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Abstract: We consider linear and nonlinear stochastic models for transmission of blood types and Rhesus
factor from parents to their offspring and mvestigate long run behavior of these models. In this study we will
consider an application of the theory of Markov chains and the theory of nonlinear transformations in medicine.
It is well known that the gene which determines blood group in humans has three different alleles, A, B, C and
that there are four groups of blood, A, B, AB and O. The aim 1s to mvestigate the transmission of blood groups
from parents to their offspring. For simplicity, we will consider only positive Rhesus factors, since the portion
of the population with negative Rhesus 1s around 1%. It 1s well known that the blood groups of parents do not
determine unambiguously their offspring’s blood group. To describe this transmission, we have rather
extensive statistics for blood groups of parents and their offspring. ITn connection with these statistics, we
construct the following two Markov chams. The first Markov chain describes the transmission from a father
to his sons; the second Markov chain describes the transmission from a mother to her daughters. Lastly we
construct and study a quadratic stochastic operators that describe the transmission of blood groups from
parents to their offspring.
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INTRODUCTION Table 1: The ABO blood system
Phenatype Type A Type B Type AB Type O
Genotype AA AOQ BB, BO AB 00

Blood groups are distinguished by the blood’s

antigenic properties. These properties are determined by
the substances found on the surface of the red blood
cells. There are approximately 200 blood group
substances identified and categorized into 19 distinct
systems. The most common system is the ABO system.
The human ABO blood group was discovered by
Karl Landsteiner in 1900 (Landsteiner, 1900} and its mode
of inheritance through multiple alleles at a single generic
locus was established by Felix Bernstemn a quarter century
later (Bernstein, 1925). The ABO blood group antigens
appear to have been important throughout our evolution
because the frequencies of different ABO blood types
vary among different populations, suggesting that a
particular blood type conferred a selection advantage.

There are three alleles or versions of the blood type
gene: A, B and C. Since, humans are diploid organisms
(meaning we carry a double set of chromosomes-one from
each parent), blood types are determimed by two alleles
(Table 1). There are six possible combinations of such
alleles: AA, BB, 00, AB, OA and OB. In genetic terms,
these combinations are called genotypes and they
describe the genes that an offspring inherited from his
parents.

Table 2: ABO phenotype in the offspring
ABO alleles inherited from the maother

ABO phenotype in

the offspring A B 8]
ABO alleles inherited from the father

A A AB A
B AB B B
9] A B 9]

The expression of the O allele is recessive to that of
A and B, which are said to be co-dominant. Thus, the
genotypes AO and AA express blood type A, BO and BB
express blood type B, AB expresses blood type AB and
OO0 expresses blood type O.

The ABO blood group antigens are encoded by one
genetic locus, the ABO locus, which has three alternative
(allelic) forms- A, B and O. It 1s well known that the
heredity of blood groups behaves according to the
Mendelian rules. A child receives one of the three alleles
from each parent, giving rise to six possible genotypes
and four possible blood types (phenotypes) (Table 2).

Offspring blood type is established by specific genes
inherited from his parents. He receives one gene from his
mother and one from s father; these two combine to
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Table 3: Offspring’s blood type

Table 5: Oftspring’s Rhesus factor

Mother’s blood group

Offspring’s blood group A B AB 8]
Father’s blood group

A AorQ any AorBor AorO
B any BorO AoBo BorQ
AB AorBor A orBor AoBo AorB
0] AorQ BorO AorB 8]

Table 4: Offspring’s Rhesus genes
Rhesus gene inherited from the mother

Oftspring’s Rhesus genes D d
Rhesus gene inherited from the father

D (D, D) (@D, d)
d . d d.d)

establish his blood type. As mentioned above, the
heredity of blood groups behaves according to the
Mendelian rules (Table 3).

According to Table 3, a group AB person cannot be
the parent of a group O child, nor can a group © person
be the parent of a group AB child. However, transmission
of blood group AB in a family as if by a single
chromosome or allele, instead of by two separate
chromosomes or genes were reported and this led to the
discovery of a very rare blood group called cis-AB. The
ABO groups are mherited through multiple alleles at one
locus, as seen by Bermnstein nearly 80 yeas ago (Bemnstein,
1925). Now concerning the inheritance of the ABO
groups, the precise mechanism may change, although the
triple allele theory of Bernstein is adecuate for all practical
purposes. The ABO blood group locus mcludes some
sites where mutation can occur and between which, as an
extreme rarity, crossing over can happen. The Rhesus
system is the second most significant blood group system
in human blood transfusion. Individuals either have, or do
not have, the Rhesus factor (or Rh(D) antigen) on the
surface of their red blood cells. This is usually indicated
by Rh" (does have the Rh{(D) antigen) or Rh™ (does not
have the antigen) suffix to the ABO blood type.

A child inherits two Rhesus genes, one from each
parent, where gene D corresponds to a positive Rhesus
factor and gene d corresponds to a negative Rhesus
factor (Table 4).

Offspring are Rhesus negative if they have mherited
a d gene from each parent (d, d) and offspring are Rhesus
positive if they inherited a D gene from both parents. If
offspring have inherited a Rhesus positive gene D and a
Rhesus negative gene d, they are most likely to be Rhesus
positive as the D gene 1s more dominant as compared to
the d gene. Hence, it 1s possible to have a Rhesus
negative child and a Rhesus positive father. According
Table 5, a husband and wife with negative Rhesus factor
cannot be the parent of a positive Rhesus factor child.
However, collected data shows the existence of families
that contradict Mendel laws.

Mother’s Rhesus factor

Offspring’s Rhesus factor Rh* Rh
Father’s Rhesus factor

Rh* Rh*or Rh Rh* or Rl
Rbr Rh* or R Rh

Thus, blood groups and Rhesus factor of parents do
not determine unambiguously their offspring’s blood
group and Rhesus factor (Table 3, 5). The transmission of
blood group and its Rhesus factor from parents to their
offspring are random and events that contradict Mendel
randomness. To study these
transmissions we consider two types of stochastic
modeling:

laws increase this

+  Markov chains
»  Quadratic stochastic operators

The theory of Markov chains is well known and
describes a linear model.

QUADRATIC STOCHASTIC OPERATORS

Quadratic stochastic operators were first introduced
by Bernstein (1924). Such operators frequently arise in
models of mathematical genetics (JTenks, 1969; Kesten,
1970; Lyubich, 1971; Reed, 1997, Gamkhodjaev, 1999).
Consider a biological population, such as a commumty of
organisms that 13 closed with respect to reproduction.
Assume that each individual in this population belongs to
precisely one species 1 = 1,...,m. Below, we consider the
scale of blood type with m = 4 and Rhesus factor with
m = 2. The scale of species is such that the species of the
parents 1 and j unambiguously determines the probability
of every species k .for the first generation of direct
descendants. Dencte this probability, that is to be called
the heredity coefficient, by p,,. It is obvious that p ;20
and

qu,k =1
il

Assume that the population 15 so large that
frequency fluctuations can be neglected. Then, the state
of the population can be described by the m-tuple
(X,,%5...X,) of species probabilities, where, x, is the
fraction of the species k in the total population. In
the case of panmixia (random interbreeding) the parent
pairs i and j arise for a fixed state x =(x,,x,,...,%,) with
probability x;x;. Hence, the total probability of the
species k in the first generation of direct descendants 1s

defined by:
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X, = ¥p,xx, k=l..m (1)

ij-1

Let

]

gt = {x =(%, Xy, X, )ER™ 1%, 20 foranyi=L.. mand Ex, :1}

i=1

be the (m-1) dimensional canonical simplex in R® The
transformation V : 3*'=8™" is called a quadratic stochastic
operator if:

Vi(Vx), = ip%kxixj, k=1..m 2

ij=1

where, a: Ps« =0, b: Pys =Piix and c:
zpq,k =1
k=1

for arbitrary i,j, k =1,...,m.
Note that the condition (b) is not overloaded, since
otherwise one can determine new heredity coefficients:

_ Py TPk

% 2

while preserving the operator V:

V:(Vx)k:iqﬁ_kxixj,kzl,...,m (3)

=

The set of transformations Eq. 2 or 3, which describes
a model of heredity is called a quadratic stochastic
operator. This model of heredity 1s umquely determined
by heredity coefficients:

Py + Piik
2

Pyx OF Gy = for i,jk=L1...m

Assume {x(k): k = 0,1,2,...} 15 the trajectory of the
initial point xeS™', where, x(k+1) = V(x(k) forallk =0,1,2,...
with x(0) = x.

To investigate limit behavior of trajectories and fixed
points of the quadratic stochastic operator V, (2) plays an
umportant role in many applied problems.

A fixed point of a quadratic stochastic operator V is
a point x =a where V(a) = a.

A quadratic stochastic operator V 1s called regular 1f,
for each initial point xe$™, the limit:

lim V" (x)

n—eo

exists. Note that the limit point is a fixed point of a
quadratic stochastic operator V.

Thus, the fixed points of a quadratic stochastic
operator describe limit or long run behavior the
trajectories of any initial points.

Let, us consider the linearization of the Eq. 3 near the
fixed point a. Assume that a 1s an mternal fixed point. We
write v = x-a where, x€ 3™ implies:

ye {ze R™: iz] = 0}

i=l
Then, the evolution equation for y becomes:
yik) = T,k = D+ 0y~ D) = Tk~ 1)
where, J is a Jacobian that 1s a matrix whose entries are:

7= a(V{x)),
B x|

and the approximation is valid as long as y remains small.

Proposition 1: A Jacobian J, of quadratic stochastic
operator V at a fixed point is a double- column stochastic
matrix.

Proof: Direct calculus proves this statement.

Corollary: If T is a Jacobian of quadratic stochastic
operator V at a fixed point, then:

* A = 2 is an eigenvalue of J. The entries of the
corresponding eigenvector b, are all nonnegative.
We can normalize b, so that the sum of its entries is
1

¢ The sum of the entries of y(n) = I"y(0) is the same as
the sum of entries of y(0), 1.e., zero

¢ If T is a regular, then the only neutrally stable mode
18 b,

All  statements are simple reformulations
corresponding to properties of stochastic matrices. J. The
entries of the corresponding eigenvector bl are all.

RHESUS FACTOR TRANSMISSION

Firstly, we consider a linear model of transmission,
namely, the Markov chain. A Markov chain describes
transmission, on some scale, from one of the parents to
their offspring of the same gender. Note that only for such
Markov chains, can one study their limiting distribution
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or long run behavior. Below, we consider two Markov
chains: first, a Markov chain that describes a transmission
of Rhesus factor from fathers to their sons and second,
one that describes transmission of Rhesus factor from
mothers to their daughters. For the collected data, let
Ns(Fx) be the number of sons of fathers Fx (fathers with
Rhesus factor X) and N, (Fx) be the number of sons with
Rhesus factor Y of fathers Fx where, X, Ye{+.-}. Then:

+ _
Ns(Fx) = Ny (Fx) + NJF(x)

To describe the transmission of Rhesus factor from
fathers to their sons, we need to find the probability P
that a son will mherit a Rhesus factor Y from a from a
father with Rhesus factor X, where, X, Y& {+.-}. Thus, we
denote:

_NI(Fx)
N, (Fx)

Then, according to the collected data the
transmission probability matrix of the first Markov chain

has the form:

(Son)
n _
0.970 0.030‘ 4
0508 0.492

+

n(F,S) = (Father) B

and the transmission probability matrix of the second
Markov chain, which describes the transmission of
Rhesus factor from a mother to her daughters, has the
form:

{Daughter)
T _

+ 10969 0031
T(M.S) = (Mother) (5)
— 10.510 0490

Both Markov chains are regular with limiting
distribution:

m, =094, w =0.056

for the first Markov cham and

m,=0943, m_=0.057

for the second one.

Now we consider nonlinear model of transmission,
namely quadratic stochastic operators. Let a set of
species be a set of Rhesus factor {1, 2}, where, 1 denotes
positive Rhesus and 2 denotes negative Rhesus. To
describe the transmission of Rhesus factor from parents
to their offspring, we need to find the probability P5, that
a child receives Rhesus factor 7 from a father with
Rhesus facter X and a mother with Rhesus factor Y,
where, X, Y, Ze4{1,2}. Let, N(Fx,MY) be the number of
offspring of fathers Fx and mothers My (fathers with
Rhesus factor X and mothers with Rhesus factor Y) and
NAFx,My) be the number of offspring with Rhesus factor
Z of fathers Fx and mothers My. Then the transmission
probability Pyy - is defined as:

Pz = N EXMY) ©)
' N(Fx,My)

Let,

Pk T Pk
i — 2

be the heredity coefficients for 1, j, ke {1,2}.
For the data collected and according to Eq. 6, we
have the following:

G, = 0.985, q,;, =0.652, q,,, =0.092 7
g, = 0.015, q,,, = 0348, q,,, =0.908

where,

Py = 0.647,p,,, =0.657,p,,, = 0.353,p,,, = 0.343

and the corresponding quadratic stochastic operator has
the form:

X = 0.985x] +1.305x%,x, + 0.092x’ (8)
x5 =0.015%] + 0.695%,x, + 0.908x;

where, x; 13 the fraction of the population with positive
Rhesus factor and x, is the fraction of the population with
negative Rhesus factor.

The Eq. & has single fixed point:

X' = 0954, % = 0.046 9)

The Tacobian of the quadratic stochastic operator
Eq. 8 at the fixed point has following form:
1.939 1253
1(0.954,0.046) = H H
0.061 0.746
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with eigenvalues A, = 0.685 and 4, = 2. Then, the fixed
point Eq. 9 is stable and any trajectory of the quadratic
stochastic operator Eq. 8 converges to the fixed pomt
Eq. 9. Thus, the quadratic stochastic operator Eq. 8 1s a
regular.

BLOOD TYPE TRANSMISSION

Now, let us consider transmission of blood type. As
above, first we study the transmission of blood type from
a father to his sons.

Let, N (F,) be the number of sons of fathers F,
(fathers with blood group X) and N"(F,) be the number of
sons with blood group Y of fathers F, where, X, Ye{A, B,
AB, 0}.Then N(F,) = N5 (F )+ Ni (F) + Ni¥(F) + N3 (F,) .

The state of the population can be described by the
quadiruple (x,, Xg, X5, Xo) Where, x, is the fraction of the
population with blood group A. Similarly, fractions X, Xz,
X, Fepresent blood groups B, AB and O, respectively.

The transmission probabilities matrix:

m(F,S) = (Father)

is defined as:

_NI(E)
T UONGEY

i

X, Ye{A.B.AB.O} (10)

For the collected data of 3965 sons, using Eq. 10 we
obtained the following transmission probability matrix:

(Son)

A B AB O

0.556 0105 0127 0212

0.065 0588 0079 0267 (11)
0216 0291 0276 0217

0.070 0.158 0037 0735

7(F,S) = (Father)

O E® e

Remark 1: According to Table 3, we should have
P.zo=0 and P, , = 0. However, one can see that
P.zo = 0195 and P, ,; = 0.040. The Markov chain with
transmission probability matrix Eq. 11 has the following
limiting distribution:

1, = 0.164, m, = 0.280, 7, = 0.090, T, = 0.466 (12)

Similarly, in the case of transmission of blood types
from a mother to her daughters, for the collected data of
5637 daughters, we have the followmng transmission
probability matrix:

(Daughter)

A B AB O

0582 0106 0083 0.229

0066 0673 0070 0191 (13)
0208 0230 0383 0.179

0092 0127 0026 0755

(M, D) = (Mother)

CBw e

Remark 2: Note that according to Table 3, we should
have P,;, = 0 and P, = 0. However, Pz, = 0173 and
P,z = 0.024. The Markov chain with transmission
probability matrix Eq. 13 has the following limiting
distribution:

T, = 0197, 1, =0.286, 1,5 = 0077, 1, = 0460  (14)

Now, consider the transmission of blood groups from
parents to their offspring. To describe this transmission
we will apply quadratic stochastic operators.

TLet a set of species be a set of blood types
{AB,AB,O}. To study the transmission of blood group
from parents to their offspring we need to find a
probability P+ that from a father with blood group X and
a mother with blood group Z, their child receives the
blood group Z, where X, Y, Z¢ {A.B.AB,O}. Let, N(Fy, M)
be the number of offspring of fathers F, (with blood group
¥} and mothers My (with blood group Y) and N*(Fy, My)
be the number of offspring with blood group 7 of fathers
F; and mothers M.

Then, the transmission probability P, . 1s defined as:

_ N°(FMy) (15)
XY Z N(FX,MY)

For brevity let’s replace symbols {A B,AB.O} by
§1,2,34}, respectively, so that blood group A
corresponds to 1, blood group B corresponds to 2, blood
group AB comesponds to 3 and blood group O
corresponds to 4.

Then, the coefficients of heredity Py, for
1,J.ke §1,2,3,4} are defined in the following way:

_ NE(E M)
ON(F,L M)

where, X corresponds 1, Y corresponds to | and Z
corresponds to k.
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Generally, the coefficients p;, do not satisfy the
condition pyx = Pik-
Let

]

for i,jke{l,2,3,4}

Gijx

Pyt Py
2

For the collected data we obtained:

¢, = 0913,q,,, = 0.005,q,,, = 0.005,q,, , = 0.077
Gy =0.304,q,,, = 0361,q;,, =0.326,9,,=0.031
Gz = 0491, q,, =0.152,q,,, =0.326,q,,, = 0.031

q,,, = 0496.q,,,=0013,q,,=0.013,q,,,=0.478
Qazy = 0.011,q;;,; =0.925,q5,; = 0.011,q,, , = 0.053
Qys, = 0.086,q,,, = 0.650,q,, ,= 0.213,q,, , = 0.051
qyq, = 0.014,q,,, =052 q,,, =0.009,q,, , = 0456
Qs = 0.108,q,,, = 0.081,q;, =0.798,q,,, =0.013
Qaq; = 0219, qs,, = 0.211,q,,, = 0.209,q,, , =0.361
Qu, = 0.010,q,,, =0.010,q,,, = 0.007,q,, , = 0.973

Remark 3: One can see that, the values of some g,
contradict those in Table 3. Clear examples of this can be
S@en 1N ¢y 4, Jyy 5 ys, 5 aNd s0 on.

The corresponding quadratic stochastic operator has
the following form:

x| = 0.913x] + 0.608x,x, + 0.982x x, +0.992x %, + 0.011x]
+0.172%,%, + 0.028x,x, + 0.108x] + 0.438x,%, + 0.010x;

x5 = 0.005%; +0.722%,%, + 0.304x%,%, + 0.026x,%, + 0.925%]
+1.300%,x, +1.042x %, + 0.081x] + 0.422x.,%, + 0.010x (16)

X5 = 0.005%] + 0.498x,x, +0.652x,%, + 0.026x,x, + 0.011x]
+0.426%,%, + 0.018x,%, + 0.798x] + 0.418x,%, + 0.007x],

X, =0.077%] + 0.172%,X, + 0.062% X, + 0.956x,x,, + 0.053x]
+0.102%,%, + 0.9123,%, + 0.013x% + 0.722x %, + 0.937x

This quadratic stochastic operator has a single fixed
point in simplex §°,

X, =0127,x, =0457.x,, = 0.070,x, = 0346 (17)

The Jacobian of the quadratic stochastic operator
Eq. 16 at the fixed pomt has the following form:

0922 0109 0370 0176

0362 1.389 0.790 0518
J(0.127,0457,0.070,0.346) =

0.283 0.109 0.533 0.046

0.433 0393 0307 1262

with eigenvalues A, =0315A,=0879,A,=0915,4,=2, Then
the fixed pomt Eq. 17 1s stable and any trajectory of

quadratic stochastic operator Eq. 16 converges to fixed
pomt Eq. 17. Thus, the quadratic stochastic operator Eq.
16 13 a regular.

DISCUSSION

Rhesus factor: For the linear models we have, we see that
frequencies of Rhesus factor among men and women are
the same and there is no significant association between
sex and Rhesus factor. Secondly, the probability that a
son or daughter of a father or mother (respectively) with
negative Rhesus factor will nherit positive Rhesus factor
1s equal to 0.5. For the nonlinear model from Eq. 7 one can
see that if parents have opposite Rhesus factors then two
thirds (2/3) of their offspring inherit positive Rhesus
factor and one thurd (1/3) inherit negative Rhesus factor.

Now consider the received heredity coefficients q;,: One
can see that there are instances when the chart of
Table 2 is not accurate, since, q,;, = 0.092 means that a
child of parents with negative Rhesus factor receives
positive Rhesus factors with probability 0.092. In the case
of a mutation, the Rhesus factor typing may not hold true
1n the question of parentage.

We can state that both models, linear and nonlinear,
predict the same long run distribution of Rhesus factor.

Blood type transmission: In different parts of the world,
the fraction of individuals with blood type A, B AB or O
differs. The frequency with which blood types are
observed is determined by the frequency with which the
three alleles of the ABO gene are found mn different parts
of the world (allele frequency). Variation in the allele
frequency at the ABO gene reflects the social tendency of
populations to marry and reproduce within a national,
regional, or ethnic group.

Using two different models, linear and nonlinear, we
received the following limiting distributions:

+  Transmission from fathers to their sons:
T, = 0.164, Ty = 0.280, m,5 = 0.090, 1, = 0.466

»  Transmission from mothers to their daughters:
T, = 0197, 7, = 0.286, 1, = 0.077, 7, = 0.460

¢ Transmission from parents to their offspring:

T, = 0127, 1, = 0.457, m,g = 0.070, T, = 0.346

We state that the last distribution (¢) more exactly
predicts the distribution of blood type after a long period.
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Now let us consider Remarks 1-3 (Seyfried et al.,
1964) and Yamaguchi et al. (1965, 1966) described
mstances in which blood group O was inherited from one
parent and both blood group A and bleod group B from
the other parent. This was referred to as cis-AB to
discriminate this rare phenotype from ordinary trans-AB.
Yoshida et al. (1980) reported two possible genetic
mechamsms: unequal chromosomal crossing over and
structural  mutation  in  the blood  group
glycosyltransferase. Tn the latter instance, mutation in
either the A or the B gene had produced a single abnormal
enzyme with bifunctional activity.

In the case of a mutation, the blood typing may not
hold true in the question of parentage. Occasionally, an O
mother and an AB father may give birth to an AB child.
The interpretation 1s cis-AB, 1.e., both alleles on the same
chromosome, or one allele with both specificities.
(1977) traced such through three
generations. Inherited mosaicism m the ABO system
consists of a situation i which, m an autosomal domimant
pedigree pattern, family members show mosaicism of A
cells and O cells, or B cells and O cells. A mixed field
agglutination pattern results. This phenotype 1s probably
caused by a weak allele rather than by a modifier gene.
Bird et al. (1978) found that in a B-O mosaic family,
affected persons had low levels of B-specific transferase.
Thus, in general, the rules of transmission of blood group
or Rhesus factor are random and we cannot predict the
blood group of the child. Using the models of heredity
considered above, we can find a limiting distribution of
blood group and Rhesus factor that have certain applied
significance.

Finally, note that even if the data was collected in two
regions of Malaysia, our results are probably valid withuin
any national, regional, or ethnic group.

Hummel et al
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