——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 10 (17): 1957-1962, 2010
ISSN 1812-5654
© 2010 Asian Network for Scientific Information

Program Translation via a New Dependence Model

Zine-Eddine Bouras and Amer Nizar AbuAli
Department of Software Engineering, Faculty of Information Technology,
P.O. Box 1 Philadelphia University-19392, Jordan

Abstract: Program translation talkes a program written in some source language and creates an equivalent
program in some target language. This process 1s very important in software maintenance, particularly when
the source program is written in old language such as Cobol and Fortran. The goal of translation is efficiency
and readability of the target program. In this study, we present a new approach to translate COBOL program
via a dependence model in order to capture dependences between mstructions. This model makes process of

translation more adequate than the current approaches.

Key words: Program analysis, program translation. dependence relationships

INTRODUCTION

Maintainers of application software systems must
often work with legacy systems. Legacy systems are
systems that have evolved over many years and are
considered irreplaceable, either because re-implementing
their function i1s considered to be too expensive
(Arranga et al., 2000). Because of their age, such systems
are likely to have been implemented in a limited
conventional language such as COBOL (Waters, 1988).
Most Software managers agree that the only way to keep
these systems competitive is to translate it in a new
language where it can be more easily mamtained and
adapted to new business requirement (Chu, 1993; De
Lucia et al., 1997). In this case, program is translated from
language that may be in some way obsolete nto another
language where, 1t can be understood and then
maintained. To resolve this problem some approaches has
been proposed by Arranga and Price (2000), Boxer (1988),
VandenBrand et al. (1997), Bruer et al. (1995), Chu (1993),
Waters (1988) and Arranga e al. (2000). A large number
translates program literally line-by-line. Others operate via
abstraction and reimplementation, where abstraction gives
a global analysis of the source program. Reimplementation
step creates a program in target language from the
abstraction description.

CURRENT APPROACHES

During the last decade several approaches have been
proposed to resolve translation of program (Arranga and
Price, 2000, Van den Brand et af., 1997; Bruer ef al., 1995,
Chu, 1993; Faust, 1981; Waters, 1988; Arranga et al.,
2000). Among these, two relevant techmques have been

used theoretically and practically. The first one called
translation via trans literation and refinement (Boxer, 1988),
transliterates the source program into the target language
on a line-by-line basis by translating each line in isolation.
Various refinements are then applied in order to improve
the target program produced. This approach has many
advantages. The most important is the use of divide-and-
conquer strategy to satisfy the goal of translation.
Another advantage is that the localised nature of
transliteration step makes it easy to encode the basic
knowledge needed for translation (Waters, 1988). Also it
makes 1t easy to comstruct families of translators.
However, transliteration can be blocked by the fact that
the source languages may support primitive construct
which are not supported by the target language
(for example the use of GOTO). Also transliteration
complicates refinement. Transliterations consider program
as a set of line (but not instruction), indeed this approach
doesn’t preserve the semantics in the target program.
Being implicit the semantics of programs can’t be
grasped by a tool that operates on textual translations
(Bouras et al., 2000; Khammaci and Bouras, 2002).

The second one, named translation via abstraction
and reimplementation, operates in two steps (Faust, 1981,
Bruer et al., 1995). The abstraction step performs a global
analysis of the source program in order to obtain an
understanding representation to represent the essential
semantic features. The reimplementation step takes the
abstraction description produced by the first step and
creates program in the target language that implements
this description.

The most important advantage 1s that, while
translation via transliteration and refinement is designed

Corresponding Author: Zine-Eddine Bouras, Department of Software Engineering, Faculty of Information Technology,
P.O. Box 1 Philadelphia University-19392, Jordan
1957

J. Applied Sci., 10 (17): 1957-1962, 2010

to facilitate achieving the primary goal of translation
(i.e., correctness),
remmplementation 15 specifically designed to facilitate
achieving other goal of translation such that there 1s no a
priori reason for abstraction ever to be blocked since, the
result of abstraction is not constrained by the target
language. However, this approach has a fundamental
problem of mcompleteness. Another disadvantage of the
abstraction and reimplementation is that it is more
complicated than transliteration and refinement. Finally
the target language 1s a subset of the source language
and then it remams with the primary constramts
(Carter et al., 1994).

We propose another approach, which capture all
relations of dependence of the source program. Our
approach combines the main advantages of current
approaches to achieve the goal of translation and use a
formal method to capture relation of dependence. Our
abstraction step performs a thorough global analysis of
the source program. The reimplementation step takes the
abstract description and creates a primary program in the
target language. In order to improve this primary program,
an automatic refinement step 1s added.

translation via abstraction and

PROGRAM MODELLING

In our approach, a Cobol program is modelled
formally by on an internal form that capture flow
dependencies in order to permit automatic data and
control analysis. On other hand flow dependencies that
are implicit will be explicit by this mternal form.

Internal form: The internal form that we propose is due to
the logical structure of program and programming
concepts. At this step of our research ,we interested by a
restricted COBOL programming language.

In the context of program comprehension and program
translation, a dependence relationship is defined formally
by the triplet:

<Ac, Ctr, As>

It means that target actions Ac and source actions
As have a dependence relationship according to the
constraint Ctr (Bendelloul et al., 1997, Bouras et al., 2000).
Elementary actions Ac and As are formally defined by the
Cartesian product:

Var x Actx IdDep

where, Var can be program, control, call variable or formal
parameter.

Act can be definition, control or reference action.
IdDep is an unique identifier corresponding to an
wnstruction site, an effective parameter or to a formal
parameter.

Ctr is defined by the triplet:

<Cdt, Exp, Sem>

Cdt is a condition, which must be true to execute
actions Ac. Tt expresses the control constraint.

Exp 1s an expression to evaluate actions Ac. It
expresses the data constramt.

Sem is a dependence relationship. It can be a Flow
Dependence (FD), Control Dependence (CD), flow and
control dependence (FCD), Formal Parameter Flow (FPF),
Actual Parameter Flow (APF).

The internal form of a given program consists of
modelling data and control structures.

MODELLING COBOL INSTRUCTIONS

To illustrate our approach, we use program DIV of
Fig. 1:

Identification division:

00100 PROGRAM-ID <prg name=>.

The mternal form of this mstruction 1s:

< prg_name, DEC, 1=, <, prg_name, FC>, {<...>}.

Tt means that program declaration (prg_name) at the
statement i depends on the program header by control
flow FC.

Y . 5]
Ol /| {e] @l

A5 IENTIFICATHON DIIEION,

1 FRAOGHAMAD. div.

158 REMARK. Lt groupe aliemmed de do Himbo ol fnsa
¥ ENVIAONNEREENT DIVIENN. Hunbar of retntore
Himia ol vskghiat
Pk of s
Himbes ol behi

-~
—
-
—
—
—
—

CONFIGURATION SECTHISL
180 SOURACE-COMPUTER. EMHE 1A,
350 QBJECT-COMWPUTER, RS,

3 BFUT-OUTPUT SECTION,
54 FILE-COWTRIN. oty

Himbes
50 SELECT FETUDIANT AESIGH TO PRI Homtat o G070

1 FOFETUDIANT lnbel record stesden
1|] ditn e ETINRANT,

106 01 ETUDIANT,

T4 B MO gt 1],

750 B2 PHOM plc of1 3

2 MY g (238,

Pt [HiW

ﬂl W:‘nmm-m L 1

Fig. 1: DIV a given Cobol program

1958

J. Applied Sci., 10 (17): 1957-1962, 2010

Data division:

FD<file name™> label record standard/omited

data record <name records>

1s formalized by:

<file name, DEC, i < @,char[31], FC> <prg_name, val, i>
For example, the internal form of:

FD fano label record standard data record EMPLOYE is
< fano, DEC, 1> < @, FILE fano, FC> <DIV, val, 1=,

< fano, DEC, i» < O, char[31], FC> <DIV, val, i>

Records:

num_level rec_name

Its internal form is:
<rec_name,DEC i><(J STRUCTURE FC><prg_name,val.i~
for example, the internal form of 000100 01 AGENT is:
<AGENT, DEC, 1>< @, STRUCTURE, FC> <DIV, val, 1>

PIC:

<var_name> PIC <type> has the following form :
<var_name,DEC, 1>< O, type, FC><var name pred,val, 1>
For example, the internal form of:

01 AGENT PIC 99

05 ECODE PIC 99

05 ENAME PIC X(10)

05 PMONTANT PIC 9(2)V9(3)

1s:

{<agent, DEC, i>< @, structure, FC> < div, val, i,

< ecode, DEC, 1>< @, int, FC> < agent, val, >

< ename, DEC, i< ¢, char[10], FC> < agent, val, i
< pmontant, DEC, 1>< @, double, FC>, < agent, val, 1>

To illustrate internal form of
Procedure Division, we formalize instructions OPEN and
ADD.

Procedure division:

Open:

Internal form of

OPEN <INPUT/OUTPUT> <file name=> 1s:
<prg_name,IN/OUT, i<, file name=fopen(file name,rt/
wt), FD><prog_name,val,i>

for

OPEN INPUT fano

OPEN OUTPUT fsor we have:

< fano,INLi><@, fano=fopen(fano,rt), FD=, <DIV,val,i>
<fsor,0UT 1=<@ fsor=fopen(fsor,wt) FD><DIV,val 1>

Add: Add has two forms:

forml ADD <varl> <var2>...<varm> TQO <varm:>
form2 ADD <varl> <var2>... <varn> GIVING <varm>

Fla Edi Wew bl Fon Gaio D Wipdow

D) 2| J¢) sl

Lliv DEC 12 SFLdiv. FCx, 0

<LFILE DEC Ty, (FLFILE "FETUNMANT FICx <divoval233

Lilile FETUDAANT DEC 30 dFLharfBl] FCx ddivval 23

L ETUNMANTE C A&, <Pt et O3, A divval A3

LMOM.DEL, 57, <Fi, cha]1 3], FCr <ETUDIANT val 53 2

PN DEC B3 <FLchar]| 3LFC, CETUTMANT wal £33

CENOTENDEC, 75, 4 daakle FU 3, ETUDHANT wal 735

{{MOTER D CE, (i dealle U ETUNMANT wal 830

LAMO.DEC, 93 Fi.double,FCy, CETUDLANT val B3>

CCMESDLDEL 10, < Fi, i | 30]FCy 0 el 1032

ALMEST DEC T, < F e 0] FC 0 el 1153

AAMESR DEL 125, < Fl e [30]F o ol a1 E0D

C{MES3,DEL 33, < Fi,cle | 30].FCy o il 1300

{{MES&.DEC.'I4>.<FI.|!|!|]I]|.FCJ.cﬁ.wﬁ,i-l:-ﬂ

MESE, DEC 152, < FLoks 0] FC o el 1553

AMELDEC 165, AFLint FOE, v val 180y

LALLM DEC T3, (FLint FOy, (v el 1750

CLDERRLDEL, B2, <FLInLFCy, (i el 1822

MESDAEEIGH 192, < FLatrepy[MESN 0D anner be sdmdaeg des eludianta™)FO%, <00

ACMESTAESIGH 20, < FlatrepyMERT nDonner ke e de Petliaat" LA, O
-

il LT}

o] B i aiy e

Fig. 2: Internal form of program DIV
Their internal forms are:

o =varm ASSIGN, <@ varm=varm-+varl +.. . +varnFD=>,
{<varl, val, 1>=,... <varn, val, 1=}

o =varm, A SSIGN 1<, varm=varl +var2+.. . +varn, FD=
{<varl, val, 1>, ... <varn, val, 1>}

Other mstructions are presented in our previous work
(Bendelloul et al., 1977, Khammaci et al., 2000).

Every program i1s seen as a set of triplets. Being
formal this modeling allows automatic translation. Fig. 2
shows the mternal form of program DIV.

THE TARGET LANGUAGE

Target language must solve some problems where the
most important are:

* Record: Cobol variables are declared under tree form.

s Copy: Cobol permit to copy two records having the
same size but different fields

* Goto: There 1s not any concept of level, we can
perform GOTO from any level to another level.

s Perform: Cobol permit to perform a part of a given
program between two labels without specifying it as
procedure or subroutine

From this we justify the choice of target language.

The Data Base Management System Languages
(DBMS) are adequate to solve problems 1 and 11 but not 111
and iv.

Java 1s a modem language but it has some problems
with translation from COBOIL. The concept of record

1939

J. Applied Sci., 10 (17): 1957-1962, 2010

doesn’t exist in Java; to declare a variable with 49 levels
we must declare 49 classes. Copying two records having
the same sizes but having different fields is prohibited in
Java. The instruction Goto doesn’t exist in Java (Hamilton,
1996). Then Java is not adequate as target language to
translate a program COBOL.

Copying two records having the same sizes but
different fields is prohibited in Pascal (Delannoy, 1994).
The problem with this instruction hasn’t any solution.
Also Pascal is not adequate as target language to
translate a program COBOL.

Pascal is a sub language of Delphi. Delphi inherits its
problems, expect the notion of object oriented
programming that solves the problems of Goto and
Perform. Problems with Copy are not solved (Engo, 1997).
Ag Pascal and Java Delphi is not adequate.

With C language notion of Record exists (Struct) and
problem to declare variable in the form of tree structure is
solved. Copying two records having the same sizes but
having different fields is possible with C. Goto exists but
is not possible between two levels, same problem with
Perform (Young, 1993).

C++ has the same features as C, in addition the
notion of object-oriented programming solves the
problems of Goto and Perform (Young, 1993). Then C++
solves the four problems of Cobol It is an adequate
language to translate Cobol programs. We adopt C++ as
target language to translate Cobol programs.

FROM INTERNAL FORM TO C++

Translation of internal form to C++ needs to create
two files: the header file and the source code file.

Header file:
<rec_name,DEC.T=<@ STRUCTURE,FC><prog_name,
val,1>
is represented in the header file by:
typedef < record name>
{data} < record name>

Others instructions are translated with the same process.
For example to translate

{<agent, DEC, i>< @, structure, FC> < div, val, i},
{<ecode, DEC, i>< @, int, FC> < agent, val, i>},
{<ename, DEC, i=< @, char[10]. FC> < agent, val, 1>},
{< pmont, DEC, i>< @, double, FC> < agent, val, i>}.

We obtain:
typedef agent
{int ecode;
ename char[10],
Double pmont;
} agent;

Fla Edi Yw bbend Fpm | GpioCo Windw 3

tlEg I Coastn o ez
Vw0l
typode] virect Vaw (PRl
i O[3
chae PROMY1
double NOTET:
doubly NOTEL
doubln WO
Jeucaed_1:
FILE *FETUDIANT:

i [_FETUDRSNTHN:
recnrd_1 ETUDIANT;
har MESO[30]:
cher MEST[30]:
char MES?[30];
ches MESI|0]:
i MESA[30:
i MESE[0]:

int NAL;

it LIN;

it IEAA

Moi] [Boahi wdis Sjohlieo Fun

A 1

Fig. 3: The header file of program DIV

% cob3 - [ex01.cpp] [[3]x]

Fle Edit View IntemalFam | GotoC++ ‘Window 2 =] ﬁ

DlElEl el @ Create [+ files

print[%5 MEST), Vi headefe |
scanf{"%d",&NB);

do{
NB-= UN;
[NB==50]
break;
printf{ %6s",MES1);
scanf["%s", &NOM);
printf[%s",MESZ);
scanf['%s", &PNOM];
printf{ %6s",MES3);
scanf["%d".&NOTE1):
printf[%s",MES4);
scanf["%d", &NOTE?);
printf(%s",MESS);
MOY=(NOTE1+NOTE2)/DEUX;
printf{ %6d",MOY);
fwrite[SETUDIANT, sizeof(ETUDIANT),1,FETUDIANT);
Jwhile[1==1];
return 0;
}

o
\5534]% D43

A Start H cob3 - [ex01.cpp] 3 Exploring - 3% Flappy (&)
Fig. 4: DIV in C++

In Fig. 3 we present the print screen of the header file
of DIV.

Source code file (.cpp): To create file .cpp we call the
following modules:

#includestdio.h,
#includedos.h,
#includestdlib.h,
#includestring.h,

with the previous header file. In Fig. 4 we have the
screen of C++ program of DIV.

1960

J. Applied Sci., 10 (17): 1957-1962, 2010

Fig. 5: TRANSCOBC++ architecture

Finally we can obtain a complete translated program
i C++ with the same modelling.

TRANSCOBC++

We have designed and implemented a prototype
based on our approach named TRANSCOBCH+
(TRANSIation from COBol to CH+). Tt has been developed
under Visual C++ 4.0 environment and is formed by three
modules: COB2iff, 1ff2txt and Translator (Fig. 5).

In the first step, Cob21ff, which 1s a binary generator,
makes lexical, syntactic and semantic analysis of a given
Cobol source code. It gives table of variable defimtions
and references and table of call points. From these tables,
it elaborates program internal form and instrumented
source code. Then, iff2txt converts the binary file to
textual file and displays the internal form. Finally
Translator translates mternal form to C++ programs. We
have also mcluded a possibility to refine automatically
and mamually C++ program. C++ program obtained can be
carried out.

CONCLUSION AND FUTURE WORKS

Traditional program translation takes a program
written 1n some source language and creates a
semantically equivalent program mn some target language.
In this study, we have described the current approaches
of program translation and their insufficiencies.

A translation via transliteration and refinement is the

major approach, i which the source program is first

transliterated into the target language and a line-by-line
basis and various refinements are then applied to improve
the produced target program.

In many cases, it serves the purpose of correctness
but it is quite limited to satisfy the other goals, such as
the mmprovement of readability, maintainability and
reusability. Another approach, translation via abstraction
and reimplementation, has been proposed to satisfy these
goals. However, this approach is not able to be applied to
programs of commercial size and complexity.

We have proposed a new solution that overcomes
these insufficiencies. Our approaches use the concept of
dependence model, which capture all relations of
dependence of the source program.

Our approach need to see the results of translating
large samples of Cobol programs mnto C++ and to compare
both their static and dynamic behavior for both Cobol and
the resulted C+ programs. In such case only we can infer
the affectivity of the translation. That 1s our future work
and of course we will change these programs to software
which will be suitable, like Visual Studio 2008/2010 or
Tava.

In future work of course, we will change these
programs to software which will be suitable to future like
Visual Studio 2008/2010.

REFERENCES

Arranga, E., . Archbell, I. Bradley, P. Coler, R. Langer,
C. Townsend and M. Weathley, 2000. In cobol's
defense. IEEE Software, 17: 70-72.

Arranga, EC. and W. Price, 2000. Fresh from Y2K: Whats
next for COBOL. IEEE Software, 17: 16-20.

Bendelloul, M.S., Z.E. Bouras, S. Ghoul and T. Khammaci,
1997. Assistance a la compréhension de programmes:
Un modéle et un algorithme de fragmentation. Genie
Logiciel, 45: 32-42.

Bouras, Z.E., S. Ghoul and T. Khammaci, 2000. A new
approach for program integration. South Afr.
Comput. I, 25: 3-11.

Boxer, RK., 1988 A translation from structured
FORTRAN to Jovial/j73. IEEE. Trans. Software Eng.,
14: 1207-1228.

Bruer, P.T., K. Lano and H. Haughton, 1995. Reverse
engineering cobol via formal methods. Comput. J.,
28: 47-56.

Carter, L., J. Ferrante and V. Bala, 1994. XDP: A compiler
intermediate language extension for the
representation and optimization of data movement.
Int. T. Parallel Programming, 22: 485-518.

1961

J. Applied Sci., 10 (17): 1957-1962, 2010

Chu, W.C.A ., 1993. Re-engineering approach to program
translation. Proceedings of the International
Conference on Software Maintenance, Se. 27-30, IEEE
Computer Society Press, pp: 42-50.

De Lucia, A., G.A. Di Luceca, A.R. Fasolino, P. Guerra and
S. Petruzzelli, 1997. Migrating legacy systems to
wards object-oriented platforms. Proceedings of the
International Conference on Software Maintenance,
(ICSM97), Bary, Ttaly, pp: 122-129.

Delannoy, C., 1994. Programmer en Turbo Pascal 7.0. ED.
Eyrolles, France.

Engo, F., 1997. How to Program Delphi. Ziff-Davis Press,
New York.

Faust, G.G., 1981. Semi automatic translation of cobol into
hibol. Master Thesis, MIT Cambridge MIT/LCS/TR-
256.

Hamilton, M.A., 1996. Java and the shift to net-centric
computing. TEEE Comput., 29: 31-39.

Khammaci, T. and Z.E. Bouras, 2002. Versions of program
integration. Handbook Software Eng. Knowledge
Eng., World Scientific, 2: 495-516.

Khammaci, T., Z.E. Bouras and M.S. Bendelloul, 2000.
Program understanding assistance: A role-based
decomposition. Proceedings of the 12th Intermational
Conference on Software Engineering and Knowledge
Engineering, SEKE2000, 6-8 Tuly, Chicago, TISA.,
pp: 336-343.

Van den Brand, M.G.J., M.P.A. Sellink and C. Verhoef,
1997. Obtaining a COBOL grammaer for legacy code
for reengineering purposes. Proceedings of the 2nd
International Workshop on the Theory and Practice
of Algebraic Specification, 1997. http://citeseerx.1st.
psu.eduiviewdoc/summary?do1=10.1.1.25.8267.

Waters, R.C., 1988. Program translation via abstraction
and reimplementation. TEEE Trans. Software Eng.,
14: 1207-1228.

Young, M.I., 1993. Visual C++ for Windows. Sybex, Inc.,
France.

1962

	JAS.pdf
	Page 1

