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Abstract: The aim of this study is to present a new method for finding an optimal solution to quadratic
programming problems. The principle of the method is based on calculating the value of critical point. Tf the
critical point belongs to the set of feasible solutions, so the optimal solution to our problem 1s the critical point
itself. If the critical point is not at in the feasible solution set, a new feasible constraint set is built by a
homographic transform, mn such a way that the projection of the critical point of the objective function onto this
set produces the exact solution to the problem on hand. It should be noted here that the objective function may
be convex or not convex. On the other hand the search for the optimal solution is to find the hyper plane
separating the convex and the critical point. Notice that one does not need to transform the quadratic problem
mnto an equivalent linear one as in the numerical methods; the method is purely analytical and avoids the usage
of initial solution. An algorithm computing the optimal solution of the concave function has given.
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INTRODUCTION

The methods for solving numerical optimization
problems are nonlinear in essence iterative routines: a
routine carmot find the exact solution in fimite time. In fact
the method, as treated by Delbos and Gilbert (2005),
generates an infinite sequence (x,) of approximate
solutions. The next iteration x, ., 1s formed according to
certain rules, based on local information of the problem,
collected on the previous iteration which 1s a vector
consisting of values of the objective, constraints and
possibly the gradient or even higher derivatives of these
functions. The optimization methods can be classified not
only according to the types of problems they solve, but
by type of local information they employ. From this point
of view of mformation, the methods are divided into:

+ Routines zero-order, using only the values of the
objective and constraints but not their derivatives

*  Routines-order, using the values and gradients of the
objective and constraints

* Routines second order, using the values, gradients
and Hessians of the objective and constraints

Optimizing methods of quadratic functions such as
the ones presented by Sunonnard (1973) transform the
initial quadratic problem into an equivalent linear program
i order and apply the simplex. Achmanov (1984) only
gave approximate solutions by building convergent
series which approaches the real solution. De Werra et al.
(2003) studied feasible direction method with the difficult

problem to choose the direction and the parameter.
Hillier and Lieberman (2005) transformed the initial
problem into a linear one but by adding an important
number of constraints.

Bierlaire (2006) has treated a sunple example needs at
least ten variables. In the method presented here, without
any introduction of any variable, the exact solution is
reached m the first attempt.

This analytical techmque determines an exact optumal
solution to the problem. Tt has to be stressed here that the
new method is general to any quadratic optimization
problem. The principle of the technique 1s to project the
critical point to a new convex built from the set of feasible
solutions. the critical peint X' is transformed to the point
v'; then ' is projected on cne hyper plan separator

An algorithm for finding an optimal solution 15 given
1n this study.

SPLITTING THE OBJECTIVE FUNCTTON
Comnsider the following problem:

£y = Yo, + B
- (x) gloc,x1+[31x, 1)

Mux )

where, 2 ={xeR* :x = 0 and Ax b}, with annmatrix A and
vector b of RY. The coefficients «; and P, are any real
numbers, so that the function f(x) is neither concave nor
convex.
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By so doing a decomposition for the function f(x)

holds as: f(x) = p(x)+P(x).
o(x) = i‘locix1 +px;

where, the summation runs over all the indices 1 for B;=<0.

and

y(x)= Y oux, +fx;
i1

where, the sum 1s extended for the indices 1 for B;>0.
In the present study, we study the concave function
@(x). We give, here, the exact optimal solution by

projecting the critical point y* = {‘0‘1} onto a new convex
(). If the critical point x* is inside the convex £, then the
optimal solution holds exactly at this point.

We show in theorem 1, that Max¢(x)=¢(x) , where X
is the projection of the point x* on the convex (.

Let T: QcR"Q'<R" be the application that
transforms  the convex £ into the convex .

T(X):AX=A:(J—_ﬁp--------«’—ﬁng is non zero, because the

(<0, for all 1. Then it is conform.
OPTIMIZATION OF THE CONCAVE FUNCTION ¢

Let Q be a closed, bounded convex set of R™ Let’s
put:

o(x)= Yox, + B, oeR, B <0 foralli
i=1

x*—(xf’),—[;g‘} y*—(YT)i—[Z OEB J

¥= (Y;); = ( _E',X;)‘

Max g(x) = @(X); X =(X,), € Q

Theorem: There exists a closed bounded convex set ' of
R" and a wvector y, = (y;), such that the following
statements are satisfied:

Max ¢(x) = q)(x*) - ”y* - Y HZ {(Property 1)

xEhd

{(Property 2)

¥l =t ]y -]

%= Yo foreachi,i=1,2,.....n (Property 3)

(!

Proof: For every xQ let |

a0 =0 4B )~ o, +05)

Then
Ol =0 2_ _ 5
A(P, = ,[ 28} J'}' B‘[ZB‘} X, B;X,
= B‘[x‘ + ;;‘ }
= [3‘ (xi X:'F)2
But
o(x")- 0(x)= Yo,
CP(X*)—CP(X):X—Q(X‘_X ) Forallxe Q@
Therefore,

inf {0(x") - o{x)) = 122@“3*("* ) X‘ﬂ

can be written in the following form:

2 2

oMot -ne SV (< )] <urSlor-v)

Let Q':{y:(yj)jeRn:y‘: 7[31X‘,X:(X‘)‘e£2}, because

inf Zl(y* -y =P -y

yeR

Thus Max ¢(x) = q)(x*) _ Hy* _ Yo”2= hence property 1.

XE&2

Because j,f for

yel!

e oy o

v -5 =y -

every yell.
This implies that Hy* ~v,

We have therefore Hy* -v,

< Hy* - yH for every yeQ)'.

<inf
yeg

,y*—yH-

Because yeQ)'  then then

Hy*fyoHé inf |y" —y| 5

yei!

Hy* —vl= ;Eguy* - yH . Property 2 has demonstrated.

The vector y, is the projection of the vector y*
onto the new convex (',
We have,

Hence property 3.

2

R, k 1: If x*<Q, th i Bix—x) = d
emar! X ern 123;2 B,(X‘ X)) - Aan

Maxo(x) = cp(x*).

XE&2
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Remark 2: The transformation T: QcR"—+Q'=R" for each
x€€), associating T(x)=Ax, A=( - J‘B,,) has as
Tacobean matrix.
Its determinant is 3 . Then it 1s conform.

11:Il1f—[3»1 £0

Remark 3: The convex € is bounded. We can restrict
ourselves to the case ;20 for each 1. In fact, let's assume
that we have ax+px’ with ¢,<0.

Let Max(x)=2, v,=& —x,20. Therefore,

ax, + Bxt = o, + Bt - ad ol
=Byl +{ou 288 )y, + 0.8 + BB
=By +ouy, +K,

where o =-0o;, ~25P,20 and K, = o8 + B3 .

Therefore, it is sufficient to replace x with
& -y, and ox +Bx] with By} +oy, +K,.

Algorithm of computing the optimal selution of
the concave function .

Algorithm Ahmed Chikhaoui:

Tnputting data matrix A, vectors b, ¢, alpha and beta.
If all 3; = -1 then €’ = O else build O and compute the critical point

=2y, forall i=1,2,.
2B
If x*c € then x* is the Optimal solution; compute p(x*). STOP.
else // calculating coordinates of y* and its projection v,

begin
choose the supporting hyper plane separator  i.e. ax’' > b)
fori=1ton
begin
* * Ie A
y == o=
{ZJ—B. }
* « <y ,a>-b
Yu=Pn(Y )=Y _Wﬂ
% = Yoi
-B;
end
If € Q then X is the optimal solution; compute (%)
STOP.
else

Change the supporting hyper plane separator
end

In the algornthm we use the supporting hyperplane.
Figure 1 shows a separator supporting hyperplane H,.

The following example traits the case x*c £2. Hillier
and Lieberman (2005).

Example 1:

max ¢(x,.x,) = 54x, +78x, - 9% —13x;
3, +2x, 218
2%, <12

<4

X

X%, 20

* Max q‘(xu xx) = le+5x,-xf-x,'

9 A 3x,+x.<9 Q=Q'
x,+2x,<8§
Xy X;20

[ xf
x,2x,=8

Fig. 1. Supporting hyperplanes H, and H, The
supporting hyperplane H2 does not separate x* of
€ while H1 is separate supporting hyperplane
containing X

In this case B, = -9, then Q <> Q.

af w54
—(X,,X,)=54-18x, =0=x, =—=3,
aXl( 1 2) 1 1 18
af 78
E(xl,xz):'/sfzsxz:0:>x’;:%:3
The critical point x* = (3, 3) e Q
Max_o(x,,%,)= q;(x*) =198 . Note the rapid methed.

(21,52 €@
The following example traits the case =), Example
treats by Dozzi (2004).

Example 2:
max @(x,, %, )= 5%, +5%, - x] - x;
X, +x,-9<0
X, +2x,-8=0
X,%, 20

In this case B, = B, = —1, then Q <= Q.

i(xl,xz) =5-2x%, =0=x =5/2
ox,

i(x,,xz):s—zxz =0=x,=5/2
ox,,

The critical point x* = (5/2, 5/2) ¢ Q because
32 05 910 . we compute the projection of x*
22
_ & o+ <X a»-b
—p, (x*)=x" - a
i) [alf

where, a=(3,1), b=9
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. 5.5 _ (55
<xCan>=2*3+2#1=10, [af =10. x=| 2,2 7—(3 D=(2.2 2.4
272 272
Max_o(x,,%,)=(X)=1240
[N
Here,
Q=(x,%,)e R*/3x, + x, ~9<0,%, + 2%, -85 0,x, 20,x, 2 0}

The following example traits the case Q <= Q.
Hillier and Tieberman (2005) has treated the following
example. We can compare the two methods.

Example 3:
max Q% x, )= 5%, +8x, —x] - 2x3,
X +2X, 26
XX, 20

in this case B, = -1 and p = -2, then Q0"
of *
a—Xl(xl,xz):S—le: 0=x =5/2
aa—f()«11,>(2):874)412 :0:»)(::2

2
The  critical point x*:{E,ZJe o,  because
2
3E +22 =6,
2

(53/2, 2) ¢ Q because
32 100 6, we compute the projection of y™ (y* is the
2

The critical point x* =

translation of x*).

=P (X*)—X* <X’k,f:1>fba
=P, R L
Jalf

where, a=(3,2), b=6.

<X*,a>:£*3+ Z*Z:E,HaHE:H
2 2
X = 2,2 _ U (3,2)= 5_33 (ﬁ E)
2 2%13 2 26 13 13

2
- {(yl,yg)e R¥/3y, +ﬁy2 <6y, 20y, = 0}

Besides ¢ [EZ\EJ The projection of the point y*
2

onto Q' gives the following point y,:

3 _ 3 3
=|l,—=|=%=|1=| and Max¢(x)= o[ 1,= [=11,500
Yo ( J'EJ [ 2} Max g(x) w( lj

Note that the prof ection of point x* onto €2 gives the

pOiIlt E,E and ¢ 16 15 ~11,207.
13 13 13 13

X;
2. -
3x‘+f % _f\ x20
= { 3x,+2x,%6
\ ‘” max q’(xn x:) = 5"1-"8"1"(12'2";l
£ ) = (22
; A TR

-
Yn -
e

- ’,.x- o{x*) = 14,250

,

o) = 11,500
x,,
fP(xu) =11,207

Fig. 2: The points: x*, y*, y, and X

3x4+2x,=6

Obviously,

xef)

Max g(x) < cp(x*) = q{%,l}: 14,250

The point. [E EJ of convex (2 is the nearest point of
13713
the critical point x* but it is not the optimal solution of .
Figure 2 shows the transformation of pomnt x* in y*,
the projection of y* in y, there and finally the calculation
of the point X (optimal solution).

RESULTS AND DISCUSSION

After the decomposition of the objective function
into two functions, one concave @ and the other convex
¥ where if the critical point belongs to omega (feasible
constraint set), the optimal solution of f is the optimal
solution of @.

If the critical point does not belong to omega then the
optimal solution of f is the projection of the eritical point
onto &' (new convex obtained by the translation T).

Convex £ 1s replaced by a closed and lower bounded
convex mR".

Unlike the previous techniques either analytical
producing exact solution by going through linearization
process or numerical producing approached solutions by
Bierlaire (2006), Hillier and Lieberman (2005), Dong (2006)
and De Klerk and Pasechnik (2007), the technique
discussed here, produces the exact solution without
going through linearization, thus it has enlarged the field
of applications.
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