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Abstract: Capacitance calculation of arbitrary-shaped conducting bodies 1s an important step in the prediction
of electrostatic discharge and the quasi static analysis of various systems. In this study, the capacitances of
arbitrary-shaped conducting surfaces are evaluated based on the Characteristic Basis Functions method (CBF)
in conjunction with the Integral Equation Method (IEM). In this method, the surface of the conducting body
15 divided nto a small number of blocks and the IEM with pulse basis function and point matching technique
is employed to calculate the charge distribution on the surface of each block. The charge distributions on each
block constitute the high-level basis functions of characteristic basis function method. The TEM is then applied
to the conductors using the obtained CBF as a basis function for the blocks. The use of CBF results in a lghly
accurate solutions with significant savings in computation time and memory requirements.
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INTRODUCTION

There has been remarkable interest in the estimations
of the charge distributions and the capacitance evaluation
of different conducting structures such as rectangular
plates, square plates, circular and amular discs, etc.
located in free space. Capacitance matrix calculation
represents an important step in the design and analysis of
various structures such as very large integration system
and the cylindrical capacitive sensor (Ardon ef al., 2009,
Al-Sabayleh, 2008; Azimi and Golnabi, 2009). Also, the
electrostatic discharge m spacecraft model can be
predicted using the equivalent circuit model (Ghosha and
Chakrabarty, 2008).

The classical Integral Equation Method (TEM) has
been widely used for the charge distribution and
capacitance calculations of large conducting bodies due
to its efficiency and simplicity. It 1s in well known that
numerical methods based on the integral equation like
Method of Moment, Boundary Element Method, Charge
Simulation etc. can give accurate and efficient solutions
whenever they can be applied. Their main advantage
resides in neglecting discretization of the regions
surrounding the active part of the problem keeping
relatively compact dimensions of the numerical problem.
However, the classical IEM using subsectional basis
functions becomes highly inefficient for the analysis of
large or complex conducting bodies (Ouda and Sebak,
1995). This 1s because the size of the associated matrix
grows very rapidly as the shape of conductor becomes

more complex, or a fine mesh 1s used to model a complex
structure to guarantee a good solution accuracy. The
direct solution requires memory storage of order N* and
computational time of orderN” for N number of unknowns
(Harrington, 1985).

Various attempts had been made to reduce the
memory storage and computational time requirements.
However, these attempts are usually made for special
geometries (Ghosha and Chakrabarty, 2008; Wu and Wu,
1988; Uchida et af., 2005) or use a complicated iterative
solution (Nabors and White, 1991). Ouda and Sebak
(1995) presented an approximate two stage method for the
capacitance calculation;, however the error is significant
for conductors of close proximity with very high mutual
couplings. In first stage the structure is divided into
sections and TEM is used to obtain the charge
distributions. The charge distribution obtained 1 then
used in the second stage to calculate the change m the
total charge stored on each conductor in the environment
of the whole system. In this method, each conductor is
taken as one element in the second stage which causes
high errors for the adjacent sides of each conductor.
Liu et al. (2000) proposed a technique based on the
concept of Measured Equation of Invariance (MEI), to
thin the MoM matrix numerically but this method
produces high percentage of errors for some conductor
configurations.

In this study, capacitances of conducting objects in
free space are evaluated using the IEM i conjunction
with the CBF method. The surface of the conducting body
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1s divided into a small number of blocks and the TEM with
pulse basis function and pomt matching technique 1s
employed to calculate the charge distribution on the
surface of each block. The rectangular patch shape is
chosen for discretization because of its ability to conform
easily to any geometrical surface or shape and at the same
time maintaimng the simplicity of approach compared to
the triangular patch modeling. The obtained charge
distributions on each block constitute the high-level basis
functions of characteristic basis function method. The
TEM is applied to the conductors using the obtained CBF
method as a basis functions for the blocks. The use of
CBF method results in a highly accurate solutions with
significant savings in computation time and memory
requirements.

The capacitance calculation of large-scale structure
using the CBF method differs from other methods mainly
since 1t includes the mutual coupling effects directly by
using a new type of high-level basis function, referred to
herein as primary and secondary CBFs, which are used to
represent the unknown induced charges on the blocks
and solved via the Galerkin method rather than using
iterative refinements.

The accuracy of the CBF method and its advantages
are illustrated by several examples and the computation
times as well as the memory requirements are compared to
those of conventional direct computation

FORMULATIONS

The integral equation method: The potential ofa perfectly
conducting surface charged to a potential V is given by
the Fredholm mtegral equation of the first kind for the
unknown surface charge density 0.

V()= 1 J.—d‘rcfrr'), s, re S, (1)

4z, 3

where, r and r' are the position vectors corresponding to
observation and charge source pomts, respectively, ds' 1s
an element of surface S, and €, 1s free space permittivity.
The charge distribution on general conductor
geometries can be obtained by solving Eq. 1 using
numerical method, where the arbitrary-shaped conductors
are approximated by N planar rectangular patches. The
classical TEM starts by approximating the unknown
charges 0 as a linear combination of a set of linearly
independent expansion W, (r) with the weights A;:

il
o)=Y AW®. whee, Wo=fm @)
j=

Applying the point matching technique produces a
linear system for the unknowns A

N
1 A} Lds',resc (3)

Vi) =
Y dme, Ty r-r]

where, A represents a constant charge density on the jth
patch such that A; = g/a,, q and a; are the charge and area
of the jth patch, respectively. Equation 3 can also be
written in matrix notation:

(PIa=V] (4)

where, [P] is an NxN matrix and [q] and [V] are column
vectors of length N. The dense linear system of Eq. 4 can
be solved for the surface charge distribution from a given
set of patch potentials. To compute the jth column of the
capacitance matrix, Eq. 4 must be solved for g, given V
vector with v, = 1 if the kth patch belong to the jth
conductor, else v, = 0. The jth term of the capacitance
matrix is computed by summing all the charges on the i
conductor. Hence, the capacitance, C, of the conductor is
obtained from the following equation:

N . 5
C =2 a, kel (5
i=1

Thus, using the classical TEM, an NxN system of
equation must be solved to compute the capacitance
matrix. The storage and computation time for this system
are proportional to N° and N, respectively. Hence,
attempts at using classical IEM to solve for complicated
structures are usually abandoned.

The characteristic basis function method: The CBF
method was proposed for large-scale periodic microstrip
antenna arrays (Wan et al., 2005) and it is considered a
general approach for dealing with the matrix equations of
the form given in Eq. 4. For the system discretization, the
conductors are divided into surfaces and each service is
divided into blocks. Two types of CBFs are defined for
each block, namely, the primary and the secondary basis
functions. The primary CBFs are solutions for the charge
distribution 1 the isolated blocks, whereas the secondary
CBFs account for the field coupling between the blocks.
Hence, the CBF method commences by segmenting the
original surface mto smaller blocks (Fig. 1) for M = 16.

Each block is extended by A in all directions and the
extended block is discritized to N;° number of patches to
construct a set of basis functions that are characteristics
of that particular blocks. The TEM as described in the
previous section is then employed to generating the CBFs
g for the block 1 by solving Eq. 6
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Fig. 1: Rectangular surface divided into bloclks
[Pj”][qf”]: [vﬂ, i=12 M (6)

Notice that the matrix [P] size is N**N;* which is very
small compare to the original problem. This process is
repeated to generate the primary CBF method for all
blocks.

The secondary CBFs that account for the mutual
coupling between various blocks are generated using
Eq. 4, but with different excitations. For each block, there
are M-1 secondary bases, which are obtammed by solving
the following equation:

[P [ |=[P"e |, k=12 i-Li+l, M (7)

where, g, is the kth secondary basis functions for block
t and P** is the excitation vector resulting from the mutual
coupling between block 1 and block k. Even though the
original blocks do not overlap with each other, Eq. 7 deals
with an extended block and they do overlap. In view of
this, two distinct cases are 1dentified:

*  There is no overlap (no common unknowns) between
the extended block 1 and block k. In this case, the
matrix [P*'] size is NN,

+ In the second case, the extended block 1 shares some
of the unknowns with the block k and we let N,/ be
that number. We identify and eliminate these source
locations from [P*] and g, * thus making them
N (NN ) and (NN, )< 1, respectively. Note that
the size of the forcing vector V& g% remains N7, in
this case also

Then, the two CBFs types are employed as high-level
basis and testing functions to generate a reduced matrix
via the use of the Galerkin method. The solution to the
entire problem is then expressed as a linear combination
of the CBFs as follows:

IS YA (&)

where, ¢ are the kth CBFs and are the unknown
expansion coefficients of the kth block to be determined
by using the reduced matrix. By mserting Eq. & into Eq. 4
and using the transpose of [q°] as the testing function, we
obtain:

(o] [Pl Jled=[a ] [V] (9)
[P Jlal=[ V"] (10)

where, [°] is the matrix form of CBFs of dimension NxM?,
given by:

Ay 0 0
Q0
CRE ) ED A T Sl an
k=1 - k=1 - k=1 -
0 0 Gy

where, g, 15 the kth CBFs of block, fork =1, 2, ..., M and
[¢] is the coefficient vector of dimension M*x1 and [P%] 1s
M?*>M* matrix given by:

<QI1 Pu Q11> <q:1 P12 %2) (ql"l PIM qMM)
[P] _ <q§2 P21 q 1> <q£2 P22 qZZ) o (ql"l sz qMM>
<q1t/[M PMl qu) <q:\/|M PMZ q22) <q:\/|M PMM qMM>

(12)

where, P; 1s the coupling matrix linking the original
(unextended) blocks 1 and k. Note that each of the mner
product entries in the above matrix results in a sub-matrix
of size M M.

The system of matrix Eq. 10 is typically quite small
and thus can be solved directly and yet does not sacrifice
the accuracy of the solution in the process. In addition,
the use of CBF method does not result in a deterioration
of the condition number of the matrix, as 1s often the case
with other entire domain basis functions, which also serve
to reduce the matrix size. Once the coefficients of the
reduced matrix equation have been obtained, the solution
for the original problem is readily recovered from the
equation:

lal=[a" ][] (13)
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The capacitance matrix can be easily computed using
Eq. 5 once this solution is constructed.

NUMERICAL RESULTS AND DISCUSSION

Computer programs based on the CBF method and
the classical IEM had been developed to determme the
charge distribution and hence capacitance of general
arbitrary shaped conducting structures. The programs
were developed and tested in the electrical Engineering
Department at the Islamic university of Gaza in the period
from Dec. 2009 to March 2010. The capacitance matrix of
a simple parallel plate, which is the most popular capacitor
employed in the Electrical Engineering field, (Fig. 2) is
obtained using the classical IEM and the CBF method.
The capacitor consists of two square plates of side length
equals 1 m and separated by a distance of 0.1 m. For the
CBF method solution, each plate is divided into 4 blocks
and each block 1s discretized to 16 patches. The CBF
method results are compared with those obtained using
the TEM where each plate is divided into 200 patches. An
excellent agreement obtained for the capacitance matrix
calculated using the classical [EM and the CBF method
(Table 1). There 1s a significant storage requirements
reduction using the CBF method, Matrix size is 64x64, in
comparison to that of the classical TEM, matrix size is
400x400. Furthermore, the computational time using the
CBF method 15 less than one sixth of that using the
classical TEM.

The capacitances of annular circular disc, trapezoidal
plate and anmular triangular plate (Fig. 3), are obtained
using the classical IEM, the CBF method and the method
of rectangular subareas (Ghosha and Chakrabarty, 2008).
There are excellent agreements between the capacitances
obtained (Table 2) using the classical IEM and the CBF
method where the error 1s within 1%. However, there up to
20% error in the capacitances obtained using the method
of rectangular subareas in comparison to those obtained
using the IEM.

0.1m%

Im

Fig. 2: Two parallel plate capacitor

Table 1: The capacitance matrix (pF) of the parallel plate capacitor

TEM CBF method
127.5 -1055 1274 -105.1
-1055 1275 -105.1 1274

—w g og—]

Fig. 3: Annular square plate, trapezoidal plate and
Annular disk shapes

Table 2: The capacitance of annular square plate, trapezoidal plate and
annular disk

Shapes C (pF) No. of patches
Annular circular disc
Classical [EM 38.71 200
CBFM 38.53 9 blocks
Rectangular subareas 33.86 4
Trapezoidal plate
Classical TEM 24.47 200
CBFM 24.35 6 blocks
Rectangular subareas 20.41 24
Annular triangular plate
Classical [EM 39.69 200
CBFM 39.59 6 blocks
Rectangular subareas 36.66 24
CONCLUSIONS

The capacitances of arbitrary shaped conducting
bodies are evaluated based on the Characteristic Basis
Functions method in conjunction with the Integral
equation method. For the CFB method seolution, the
surface of the conducting body is divided into a small
number of blocks. The charge distribution on each block
15 obtained using the IEM with pulse basis function and
point matching technique. The charge distributions
constitute the high-level basis functions of CFB method
which are employed for the capacitance matrix
calculations. An excellent agreement obtained for the
capacitance matrix calculated using the classical TEM and
the CBF methods. However there up to 20% error in the
capacitances obtained using the method of rectangular
subareas in comparison to those obtained using the
classical IEM. The accuracy of the method of rectangular
subareas can be improved by increasing the number of
sections which leads to significant increase of memory
storage and computational tme requirements.
Furthermore, memory storage and computational time
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requirements of the CFB method is up to an order of
magnate less than those of the classical TEM.
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