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Abstract: The aim of this study is to provide a behavioral modeling of hackers for a better predisposition to
secure the Internet. Thus, using data collected from the experimental platform of CADHo project, an efficient
analysis of these data has been made. This preliminary study has identified the intruders most used ports
(80, 135, 139 and 445). Using an approach based on Markov chains, we propose a predictive model
characterizing the attack processes on a honeypot and emphasizing the most attacked ports during a given
period. By computing the estimated errors, the efficiency of the proposed model is proved. This model is
independent of any platform and can be generalized for any number of predetermined ports.
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INTRODUCTION

The current protection system against ntruders
always presents inadequacies. Indeed, the number of
incidents and vulnerabilities is on the increase and that
has an effect on the productivity of the information
processing systems. To improve the protection system a
better knowledge on the threats and their intruders are
required. To this end, we need methods and data analysis
in order to characterize the attacks and evaluate their
unpacts. Today, the best technology which makes it
possible to meet these needs 15 that based on honeypots.

Once collected, the data on honeypots must be
analyzed in order to forewarn or device design for safety
tools. Several statistical models have already been used
to analyze the data.

On the one hand, for the modeling of the duration
between the occurrence of two consecutive attacks, one
can quote the Pareto and Exponential distribution or the
combined Pareto and Lognormal distribution (Alata ef al.,
2006; Kaaniche et al., 2006) and on the other hand for the
modeling of the attack frequency, the normal distribution
has already been used (Oumtanaga ef al., 2006).

The purpose of this article is to model the data
extracted from the centralized database of the Leurre.com
project (Alata et al., 2005). These data are related to the
number of observed attacks against the following ports
80, 135, 139 and 445. For that purpose, Markov chains are
efficiently used. This work lies within the scope of the
CADHo (Collection and Analysis of Data from
Honeypots) project (Alata et al., 2005).

A honeypot is an information system whose value
lies in its compromising (Alata et al, 2005; Oudoet and
Glaume, 2006; Kaaniche ef al., 2006, Spitzner, 2002). The
main goeal 13 to study the attacks against the nformation
processing system and to learn more about their
perpetrators with a view to prevention or for a better
detection of these mcidents. When honeypot platform is
deployed, finality 1s to find optunal countermeasure
strategies to protect networks by drawing the attention of
the pirates towards the honeypot. For this purpose, this
honeypot 1s called production honeypot, traditionally
used by commercial organizations. Also, honeypot
platform can be used to observe the pirates” behaviors in
order to get information about their attack tools and
strategies, this type of platform is called research
honeypot. Present study focuses on this latter type of
honeypot.

In connection with the research honeypots, there are
two types according to the level of interactivity with the
pirates. We distinguish honeypots with low mteraction
and honeypots with strong interaction. The first ones
make it possible to collect a maximum of information
(like the services concerned, the type of attack, the
attacker’s operating system, etc.) while offering a
minimum of privileges to the attackers. The advantage of
honeypots with low interaction is that the attacker cannot
use the compromised host as source of further attacks,
which 1s not the case of honeypots with high interaction.
These last ones are more generous. A host of the network
which offers functional services such as authentication or
scripts execution 1s used.
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By implementing a honeypot network (with a firewall
and an TDS (Tntrusion Detection System)) to simulate a
real environment of system and network resources, we
obtain a honeynet We distinguish many kinds of
honeynets:

Physical honeynets which are genuine machines
mtended to be compromise

Virtual honeynets which simulate a honeynet on a
single machine

Distributed honeypot systems where the data
collected are stored m a central place. The
Leurre.com project is one example

The Leure.com project (Alata et al, 2005) uses
several honeypots distributed throughout several
countries through the world. Thus, this project aims at
developing and giving to the scientific community, a
distributed platform of data collection. Our data are linked
to that project.

Also, the implementation of a honeypot requires
the use of machine emulator or virtual systems as well as
a momitoring system. To this end, there i1s a set of
honeypot tools such as honeyed, VMware and Sebek
(Lockhart, 2004).

MATERIALS AND METHODS

This study was developed through research projects
on honeypots within the LABTIC (Laboratory of
Information and Communication Technologies). LABTIC
became partner in the project CADHo since 2006. LABTIC
has led researches on the analysis of data from
honeypots. One of main purposes of this project 13 to
establish a distributed collection of data for attacks
analysis (Leurré.com environment) by mstalling honeypot
at each partner’s platform. Tn addition, the project CADHo
makes available to its partners, the data collected by the
platform. Any team wishing to benefit from these data of
the distributed database should become a project partner.
The study started since 2007 and data are collected from
this platform.

General information on Markov chain: Markov chains
are a powerful tool for the modeling of statistical data.
They denote a sequence of stochastic events where the
probability that a certain future state will occur depends
only on the present or immediately preceding state of a
variable or system, but not on the events leading up the
present state. These chains are efficiently used to
describe random processes able to reach a number of final
states and the evolution of systems through these states.
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Definitions: A Markov chain consists of states and
transitions probabilities. Let us consider (X),., a random
process, where t denotes the observation time (t can be
expressed in howrs, days, week, etc.). Tt is assumed that
during this time, the system can be in one of the following
states: 1, 2,..., n, where n is an integer. Let us set E, the
finite state space. During the evolution of the system, this
last one can be in one of these states with a certain given
probability. The probability that the system stays in state
1 at time t will be prob (X = 1) noted by and, P; (t) called
transition probability, represents the probability that, at
the given time t, the system being in state i, passes to
state j at time t+1. These vectors P; define the transition
matrix P = F,(t),,.; an n*m matrix:

P, = prob(X,,, = j/X, =1) (1

Assumptions on this probability malke it possible to
obtain the conditions of application of the Markov chains.

Properties: Many properties define Markov chain.

Regularity conditions: A Marlov chain with transition
matrix P is said to be regular if P" has all positive
entries, from a certain value n. Tn a regular Markov chain,
it is possible to get from any state, any other state in n
steps

Independence and homogeneity assumptions: The
independence and homogeneity assumptions are defined,
respectively as follows:

The probability P(t) that the process goes into the
state j at the moment t+1 knowing that it is in state i
at the moment t 1s known and independent from the
system previous states

The probability P;(t) is time independent

The probabilistic state of the system at the moment
t is a probability law of the possible states on set E. Tt is
a stochastic line vector c, defined by:

o, = (prob(X, =1) prob(X, =2) ..prob(X, =n)) 2

oy 15 also called law of marginal distnibution and ¢y, mnitial
law or mitial state of the Markov chain.

Under the mdependence and homogeneity
assumption, we have:

3

—_ —_ t
gy = QP OF Oy = O P

The second equation of relation (3) 1s obtained from
the first one by reiterating it to order 0. Thus, the law of
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Markov chain is well determined by the data of its matrix
of transition P and the initial state o,

Convergence of Markov chain: The convergence of a
Markov process makes it possible to anticipate the
behavior of the system independently from its initial state.
Thus, when the conditions of convergence are satisfied,
it is shown that at a given time, the law of probability
is independent from the initial law. To this end, there
are theorems which make 1t possible to prove under
certain conditions, the convergence of Markov chain
(Bremaud, 2001; Nuel and Prum, 2007). Among them, we
will state the principal theorem 1in the theory of Markov
cham (Graham, 2008). We now state the principal theorem
in the theory of the Markov chain: 1f P 13 a regular matrix
of transition from a Markov chains process, if P is an
unspecified vector of states, then:

*  lim__P"=S, where 3 1s a stochastic matrix having its
lines all equal

e lim, BP* = g, where ¢ is a permanent stochastic
vector (the sum of its coordinates 15 1). « 1s called the
vector of balance or stationary distribution

Related works based on Markov chain: Used by Claude
Shannon to mtroduce the concept of entropy mn the book
(Shamon, 1948), Markov chains are used by others
researchers to describe various situations. For examples,
Markov have allowed the setting up of an
efficient arithmetic coding used for data compression
(Haixiao et af., 2006). In bionformatics, these chains have
been useful for the modeling of certain nucleotides’
properties (Nuel and Prum, 2007).

Since this current decade, Markov chaing have
become efficient tools used to describe intruders
behaviors. Thus, Nong (2000) has used Markov chain
model to represent a temporal profile of normal behavior

chains

m a computer and network system. This technique

developed by Nong allows detecting the anomalous
behaviors of system caused by mtruders. To construct
the Markov chain, he has identified a set of 284 possible
states which result from audit events on a single TUNIX-
based host. The intrusive activities are efficiently
detected by Nong Ye using Markov chain model.

Callegari et al. (2008) compared performance of
several technique of intrusion detection system based on
various types of Markov models. There study improves
the mechanmsm developed by Ju and Vardi (2001) and
Tha et al. (2001) to describe the use of lugh order Markov
chains to detect masqueraders at the host level.

All these works emphasize the efficient use of
Markov chains or other Markov models in mtruders’
behaviors study.

Therefore, while these former studies take their input
from single node or limited networks, our study is part of
a large project and uses a great and various data. The
honeypot environment 13 much more adapted for
intruders’ behaviors study than traditional networks or
normal host.

Collected data, reorganization and Markovian modeling:
This section concerns data collected from leurre.com
database. The ports with negligible frequency of attack
are not part of the final modeling. Only the most attacked
ports have been taken into account n the final modeling.

Collected data: The raw data relating to the weekly attack
number of ports 80, 135, 139 and 445 and extracted from
the centralized database of Leurre.com are presented in
Table 1.

The service corresponding to each port is mentioned
in the first column of the table. The data of the attacks are
observed over 50 periods of a week about over one year.

Reorganization of the data: From previous data, we have
the table below, giving for each week, the number of the

Table 1: Results of the number of attacks per port taken from the database of leurre.com

Observation periods

Services Ports P1 P2 P3 P4 P5 P66 P7 P8 P9 Pl0 P11 P12 P13 P14 P15 Plé P17 P18 P19 P20 P21 P22 P23 P24 P25
HTTP 80 0 0 0 710 0 14 1 11 77 9 4 0 0 0 0o 0 0 17 24 5 0 0 0
EPMAP 135 0 1 3 77 9 1 170 42 126 108 171 287 97 37 37 0 4 0 3 141 109 51 1 0 O
NETBIOS-SSN 139 0 3 1 33 8 1 112 33 146 97 126 173 70 25 13 0 5 0 5 108 116 77 2 3 0
MicroSoft-D8 445 0 0 0 2 1 1 0 0 1 1 0 1 0 0o 0 0 3 0 3 200 170 8 3 4 1
Observation periods
Services Ports P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50
HTTP 80 3 43107 0 4 61 29 26 20139 130 6 67 106 67 0 0o 21 0 0 O 1 0 0 0
EPMAP 135 49 307 148 0 38 249 203 253 333 380 314 14 195 227 189 O 0 106 0 0 O o 0 1 0
NETBIOS-SSN 139 44 364 309 1 43 287 326 373 333 487 415 17 262 335 267 0 0 105 0 0 1 o 0 0 0
MicroSoft-DS 445 74 402 286 4 43 322 387 351 402 415 375 18 232 263 239 0 0 126 0 0 1 0 0 0o o0
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Table 2: Chronological tables of the most attacked ports

Periods Pl P2 P3 P4 PS5 Pe P7 P8 P9 P10 P11 P12 P13 Pl4 P15 Ple P17 P18 P19 P20 P21 P22 P23 P24 P25
Most attacked ports 0 139135 135 445 135 135 135 139 135 135 135 135 135 135 0O 139 0 139 135 139 139 139 139 445
Periods P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50
Most attacked ports 445 445 139 445 445 445 445 139 445 139 139 445 139 139 139 © 0 445 0 0 139 80 0 135 0

most attacked port and the frequency of attacks agamn the
service using that port. Two situations can occur to the
system during the period of observation:

No port 1s attacked
At least, two ports undergo the same number of
attacks

When no port is attacked, the assumption will be
made that the port more attacked is the null port noted 0.
If two (or more) ports undergo the same number of
attacks, we assume that the most-attacked port is the port
which will have been attacked the least during the former
attack periods (Table 2).

Markovian modeling: In this subsection, Markov chain 1s
used to model the system evolution. First, the mitial state
1s defined. After this, the transition matrix 1s constructed.

Definition of the states of system: et us indicate T,
the period of observation of the corresponding to
one week and by (), the process which consists in
observing the ports 80, 135, 139 and 445 each week in
order to determine which is the most attacked.

Thus, our system consists in assoclating to time kT,
the current most attacked port, where k>0 describes the
set of integer.

For ie{l, 2, 3, 4} let us indicate by P; the port
assoclated with state 1. The analysis of Table 1 shows that
() can be in five states, defined as follow:

For the state 1, with i€ {1, 2, 3, 4}, P, denotes the most
attacked port. The 4-sequence ports (P, P,, P,, P,)
equals (80, 135, 139, 445)

State 5: No port is attacked

That defines a random process (X))t 1.0, which takes
1ts values in E. Indeed, 1t 1s impossible when knowing the
state of the system at the moment kT, to know the state at
moment (k+1)T.

Letus set T =1 week, we have (Z) = (3{)...

Transition stamp of attack processes: Let us consider the
events X, = 1 and X,,, = j which, respectively expresses
that the system is in state i at the moment n and the
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system 1s 1 the state j at the moment nt+1. Then the event
(X, = UN(X,.; = 1) expresses that the system 1s at state
after having been in state 1. There 15 the followng
defimtion:

card ((X,, =) (X, = )
card{(X, =1))

prob(X, = /X, =)= (4)

By assuming that the probability above does not
depend on n, we can define and calculate the transition
matrix P of attack process. The data of Table 1 and Eq. 1
and 4 enable us to calculate these elements of P.

Hence,

0o 0 00
o 83 1 1
13 13 13 13
13 3 1 1
P=|16 16 8 4 8
1 4 5 1
TTRRTERTRRT!
11 1 1
3 2% 3

Thus one can consider the sequence () ., as
Markov chamn with transition matrix P. We can from now,
apply the properties of Markov chain previously defined.

Convergence of the system: By calculating P* we get

According to the principal criterion of regular
process previously quoted, the studied process is a
regular Markov chain. Thus, the probability law
converges and 1s independent of the 1mtial law, according
to the convergence properties.

We consequently deduce that there exists a finite
value such as:

3

limo,,, =
e D)

o

Let us take for imtial law that which corresponds at
the mitial state of the system, e.g., that which does not
correspond to any attack of the mmplied ports. Thus, we
get:

Uy =(0 0 0 0 1)
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RESULTS AND DISCUSSION

Results of the model: We know, according to the study
led to section 3, that the probabilistic state of the system
is described by the relations (2). Thus, at the end of the
first period, we can predict:

Oty = Oy P
0 0 00
g 23 1 1
13 13 13 13
1 3 31 1
=(0 00 0116 16 8 4 8
1 4 5 1
11 11 11 11
1 1 1
% 28 3

Thus, after one week, the probability so that port 80
is the most attacked port is null, ports 135 and 445 have
12.5% of chance to be the most attacked ports, port 139
has 50% of chance to be the most attacked port and 25%
of chance that no port 1s attacked. That can be predicted
at the end of the second period.

After two weeks, there 1s 38.68% of chance for port
139 to be the most attacked port.

In a general way, the second relation of (3) enables
us to predict the state of the process with nth period. By
using the relation (5) and while passing m extreme cases
in the first equation of (3) we get:

o =0oP=al-P)=0 (6)

In the above relation, T indicates the 5-by-5 identity
matrix. Moreover ¢ is a stochastic vector according to the
general theorem, therefore, its coordinates o, with 1€{1, 2,
3,4, 5}, verify:

O+ Oy T 0, 0y o =1 (7

where, ¢ = (¢f, «, o, o o) GER' 1€{1,2, 3, 4 5}

The relations (6) and (7) form linear system of
equations which resolution makes it possible to determine
the stationary law. By using the Scilab tool (Kaber, 2002)
to solve this system, it follows:

@=(0.022 0267 0.343 0.227 0.141) (8)

The port 139 is the most attacked port with a
probability of 34.34%.

The pie-chart (Fig. 1) makes it possible to visualize
the probabilistic most attacked ports. They correspond to
the states occupying the greatest portion.

Fig. 1. Analysis of attacks over port

Table 3: Real probabilities for the system to be in its various states at the

end of 50 periods
State 1 2 3 4 5
Real probabilities 0.02 0.26 0.32 0.22 0.18

Validation of the model: Here, we will check if the results
provided by the model take mto account the reality. For
this purpose, it i1s necessary for us to calculate directly
from the data of Table 2. The probabilistic state will be
calculated at period 50, to ensure convergence (indeed we
have seen that starting from a certain period, the
probabilistic state of the system becomes stationary).

Direct calculations: The probabilistic state of our system
will be calculated m the following way: the occurrence
report number where state 1 occurs in the table during 50
periods on the number of observed periods. If N, indicates
the number of occurrence of state 1 during 50 periods one

has:

—iyp= N (9)
prob(X =1) ”

Using the data of Table 2 and formula above, one
calculates for each state the probability that the port
concerned 1s attacked the most during 50 periods. The
results are presented in the Table 3.

Model validation: By laying out in the same table the
results obtammed by the model and those obtained by
direct calculation at the end of the 50th period, it 1s
possible to appreciate the relevance of the model
suggested using an error analysis. By using the results of
relation (8) and Table 3, we get the following results of
Table 4.

In the Table 4 above, the relative error is calculated
for each state by the formula:

i i
Pm - o
P

exp

A=
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Table 4: Estimated errors

States 1 2 3 4 3

Real probabilities 0.020 0.260 0.320 0.220 0.180
Estimated probability — 0.021 0.267 0.343 0.227 0.140
Relative error 0.050 0.026 0.072 0.031 0.040

where, P’ dencte the experimental probability associated
with state 1.
The vector:

(Pny PL, Bi, BL, PL)
is the experimental law of the variable X, Tt is calculated
based on the entire sample population (i.e., n=50). By
using the Table 4, the average error 1s equal to 0.0438 and
the variance 1s 0 = 0.0163. Thus, it 1s straightforward that
the dispersion effects are weak. The errors are evenly
distributed around the average error. We can conclude
that the accuracy is good and the model can be

considered relevant.
CONCLUSION

This study describes a Markov model to study the
evolution of the attacks frequencies against a finished
ports based on a honeypot. This model built from the data
analysis extracted on CADHo platform project has
permitted to distinguish five states from which the system
could forward. Moreover the process law has been
determined by its transition matrix P and its mitial state.
The convergence of the chain has also been proved and
the stationary law towards which it converges has been
determined. This males it possible to know the probable
most ports attacked services at given period. Moreover,
one also notes a good adequacy between the results of
the model and the data measured. Tt is significant to note
that the model used here neither depends on the platforms
from where the data are taken nor to the number of ports
concerned.

So, the model can be generalized to any given
number of ports.

Our model remains valid for any system having a
finished number of ports if the conditions of its
application are observed.

REFERENCES

Alata, E., M. Dacier, Y. Deswarte, M. Kaaniche and
K. Kortchinsky et al, 2005, Lewré.com: Retour
d’expérience sur plusieurs mois d’utilisation d™un pot
de miel distribué mondialement. Proceedings of the
Symposium Sur La Sécurité des Technologies de
I’'Information et des Communications, June 1-3,
Remnes, France.

201

Alata, E, M. Dacier, Y. Deswarte, M. Kaaniche and
K. Kortchinsky et al, 2006. Collection and
analysis of attack dated based on honeypots
deployed on the Internet. Advances in Information
Security, Springer US. Quality of Protection,
pp: 79-91.

Bremaud, P., 2001. Markov Chams: Gibbs field, Monte
Carlo Simulations and Queues. 2nd Edn., Springer,
New York, ISBN: 978-0387985091.

Callegari, C., S. Vaton and M. Pagano, 2008. A new
statistical approach to network anomaly detection.
Proceedings of the International Symposium on

Performance  Evaluation of Computer and
Telecommunication Systems, Jun. 16-18, Edinburgh,
UK, pp: 441-447.

Graham, C., 2008. Chaines de Markov: Cours. 1st Edn.,
Dunod, Britamn, ISBN-13: 978-2100520831, pp: 274.

Haixiao, C., 8. Kulkarni and 8. Verdu, 2006. An algorithm
for umversal lossless compression with side
mformation. IEEE  Trans.  Inform.
52: 4008-4016.

Tha, 3., K. Tan and R.A. Maxion, 2001. Markov chains,
classifiers and intrusion detection. Proceedings of
14th IEEE Computer Security Foundations
Workshop, (CSFW'01), TEEE Computer Society,
pp: 206-216.

Ju, WH. and Y. Vardi, 2001. A hybrid high-order markov
chain model for computer intrusion detection.
J. Comput. Graph. Statistics, 10: 277-295.

Kaaniche, M., Y. Deswarte, E. Alata, M. Dacier and
V. Nicomette, 2006. Empirical analysis and statistical
modeling of attack processes based on honeypots.
Proceedings of the WEEDS 2006-Workshop on
Empirical BEvaluation of Dependability and Security,
June 25-28, Philadelplia, USA., pp: 1-6.

Kaber, SM. 2002. Introduction & scilab-exercices
pratiques corriges  d’algebre Ellipses
Marketing, pp: 226.

Lockhart, A., 2004. Network Intrusion Detection Network
Security Hack. 2nd Edn., O'Reilly Media Inc., USA.,
pp: 348-412.

Nong, Y., 2000. A markov chain model of temporal
behavior for anomaly detection. Proceedings of the
IEEE Workshop on Information Assurance and
Security United States Military Academy, Tune 6-7,
West Point, New York, pp: 171-174.

Nuel, G. and B. Prum, 2007. Analyze statistique des
séquences biologiques: Modélisation markovienne,
alignements et motifs (Collection bioinformatique).
http: //www lavoisier. fr/notice/fr41 8634 . htm 1.

Theory,

linéaire.



J. Applied Sci., 10 (3): 196-202, 2010

Oudot, BL. and V. Glaume, 2003. Global intrusion Shannon, C.E., 1948 A mathematical theory of

detection: Prelude hybrid IDS. Technical Report. communication. Bell Syst. Tech. I., 27: 379-423.
Oumtanaga, 3., K.P. Kimou and G.K. Kouadio, 2006. Spitzner, L., 2002. Honeypots: Tracking Hackers. Addison

Specification of has model of honeypot attack based Wesley, USA., pp: 480.

on raised data. Proc. World Acad. Sci. Eng. Technol.,

17: 207-211.

202



	JAS.pdf
	Page 1


