones
of perfect bond and slip.

The expression of (0,), can be written as in the
following form:
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: k{”g} (26)

and as U, vary slightly whether the zone of perfect bond
or slip 1s considered, the expression of (U,), can be written
as:

(Ur)s=(Ur)h=1.la{r—§] 7

But

(0,), - & {B(Uf)s] (28)

and comparmg with Eq. 27, one gets:

E_9(U.),
(0.).= 2(1+v) ar

Hence:
o(U,)
PoA
ar (GTZ )s
where:
A 2(1+wv)
E
Therefore:

(UZ)S=A{k1]nr+k2 (mﬁ r?f]z +k3(z)}

where the constants can be determined by using the
continuity of the displacements between the two zones
(z = b) on one hand and the boundary condition on the
other hand: (0,,), =T, forr=r;

These constants have the following expressions:

k =15 (29)
k,=021% (30)

b
k, (z)=—%b (0.25In1, +021)z (31)

Tn a similar manner, the expression (11,), can be given
as shown previously by:

(U,), = k[m]nif +n{1—

R
S S
—
N

Where:

o 20+v)
E

m =0.25

n=0.21

b

At this point, one should note that if the continuity
of the displacement 17, is satisfied between the zones of
perfect bond and partial slip. Then, the continuity of a,,
will be automatically satisfied.

Fmally the expression of (U,), and (U,), can be written

as:

(U,),=-¢ [0.25h1r—f+0.21{1—r—fﬂz for 0<z<b (32)
T T

2(1+ ) 021lnr—0251n

v Z

U ) =———+1 Inr+ — for b<z<L
(V) ==F s 70.21[175J b

(33)

where,b 1+VT L asgiven by Hq. 18
0.02 °Ee

Equivalent mean shrinkage: In the case of partial slip
along one part of the fiber and perfect bond along the
other, the equivalent mean shrinkage can be written:

with ¢ = T(R*rp)
Replacing (1)), by its expression given in Eq. 33 and
integrating, one gets:

waoz{z(lan J 021[1)‘22 2](1+1nf;)}]

021 (R-1)

(52 ) A1v)

7(R27rf2)E b

and introducing Vi, it comes:

0.21{,]? J(Ve+3)- ]n\/_}

(34)
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Fig. 6: Effect of VI on the equivalent mean shrinkage
(case of perfect bond)
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Fig. 7: Equivalent mean shrinkage fimction of Vi (%)
(Sliding along L/2)

If T, 1s replaced by its expression given by Eq. 18, the
previous equation becomes:

0.21{,/\?71(\4 +3)- lmﬁ}
_008e ! ?
(EEQ)sf(l—\/’f)rf . 1
z—ﬂ(pvf)mrffg(pvf)flnﬁ}

(35)

By inserting the values of the parameters of the
model used in this study, one gets:

(2., —0.56¢ +0.15%107 (36)
Kl rf

The effect of the variation of (g,,)/e interms of V:and
the equivalent mean shrinkage for case of perfect bond 1s
shown in Fig .6, while the effect of the variation V;and the
equivalent mean shrinkage considering that slip takes
place along one-half of the fiber length (b =T1./2) is shown
in Fig. 7. Tt can be seen from Fig. 6 that the equivalent
mean shrinkage of a composite material is inversely
proportional to the volumetric percentage of the fibers. On
the other hand, Fig. 7 shows that in case of slip that takes

place along one-half of the fiber length; the value of
equivalent mean shrinkage was 0.34 and 0.2 for V; 0.2%
and 2%, respectively, 1.e., mversely proportional to the
volumetric percentage of the fibers This seems to be
logical if the fibers are assumed to be rigid and non-
deformable as opposed to the matrix.

CONCLUSIONS

Based on the results of this analytical investigation,
the following conclusions are drawmn:

»  The bond strength 1s proportional to the bond length

» The bond length 15 mversely proportional to free
shrinkage

* The bond length decreases with age of the
composite material

»  The equivalent mean length 1s inversely proportional
to the fiber volumetric fraction
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