——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 10 (17): 1963-1967, 2010
ISSN 1812-5654
© 2010 Asian Network for Scientific Information

Using Modified Fixed Point Numbers Representations in Spelling Checker

'R.F. Alwan and *O. Al-Hadithi
'Faculty of Information Technology, Philadelphia University,
P.O. Box 1, Amman-19392, Jordan
Delmond College, Bahrain

Abstract: This study is concerned with the process of designing and mmplementing an English text spelling
checker which can detect and correct the misspelled words. The spelling checker is built using a modified
version of Fixed Point Numbers Representations Technique (FPNRT), which is a compression method that is
suitable to this kind of applications. The modified FPNRT will transform the dictionary words into numeric
values and then stores them m a data base file of that form, which is considered to be a new way for
storing a dictionary. This method gives comparatively good compression ratio and very quick in

compression/decompression process. Therefore, this method is good for files which are frequently read and

updated. This approach will mimmize the memory space required to store the dictionary by achieving a

compression ratio of 37% on average and also enhance the performance of the spelling checker by maximizing
its speed which takes O(1g n/5). This approach is also provide a new way for building a list of candidate words

that may be used to correct the misspelled words.

Key words: Spelling checker, spelling cormrector, data compression, spelling errors, dictionary based,

statistical-analysis methods

INTRODUCTION

Several software systems (such as: Professional
Writer, Windows, Word Perfect, etc.) have programs that
can handle an English text for potential spelling errors and
can often pomt out a probable correct spelling. There are
two types of spelling programs: spelling checkers and
spelling correctors. The function of a spelling checker is
to identify those words which are incorrectly spelled.
While a spelling corrector can do both, detect the
misspelled words and try to determine the most likely
correctly spelled word which was meant (Angell et al.,
1983; JTames and Daniel, 1990; Ringlstetter et al., 2007). In
practice, many methods are used to detect spelling errors.
Some of these methods depend on a statistical analysis of
word occurrences to reject word forms that are
statistically improbable, while others are depended on
pre-comstructed dictionaries which are known as
Dictionary-Based Spelling Checker (DBSC) methods that
containing either full words or word fragments to verify
the spelling.

Most spelling checkers methods are used dictionaries
rather than statistical methods (Mihov and Schulz, 2004
Gollapudi and Panigrahy, 2006; Salomon, 2007; Reynaert,
2008, Cole and Lewenstein, 2004). These Spelling
Checlkers methods are as follows:

s Statistical-Analysis method

¢+ Simple method of DBSC

» Words frequency method

» DBSC method using tree technique

» DBSC method using hashing table technique

Procedures that have been developed so far will both
detect and correct misspelled text words. All these
procedures consist of using dictionaries of pre-stored
word forms. The correction methods are as follows
(Sithon et al., 2007, 2008a, b; Reffle et al, 2008
Wilcox-O'Hearn et al., 2008):

¢ Dictionary common misspelling method

s Simple correction method (word variants method)
+ Phonetic (soundex) method

» N-gram encoding method

s Damerau-Levenshtein (DL) metric method

» Fouwth-Generation Language (4 GL) method

SPELLING CHECKER SYSTEM
The spelling checker system has three components:
» Data base (dictionary)

» Spelling checker routine
» Spelling corrector routine

Corresponding Author: Dr. Raad F. Alwan, Faculty of Information Technology, Philadelphia Umiversity, P.O. Box 1,
Amman-19392, Jordan Tel: +962777426528
1963

J. Applied Sci., 10 (17): 1963-1967, 2010

To illustrate the design and the implementation of the
spelling checker program, we have to describe each one
of the above components.

Data base (dictionary): The dictionary or the Data Base
(DB) is the most important component of the spelling
checker program. This 1s due to the structure of the
dictionary which determines the type of the look-up
strategy (search method) that is used in the spelling
checlker routine.

In the dictionary implementation, we transform each
word inte a numeric value before storing it in the
dictionary. The transformation of the system dictionary
words is done by using the modified FPNRT. Hence, the
numeric value of the word (£) will be calculated using the
following formula:

£- 5 (AsC-65)"26 (1)

i=0

where, n represents a word length, ASC is the ASCIT code
of any letter, i is the letter’s position in the word.

This transformation 15 considered as an encoding
operation. The algorithm for encoding the dictionary is
shown in Algorithm 1.

The encoding formula shows that each word has a
unique value (f) in the stored dictionary. By subtracting

Algorithm encoding Di ctionary (dictionary)
it cdictionay represents the word to be encoded
oufpnt rconvert and distribute words in subfiles
whil efrot eaffdictio naryl)
{ 1 = comverifwo rd);
Ffz20and <255 then
it fin DBlinascending order
else if (f = 256 and [203315) then
put | i DB2 inascending arder
else if (f = 65316 and f < 21474830647 Jthen
puit fin DB 3 inascending arder
elseif (f = 2147483040 and f 0223372030 854775800 then
prit fin DB4 inascending arder
else
prit fin DBS inascending arder
/
end.
Algorichm Converi(s)
it 5 SEring represents the word fobe encoded
auinit ¢ f memeric value of the word using FPNRT
f=o
Jori=0tolengthfs);
i= f+(ASC(s[zj -5)* 26 j

remm
end.

Algorithm 1: Encoding dictionary algorithm

the constant number (65) from the ASCTI value of each
letter, we can reduce the value of (f) in order to minimize
the memory space needed to store the value (f).

The following example illustrates the transformation
process of a word COMPUTER into a numeric value using
the modified FPNRT algorithm shown in Eq. 1:

n=8 ASCHof C=67,0=79,M=77,P=80,U=85,
T=84E=69 R=82

(67-65)%26" + (79— 65)*26' + (77 - 65)*26" +
£=| (80— 65)*26"+ (85— 65)*26" + (84— 65)*26” +
(69-65)"26° + (82— 65)*2¢6
=138,011,593,878

The advantages of using this technique (which
stores the words in DB as a numeric value) are as follows:
Reducing the memory space that 1s needed to store the
dictionary. Suppose we want to store the word
COMPUTER 1in the memory in the normal form. The word
needs 8 bytes of memory space to store it, while using the
modified FPNRT will minimize the number of bytes needed
to store the word and therefore the memory space
required would be less. The space needed can be
calculated as follows:

We calculate the value f of the word using Eq. 1:

f(COMPUTER) = 138, 011, 593, 878.

To calculate the number of bits (n) required to store
f, we use the following equation:

Since: f=2"
Therefore:
n= le(f) 3.32*1g(f)
lg(2)
= 3.32*lg(138,01 1,593,878)
= 37 bits

So, the mumber of bytes (N) required to store the
word COMPUTER using the modified FPNRT is:

3

N= :?7; Sbytes

n
8

We can gain a high speed n text spelling checking,
due to the use of the binary search method as dictionary
look-up strategy.

We can gain a high speed in text spelling correcting
thorough mimmize the construction time to build the list
of words that are close m spelling to the misspelled word.

1964

J. Applied Sci., 10 (17): 1963-1967, 2010

In order to build the dictionary for the system, we
transform the words of the dictionary to its equivalent
numeric values using the modified FPNRT, then we divide
it into five parts as follows:

DB1: This file stores words whose numeric values are:

0<f<255, such as: f{BE) =105

This file stores words whose numeric values are:

256<f<65,515 such as: f(ARE) = 3,146

This file stores words whose numeric values

are: 65,515<f<2,147 483,647 such as: f(SPELL) =

5,223.184

DB4: This file stores words whose numeric values are:
2,147 483,647<f<9,223 372,036,854,775,800suchas:
f(COMPUTER) = 138,011,593,878.

DB5: This file stores the words whose numeric values
are: £=9,223,372,036,854,7775,800

DB2:

DB3:

Because there is no data type that can store a
numeric value of a word whose length 1s more than 13
letters, we divide the word into two parts. The first part is
the length of 13 letters and the second part 1s the length
of the rest letters of the words. So, the first field is used to
store the numeric value of the first part of the word
and the second field is used to store the numeric value
of the second part of the words such as the word
CINEMATOGRAPHICAL:

F(CINEMATOGRAPH) = 723,151,536,781,827,142;
FICAL) = 193396

The reason for dividing the dictionary in five files 1s
to ease the search during the spell checking process.

Spelling checker routine: This 15 the second component
of our system which detects the misspelled words m a text
file.

The algorithim of this component i1s shown in
Algorithm 2, where a decoded text file is read word by
word. Then each word (numeric value) of this text file will
be looked-up in right part of the dictionary. If the word
1s not 1n that part, then the spelling checker routine will be
called.

The process of detecting misspelled words 1s done in
a short time using the binary search technique. Therefore,
the time complexity of the algorithm of the look-up
strategy is O(lg n/5).

Spelling corrector routine: In spelling corrector routine,
we need to transform back a word(s) from its numeric form
(as it is stored in the dictionary) into its normal form
(letters form). The algorithm of Algontlim 3 shows the
process of decoding the word(s), where the function

AlgorithmSpellingGecker (textﬁiemme)
Input :text filename
Cuiput: eithercorrectentryor listof candidates
whilenoteofttextfiename)
{
Booleanp;
Strings;
readaword fromtext file puting;
[=convertis}
if(f=0 and [<255)the {
D=1
p = BinarySeach(!length(DE], f)
/
elyeiftf 2256 and 7 £65515) then {
D=2
P = BinarySeach(ilength(DB2 1)
/
elyelf(f za5516and [<214748364then {
D=3
p = BinarySearh(ilength(DB3,7)
/
clse
if (f2 214748364 @nd F < 922337203B54775800en {
D=4
P = BinarySeaich(ilength{DB4L. 1)

}
else {
D=3
p = BinarySeach{!length{DBj, [}
if{E plthen
callspelling@rrector(iD);
/

end.

Algorithm 2: Spelling checleer algorithm

Algorithm decoding (n)
Input: c: array represents candidae list
N array length
Output: print the list of candidate words
String x = ;
Jorii=lton
while (¢ fI]! =0 do

.

26
w = {cfi]-s*26)
x=x+ CHR(w+ 63)
cflj=s

}

print x

end.

Algorithm 3: Decoding algorithm

CHR() transforms the numeric value mto its
corresponding character form.

1965

J. Applied Sci., 10 (17): 1963-1967, 2010

Algorithm SpellingCorrector(f d)

Input: [:value of the misspelled word
d : database subfile

Oulput: ¢ : arvay containslist of candidate words

i=1;
while(i<lengthid)do {
x=|f —dfif|;

if (x> 26)then {
if (xisinteger and (xmod2)=0) then
x =x/26;
/
else
if (xis integer) then {
efif =1

size = size + 1,

}?
call decoding(csize);

end.

Algorithm 4: Spelling corrector algorithm

The spelling corrector is a subprogram that corrects
the misspelled words in a text file. The algorithm of this
subprogram 1s shown in Algorithm 4. When the spelling
checker routine detects a misspelled word, the spelling
checker program will call the spelling corrector routine.
The spelling corrector routine, then will look-up in the
dictionary to construct a list of the nearest neighbor(s) of
the mcorrectly spelled word, as candidates for the correct
spelling words.

As a first step in the operation of selecting a word to
be included in the candidate list to correct the misspelled
word, we subtract the correct word from the misspelled
word and then take the absolute value of the subtraction
result. Then we start dividing the result by the constant
(26) until the result becomes less than 26.

If at any stage of our division the result became an
odd number, then we have to stop the process and we
reject this word. Now, if the result is an integer number
less than 26 then the word will be selected to be a
candidate in the list of the words to correct the misspelled
word. On the other hand, if the result is less than 26 and
it is a real number, then the word will be rejected.

The following example illustrates how the words are
selected to comstruct a list of candidates for the
misspelled word. We will take the misspelled word SPULL
and the correct words are SPILL and SPILE.

[f(SPULL)-f(SPILL)| = |5234000- 5225888| = 8112

Since, 8112>26 and 8112 is integer and even number,
Therefore we divide it by 26:

8112 _112
26

Since, 31226 and 312 1s integer and even munber,
Therefor:
{E}u
26

Since: 12<26 and 12 it is an integer number,
Therefore, SPILL is selected to be included in the list
of candidate words to correct the misspelled word SPULL.

|f(SPULL)-f{SPILE)|=5234000-2027056| = 3206944

Since, 320694426 and 3206944 1s an mteger and even
number, therefor:

[3206944]:123344

Since, 123344> 26 and 123344 15 an integer and even
number, therefore:

(123344J= 4744

Since, 474426 and 4744 is an integer and even
number, Therefore:

4744 =18246
26

Since, 182.46>26, but 182.46 15 not an mnteger number,
therefore: SPILE is not selected for the list of candidate
words to correct the misspelled word SPULL.

CONCLUSIONS
From this study the following conclusions are drawn:

» In spelling checker, the dictionary is considered as
the most important part of the system. The structure
and the size of the dictionary will determine the
performance of the spelling checker

* We found that the modified FPNRT can enhance the
system and makes it ready for use with other
languages after doing simple modifications on the

formula of the above method

1966

J. Applied Sci., 10 (17): 1963-1967, 2010

¢+ Using the modified FPNRT to store the dictionary
words in numeric form has made the system more
efficient than the others because 1t reduces the space
needed for storing the dictionary and maximizes the
accessing speed

REFERENCES

Angell, R.C., G.E. Freund and P. Willett, 1983. Automatic
spelling correction using a trigram similarity measure.
Inform. Process. Manage., 19: 255-261.

Cole, RL. and G.M. Lewenstem, 2004. Dictionary
matching and indexing with errors and dont cares.
Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, (AASTC’04), Chicago, IL,
USA., pp: 91-100.

Gollapudi, 8. and R. Panigrahy, 2006. A Dictionary for
Approximate String Search and TLongest Prefix
Search. CIKM, Arlington, Virginia, USA., pp: 5-11.

James, K. M. and J.M. Daniel, 1990. A tale of three spelling

checkers. Software-Practice Experience, 20: 625-630.

Mihov, S. and . Schulz, 2004. Fast approximate search in
large dictionaries. Comput. Linguis, 30: 451-477.
Reffle, U, A. Gotscharek and C. Rmnglstetter, 2008.
Successfully detecting and correcting false friends

using channel profiles. AND, 303: 17-33.

Reynaert, M., 2008. All and only, the errors: More
complete and consistent spelling and ocr-error
correction evaluation. Proceedings of the
International Conference on Language Resources
and BEvaluation, (CILREC’08), Tilburg Umversity,
pp: 1867-1872,

Ringlstetter, C., K. Schulz and Y. Mihov, 2007. Adaptive
text correction with web-crawled domain-dependent
dictionaries. ACM Trans. Speech Language Process.,
4:17-17.

Salomon, D., 2007. Data Compression the Complete
Reference. 4th Edn., Springer-Verlag, Berlin.

Sitbon, L., P. Bellot and P. Blache, 2007. Phonetic based
sentence level rewriting of questions typed by
dyslexic spellers in an information retrieval context.
Proceedings of the Interspeech, Antwerp, (IA°07),
Belgium, pp:1-4.

Sitbon, L., P. Bellot and P. Blache, 2008a. A corpus of
real-life questions for evaluating robustness of ga
systems. Proceedings of the 6th Edition of the
Language Resources and Evaluation Conference,
(LREC'0OR), Marrakech, Morocco, pp: 1-4.

Sithon, L., C. Meinajaries and P. Bellot, 2008b. How to
cope with questions typed by dyslexic users. ACM,
Singapore, 303: 1-8.

Wilcox-O’Heam, L., G. Hirst and A. Budanitsky, 2008.
Real-word spelling correction with trigrams: A
reconsideration of the mays, damerau and mercer
model. Proceedings of the 9th International
Conference on Intelligent Text Processing and
Computational Linguistics, Feb. 17-23, Haifa, Tsrael,
pp: 605-616.

1967

	JAS.pdf
	Page 1

