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Abstract: This research is a study applied to the supervised classification of brain tumours by a method
resulting from the artificial mtelligence which 1s the Support Vector Machines. The artificial intelligence quickly
moved these last decades, with the evolution of the cerebral imagery to diagnose certain diseases such as the
brain tumours by techniques like magnetic resonance imagery in order to treat this disease by the surgery and
microscopy to detect the type and the rank of the tumour. The results obtained by the Support Vector Machines
are satisfactory from the pomnt of view of time of learning and convergence, which have in particular tendency
to learn data too much, thus providing good performances in generalization. On the other hand the Support

Vector Machines give automatically a reliable result.
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INTRODUCTION

Since, the begmmning of the years 1990, various
technmiques of cerebral imagery revolutionized this search
while making it possible to see the brain. If these
techniques show us what occurs m the brain during a task
without having to open the brain-pan, it 13 especially
thanks to progress of computing. So, with the progress of
the computing, the artificial intelligence (Cornuéjols et al.,
2002; Bishop, 2006) experienced a great development. It
forms a whole of techniques of representation and
decision (Mitchell, 1997; De Beauville and Kettaf, 2005)
making it possible the machines to simulate a behavior
similar to that operated by the human one. The medical
imagery (Ding and Wilkins, 2006) became an essential tool
for the decision-making aid (Shanf and Amira, 2009). From
where, need for classification (Alphonso, 2001) as process
which assigns an entity with a class starting from a whole
of measwements, by the use of new mathematical
methods for the treatment and interpretation of data
(Huang and Laia, 2010). The sector of the algorthms of
traiming (Cristianim and Shawe-Taylor, 2000) remains a
very active field of research; for that reason in this study,
the authors propose the Support Vector Machines or
Separators with Vast Margin (SVM) (Abe, 2005, Wang,
2005), exactly, the multiclass: One Versus Rest (OVR) for
their performances in the supervised learmng and the
classification which are applied to the bramn tumours

cellules (Lukas er af., 2004), diagnosed by Magnetic
Resonance Tmagery (MRI) and on sure analysis under the
microscope of a sample, to identify the type and the rank
of the tumour. The study developed a machine learning
capable to classify the type of the brain tumour by the use
of SVM and presented the strong points of the method.
Precisely, we have to show success of the SVM applied
to brain tumour cells.

SUPPORT VECTOR MACHINES

The support vector machine is a new method for
classification of data. This technique of supervised
classification suggested in 1992 by Viadimir VAPNIK
(Vapruk, 1998) results from the statistical theory of the
traiming. Now, 1t 1s an active zone of search for machine
learning. The fundamental idea is to build an optimal
learning machine for better generalization, having:

s A definite surface in an optimal way

»  In general non linear i the space of entry
»  Linear in a dimensional space more raised
¢ TImplicitly defined by a kernel function

Binary SVM: The principal idea of the binary SVM 1s to
implicitly trace data with a dimensional space more raised
by the mtermediary of a kernel function and to solve a
problem of optimization to identify the hyperplane whose
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margin is maximum, which separates the examples from
training (Vapmik, 1998). The hyperplane 1s based on the
support vector i.e., a whole of examples of training being
on the margin. New examples are classified according to
the side of the hyperplane. The problem of optimization
generally 1s formulating in a manner and takes account of
the mseparable data while penalizing distort them
classifications.

Separable linear case: The solution of the problem of
optimization (Burges, 1998) 1s as follows:

* Result of the stage of training: The optimal

hyperplane 1s:
wxtbh=0 (1
W= En:ccixxyi (2)
=1
1 & .
b:ig}(w.xl +wx;) (3)

Correspond to the closest pomts, 1.e., the support
vectors that are no null. They are found by solving the
following equation:

1 1 1 1
IILHXW((I‘) = 72% + —Ezcc‘ocjy‘yj(x‘.xj)
N i=1

i=l j=L

Vi, 20 4

i oy, =0
il

*  Result of the stage of test: The function of decision
is obtained by:

g(x) = sgn(i &V (X,.X) + b) &)

Non separable linear case: The algorithm established for
the separable linear case cannot be used in many real
problems. In general, of the noisy data will make
separation linear impossible. For this there, the approach
above can be extended to find a hyperplane that mimmizes
the error on the training example (Training error). This
approach also mdicated under the name of soft margin
hyperplane (Vapnik, 1995). We mtroduce the slack
variable £; the error of the example x, with £=0,T=1,.. n.
The value of £ indicates, where, are x; before a hyperplane
of separation:

s TfE>1 then x; is badly classified

s If 0<E<] thenx; is correctly classified, but is inside
margin

* IfE = 0then x is correctly classified and is outside
the margin or with the band of the margin

Alternatively, the expression of the function changes
from

1 1 2
L to S + 3
i=0

where, C 1s the weight of error, it is a parameter to be
chosen by the user, larger C comresponding to assign a
higher penalty with the errors, 1s generally taken 1/n.

Non linear case: How the methods above can be
generalized if the function of decision is not a linear
function of the data?, in the linear case space used is
Euclidean space. Separation by hyperplanes 1s a relatively
poor framework of classification, bus for much of case;
the examples which one wants to separate are not
separable by hyperplanes. To continue to profit from the
theory which justifies the search for hyperplanes of
maximum margin while using more complex surfaces of
separation (nonlinear), VAPNIK (Boser et al., 1992)
suggests separating not items x, but of representatives
this points X1 = ¢(x;) in a space F of dimension much
larger, than VAPNIK calls: feature space. One gives
oneself a nonlinear function noted ¢, such as ¢: R*—F.
The separation nonlinear of maximum margin consists in
separating the points X = @(x), as the function of
decision is expressed exclusively using scalar products is
thus, one m practice never uses the fimetion directly, but
only the kernel K is defined by: K(x, x') = @(x).(x") itisa
nonlinear scalar product. Therefore the problem 1s solved;
it is enough to make a transformation: x,x, =@(x;).@(x;) in
all the formulas of hard margin by using a type of
following kernel (Cornuejols, 2002) function:

s Polynomial function:
kixy) = (xy+1)! (6)

» Radial function:

(x y)z) (N

02

k(x,y) = exp(

*  Sigmoid function:

k(x,y) = tan(s xy+c) (8)
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The solution of Problem of optimization in the non-
linear case is:

* Result of the stage of training: The optimal

hyperplane is:
w.p(xr+b=10 (9
W= i‘{oclqa(xl)y1 (10)
b=21—ni(w.(p(xl+)+w.(p(xj')) (11)

¢; 18 found by solving the following equation:

f 1 f 1
[rLHXW((I‘): 72% +52 o, 0y, ¥ (X, ).9(x )
g i=l i=l j=l

Yio<a, <C (12)

ia1Yi =0
il

*  Result of the stage of test: The function of decision
is obtained by:

26) =sgn( 3 y,(00x).90)) +b) (13)

Multiclass SVM: There are several methods for the
multiclass (Platt, 1999) but m this article, we tried out One
Versus Rest (OVR) which is implemented in multiclass
SVM. OVR is conceptually the method of simplest SVM
multiclass. Here we build of the bmary classifiers of K
SVM: classify 1 positive against all other negative
classes, classifies 2 against all other classes..., class K
against all other classes. The combined function of
decision of OVR chooses the class of a sample, which
corresponds to the maximum value of the binary functions
of decision of K indicated by the other positive
hyperplane (Statnikov et al, 2005). While thus making,
hyperplanes of decision calculated by K SVM, which call
nto question the optimality of multiclass classification.

Implementation: The data base is extracted from
classification of OMS (Brucher et ai., 1999); the ranks are
like degrees of maligmty, indicating the biological
behavior. The following diagram summarizes the essential
characters of the tumours gathered according to their
rark. In the atlas used, the various tumour entities are also
grouped according to their rank, which corresponds to the
images taken to make our classification by the two
artificial methods. The machine used to carry out these

tests is a PC (Pentium 4, 2.80 GHz with 256 MO of RAM).
And conceming the programming three essential tools
were used:

¢+ C++ Builder 6 under Windows to create a graphic
interface summer developed on the one hand for the
pretreatment of the classification of the medical
images, which consists m extracting sigmficant
information in RGB (Red, Green and Blue), which will
make the object of the supervised training and the
test, so, the mput of the binary SVM and Multi-
classes SVM

+  Bimary SVM under Linux with SVM Light (Joachims,
1999) for classification binary classification

s SVM Multiclass (OVR) under Linux 1s a free tool
(free) (Joachims, 1999) which was developed for the
scientific research whose problem of optimization
was included

EXPERIMENTATION
Considering for all this part, following points:

»  CPU: The time of training measured in seconds

¢ Trerror: The error on the training set

+  Te error: The error on the test set

»  The classification rate is the average of the well

classified of each label

Case 1: binary classification (detection): We began with
a binary classification, which consists m detecting
the mfected part (tumour) of the not infected part
(healthy) as shown in Table 1. This data was a cerebral
IRM, posterior fossa, whose type of tumour i1s
Ependymoma (Brucher et al., 1999):

Figure 1-3 show the variation of the error rate of
training and test according to the kernel chosen and to
the parameter of regularization.

We note that in the Fig. 1, the error on traimng set
and the error on test set will decrease with mecreasing
regularization parameter to stabilize 1 E-04.

We note that in Fig. 2, the error on training set and
the error on test set are null despite the change of the
regularization parameter.

We notice in the fig that the error on training set and
the error on test set are stable and high compared to
Fig. 1 and 2.

Table 1: No. of images for each type of turmour in case 1

Label Class No. of images
1 Tumour 3
2 Healthy 5
Total 8

1757



J. Applied Sci., 10 (16): 1755-1761, 2010

1.0 -=Tr
054{~+Te

0.11 \

1E-05 1E-04 1E-03 1E-02 1E-011E-+001E+011E-02 |E-+031E-+04
Regularization

Fig. 1: Error rate of the polynomial kernel in case 1
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Fig. 2: Error rate of the radial kernel in case 1
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Fig. 3: Error rate of the tangential kemel in case 1

After several experiments and according to the
comparison made between different Kernels, of which the
goal 18 to minimize the error. We deduce that in the case
of detection, the radial function as defined in Table 2
makes it possible to minimize the error on training set and
the error on test set with any badly classified element in
less time (1.e., 0,1 sec).

Table 2: Comparison between Kernels in case 1

Kernel Regularization Tr Te CPU
Polynomial R>1E-03 0.0 0.01891 1.0
Radial R=1E-05 0.0 0.0 0.1
Tangentiel R=1E-05 0.4673 0.5283 16.21

Table 3: Rate of classification per class in case 1

Label Well classified (%o) Badly classified (%)
1 100.00 0.00

2 85.72 14.28
Classification rate 92.86

Table 4: No. of images for each type of tumnour in case 2

Label Pathology Rank No. of images
1 Ependymorma I 3
2 Astrocytoma I 8
3 Glioblastoma v 16
4 Medulloblastoma v 8
Total 35

1L u-Tr

09~ Te

0.8

0.74

0.6

§ 0.5

0.4

0.3

0.24

0.14

c T T T T L) T T T J 1
1E-05 1E-04 1E-03 1E-03 1E-051 EH}O1E+011E-021EH31EH)4
Regularization

Fig. 4: Error rate of the polynomial kernel in case 2

One passes to the validation results by radial Kernel
and regulanization parameter higher than 1E-05 which gave
a satisfactory rate of learning (Table 2). Table 3 represents
the rate of classification of the examples well classified
and badly classified for each class.

In this case, we note that the classification rate 1s
good even all the examples of the validation set of label 1
have been well learned.

Case 2: classification with 4 classes: In this case, we will
use four various types of classes of frequent tumour cells
in the child as can be seen from Table 4 to explode the
number of classes and test the performance of SVM on
machine learning. This table represents the affected
number of images for each class, but also the rank of the
tumour (Brucher et al., 1999).

We also present in this case, three graphs as
llustrated that corresponding to the error of traiming and
test according to the parameter of regularization and the
selected type of kernel.

We note that in Fig. 4, the error on training set and
the error on test set are minimized when the regularization
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Fig. 5: Error rate of the radial kernel in case 2
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Fig. 6: Error rate of the tangential kernel in case 2

parameter 1s less then or equal to 1E-03. Then the value of
the error begins to mcrease until stabilization.

We can say that in Fig. 5, the error on training set
and the error on test set are minimized and stable after a
regularization parameter greater than or equal to 1 E-02.

In the case of Fig. 6, with a tangential function, the
error on training set and the error on test set are stable
and equal to 0,75 despite the change of regularization
parameter.

According to the tests carried out for each Kermnel
(Polynomial, radial and tangential), we retain the
Polynomial function as shown in Table 5 which minimizes
the error on the basis of test and the base of traming in
less tume.

One validates presented results with the parameters
obtained by the tests made before (Kernel Polynomial)
and one obtains a table which represents the rate of
classification of the examples well classified and badly
classified in each class depicted in Table 6.

Case 3: classification with 9 classes: In this case, we will
burst our experimentation mn mne classes of cerebral

Table 5: Comparison between Kernels in cage 2

Kernel Regularization Tr Te CPU

Polynomial  1E-05<R<1E-03 0.0091 0.0093 1.13
Radial R:1E-02 0.0091 0.0185 2.44
Tangentiel R>1E-05 0.75 0.75 190.47

Table 6: Rate of clagsification per class in case 2

Label Well classified (%) Badly classified (%0)
1 96.43 3.57

2 96.43 3.57

3 96.43 3.57

4 100.00 0.00
Classification rate 97.32

Table 7: No. of images for each type of tumour in case 3

Label Pathology Rank No. of images
1 Pilocytic Astrocytoma I 10
2 Astrocytoma Cells I 2
3 Ependymorma 1 3
4 Astrocytoma II 8
5 Anaplasic Astrocytoma m 2
6 Anaplasic Ependymoma I 1
7 Anaplasic Astrocytoma m 1
8 Glioblastoma v 16
9 Medulloblastoma v 8
Total 51
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Fig. 7. Error rate of the polynomial kernel in case 3

tumour n adults as shown m Table 7. This part was added
in this study due to scientific curiosity to confirm the
ability of SVM in machine learning. The following table
represents the affected number of images for each class as
well as the rank of the tumour (Brucher ef ai., 1999).

There we take again the same type of experimentation
on this case, by changing the type of the kernel, as well as
the parameter of regularization, we obtamn the following
Fig. 7-9.

In Fig. 7, the error on training set and the error on test
set are minimized when the regularization parameter is
equal to 1E-05 and it starts to mcrease with mereasing
regularization parameter to stabilize after a regularization
parameter equal to 1E+01.

We note that in Fig. 8 that the error on training set
and the error on test set are stable even with the change
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Fig. 8: Error rate of the radial kernel in case 3
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Fig. 9: Error rate of the tangential kemel in case 3

Table 8: Comparison between Kernels in case 3

Kernel Regularization Tr Te CPU

Polynomial R =1E-05 0.0242 0.037 678.89
Radial R:1E-05 0.0121 0.0329 2.19
Tangentiel R>1E-05 0.8889 0.8889 7.25

Table 9: Rate of classification per class in case 3

Label Well classified (®6) Badly classified (%0)
1 100.00 0.00
2 100.00 0.00
3 100.00 0.00
4 100.00 0.00
5 95.24 4.76
6 100.00 0.00
7 95.24 4.76
8 95.24 4.76
9 100.00 0.00
Classification rate 98.41

of the regularization parameter and lower values obtained
mn the case of using a polynomial function (Fig. 7).

The Fig. 9 does not differ from other figures in the
use of a tangential function in case 1 and case 2, who
does not minimize the error on training set and the error
on test set.

Us observe in this case, that it is not any more
the Polynomial function which minimized the error in the

97.32% 98.41%

1001 92.86%
m-
80-
701
604
504
404
30
20-
104

0

Classification rate

2 classes 4 classes 9 classes

Fig. 10: Comparison of the rates of classification in the
three cases

Table 10: Parameters which minimize the error in the three cases

Kemel Regularization Tr Te CPU
Case 1 (2 classes) Radial R:1E-05 00 0.0 01
Case 2 (4 classes) Polynomial 1E-05:R=<1E-03 0.0091 0.0093 1.13
Case 3 (9 classes) Radial R:1E-05 0.0121 0.0329 9.19

case 2, on the other hand it 1s the same function which
minimized the error in case 1, so, the radial function as
defined in Table &.

We introduce the examples of validation and we
obtain a rate of classification as shown in Table 9 lugher
than that found in the case of four classes and that of two
classes.

DISCUSSION

One recapitulated the parameters which mimmize the
error in three cases of the SVM as illustrated in Table 10.
We notice that:

+  The kemel which minimizes the error changes in three
cases between radial and polynomial, thus we cannot
define it exactly

»  The parameter of regularization to be chosen as the
classification of the tumour cells, has to be amounts
to 107 whether it is for the kernel radial or
polynomial

»  The time of learming 1s satisfactory

As a consequence, we do say that the SVM has a
capacity to learn, in month of time with a convergence
guaranteed according to owr experiment. The following
picture presents the classification rate of the tree
cases.

By comparing the rate of classification in three cases
by SVM as illustrated m Fig. 10, we discover that the SVM
is not really influenced by the number of classes and more
we merease the number of class, more we have a better
rate of classification.
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CONCLUSION

The aim of this research ensues from the need to
compare the performances of the various kemels of SVM
in ¢lassification. In particular, the necessity of being able
to choose in an automatic way the parameters of the
kernel of SVM. The results noticed in the experimentation,
are all obtaned by alternation between several parameters
for SVM. This last, is one of the models of classification
to have marked the forms recognition by supplymng a
statistical theoretical frame and either connexionnist in the
learmng theory. View Point of learning time and guarantee
of convergence, we can say that SVM is the method the
most adapted to the classification of the brain tumours.
We showed examples of the success of the SVM and
suggest some tracks to go farther: volummous data base
and comparison with others methods as Neural Networks
or hybridization with Neuro-SVM (Mitra et af., 2005).
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