——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 10 (18): 2154-2160, 2010
ISSN 1812-5654
© 2010 Asian Network for Scientific Information

Interoperable Mobile Agent with JXTA

R. Mekki
USTO M.Boudiaf, B.P. 1505, ElMnaocuer Oran, Algeria

Abstract: As the web continues to grow in both content and the number of connected devices, peer-to-peer
computing 1s becoming increasingly prevalent. By using peer to peer, applications could provide access to a
variety of resources with high availability at a lower cost. We use peer to peer technology to deploy mobile
agent community. Their objective is to gather data about local state of machine and to build more abstract
observation of the whole network. The peer to peer configuration is defined by the use of TXTA framework and
the mobile agent can travel from one machine to another by the use of XML serialization. Because this kind of
serialization allows keeping state of agent, data collecting 1s realized with a community of mobile agents, each

of them are responsible of a type of data.

Key words: Mobile agent, peer to peer, data collection, application domain, software inventory

INTRODUCTION

Agents are meant to work with other agents. A key
feature of the agent paradigm of software development
1s that commumties of agents are much more powerful
than any individual agent, which immediately highlights
the necessity for interoperable agent systems. But the
mobile agent community and the agent community do not
fill the same need. They do not concern about the same
problems when talking about interoperability amongst
agents.

For the mobhile agents commumty mteroperability
work focuses on the execution environment and the
standardization of some of its facets and features; in the
case of non-mobile agents, there i1s no notion of an
execution environment and the focus is only on
communication as the means for achieving
interoperability. In the latter case, interoperability is
similar to effectively exchanging the data and knowledge
content of the agents.

Mobile agents migrate to an agent host where an
execution environment is set up for them; upon arriving
there, they might execute task or their own code, make
remote procedure calls in order to access the resources of
the host, collect data and eventually might launch another
process of migration to another host. While residing on
a particular agent host, mobile agents might have limited
mnteraction (communication) with other agents on the host
through an RPC-type mechamsm. A potential problem
arises from the fact that not all platforms for mobile agents
are the same. Moreover, the network between two nodes
does not support the same protocols. Depending on
security tools, some protocols are available and some
others are not. Our approach is an answer to the loss of

interoperability not only for the agent host and the data
exchange but also for the protocol used for the data
transfer.

First we describe the domam of mobile agent
community and their standard. Then we propose technical
choices for description of the map between the computers
but also for the implementation of agent host and mobile
agent. Next, we detail an example where some technical
aspects are shown to highlight the robustness of the
hypothesis. Finally, we sum up regarding the first results
and the next step is depicted.

A MOBILE AGENT SURVEY

Few standards exist concerning mobile agents. The
Mobile Agent Facility (MAF) proposal was subsequently
replaced by MASIF (Milojicic ef al., 1999, 1998). Itis a
first tentative to standardize some aspects of this
execution environment. The proposal was still under
investigation by the Object Management Group (OMG),
as of the mid-1998. MASIF 1s a collection of definitions
and interfaces that provides an interoperable interface for
mobile agent systems.

The MASIF’s interoperability i1s not only about
language mteroperability, such that language based on
virtual machine but instead it aims at interoperability
between agent systems written in the same language
although possibly by different vendors. MASIF focuses
on standardizing three things: agent management, agent
transfer and name convention.

The agent management means the standard
operations such as creating an agent, suspending it,
resuming, and terminate it. The agent transfer describes a
common infrastructure for agent applications to freely

2154

J. Applied Sci., 10 (18): 2154-2160, 2010

Computerl
Com Different kind of plateform
Ageniflost 42}
. . Computer2
Different kind of protocol
Components
208 AgentHost2
Computer3 http
Components
AgentHost3

Fig. 1. UML deployment diagram. Note that each node is
representative of local network (a) specific
computer system). It supports specific kind of
code (constraints: language, communication,
security rules, etc.)

move among agent systems of different types. Finally
name convention is essential for agents and agent
systems. It i1s expected that the use of a standardized
syntax and semantics of agent and agent system names
will allow agent systems and agents to identify each
other, as well as clients to identify agents and agent
systems. This specification has an obvious constraint in
a real context: 1t 1s not possible to msure that every node
of the network contains a mobile agent receiver written in
the same language.

Also, the new challenge is to consider not only a
local network but also wider network which meludes
information systems from several companies. Tt means
that each information system has its own constraints such
that software management, programming language,
commumnication port, income protocol, outcome protocol,
etc. On Fig. 1, three distinct computers are present; each
of them plays a server role in more complex software
architecture. If a traditional approach is adopted, the same
protocol has to be chosen for all agent migration, such
instance JINT in Cheiron project (Gorissen et al., 2006).
More often, the same language is imposed for all agent
host and mobile agent. It involves that all data exchange
are realized through the same data type; tlhus 1s the
context of GrassHopper developments (Baumer and
Magedanz, 1999).

Today, these constraints are unacceptable and
the component called AgentHostl can be written

C# programming language and receives a mobile agent,
initially developed in Java programming language. This
data exchange can be done only if the data are encoded
into a standard between both programming languages. It
is commonly admitted that XMI, is a well formed
language, especially for the object serialization. This
technical choice is the basis of web service call and the
SOAP language which can be used for calling any remote
object.

Another limit is the vehicle used by the mobile agent
for the migration. If the component called AgentHost2
receives a mobile agent on RMI protocol, this 1s because
this protocol is available as an income protocol for that
computer. But it is surprising that it obliges the mobile
agent to leave this agent host through the same protocol.
If http protocol 1s the only available protocol with the
computer called Computer3, then http has to be used
independently from the other protocol. This constraint
was one of the most limitative one m works referred
(Bemichi and Mourlin, 2006, Dumont ef af., 2007). Instead
of wing the same protocol everywhere, it is more
interesting to use the most powerful where it is possible.
This 15 why a protocol like JINI 1s not enough used in
mobile agent programming even if it contains a large set
of features. We adopted a peer-to-peer (P2P) protocols
that allow any networked device communicate and
This protocol, called
JXTA, can mter connect sensors, cell phones, PDAs,
laptops, workstations, servers and supercomputers. Also,
it insures a large domain of application (Arora et al., 2002).

collaborate mutually as peers.

TECHNICAL APPROACH AND
NETWORK DESCRIPTION

The TXTA protocols are programming language
independent, and multiple implementations, also known as
bindings, exist for different environments. Their common
use of the JXTA protocols means that they are all fully
interoperable.

This technology 1is designed to enable peers
provisioning P2P services to locate and communicate with
one another independent of network addressing and
physical protocols. It s also designed to be independent
of programming languages, network transport protocols,
and deployment platforms.

The JXTA provides a common set of open protocols
backed with open source reference implementations for
developing peer-to-peer applications. The IXTA
protocols standardize the manner in which peers: discover
each other, self-organize into peer groups, advertise and
discover network resources, communicate with each
other, moniter each other.

2155

J. Applied Sci., 10 (18): 2154-2160, 2010

Bdobile phane

Bluetocth
comre e

XML eerializgd -
Eger I-' e
Sl

e

T .

i

Servenirouler TCP P

COnpE A

Fig. 2. The TXTA network consists of a series of
interconnected nodes, or peers. Three kinds of
layers are used (JXTA core layer, service layer,
security layer)

The protocols can be implemented in the Tava
programming language, C/C++, NET, Ruby, and
numerous other languages. Furthermore, they can be
implemented on top of TCP/AIP, HTTP, Bluetooth, and
other network transports all the while maintaining global
mteroperability (Traversat et af., 2003).

The TXTA protocols enabled us to build and deploy
interoperable agent and agent host. Because the
protocols are independent of both programming language
and transport protocels, heterogeneous devices with
completely different software stacks can interoperate with
one another. Using TXTA technology, we can write
networked, interoperable applications that can: find other
agents on the network with dynamic discovery across
firewalls and NATs, share resources with any agents
across the network, find up to the available content at
agent hosts, create a community of agents that provide a
service, securely communicate with other peers on the
network.

Figure 2 shows a real description of material which
was schematically represented on Fig. 1. The mobile
phone sends a mobile agent. It contains a set of physical
measures via Bluetooth to a laptop where the data are
filtered. When all the data are collected by the laptop, it
packages all of them and sends them by the use of
another mobile agent through a local protocol.

AGENT DESCRIPTION

Each agent host provides a set of services and
resources which it makes available to other agent host.

Mobile agents are interactive programs and can include
authentication systems, data filter or almost any program
that can be networked.

A mobile agent's resources are normally static or non-
interactive content which the mobile agent either controls
owns or even merely has a copy of Resources can
include files, documents, media, advertisements, mndexes
but can also meclude real world resources such as
switches, sensors and printers.

Agents can organize agent
community or agency. An agent community, loosely
defined, 1s any set of agents that provision and leverage
a common set of services for a common purpose. There
are two key aspects to this definition: common services
and common purpose. Two agent communities might have
the same set of services, for example a chat application,
but different purposes, for example politics chat and
sports chat.

The JTXTA agent hosts use sockets and pipes
(Mekk and Fezza, 2009) to send messages to one another.
Sockets are reliable bi-directional connections used for
applications to communicate reliably. Pipes are an
asynchronous and umidirectional message transfer
mechanism used for service commumnication Messages
are simple XML documents or data whose envelope
contains routing, digest, and credential information. Pipes
are bound to specific endpomts, such as a TCP port and
associated IP address.

Four essential aspects of the TXTA architecture
distinguish it from other distributed network models like
JINI. First, the use of XML documents (advertisements)
to describe network resources. Second, there is an
abstraction of pipes to agents, and agents to endpoints,
without reliance upon a central naming/addressing
authority such as DNS. Third, a logical addressing id
built and finally a decentralized search infrastructure 1s
based on Distributed Hash Table (DHT) for resource
indexing.

themselves into

NETWORK ARCHITECTURE

The network is an Ad-Hoc and adaptive network
composed of comected agent hosts. Connections in the
network may be transient and, as a result, message
routing between agent hosts is non-deterministic. Agent
hosts may join or leave the network at any time; which
results in ever changing routing information.

The only common aspect that various JXTA
applications share is that they communicate using JXTA
protocols. The organization of the network is not
mandated by the JXTA framework, we developed four
kinds of agent hosts.

2156

J. Applied Sci., 10 (18): 2154-2160, 2010

Minimal agent host: A minimal agent host can send and
receive messages or serialized mobile agent, but does not
cache advertisements or route messages f or other
agent host. Agent hosts on devices with limited
resources (e.g., a PDA or cell phone) would likely be
minimal agent hosts.

Full-featured agent host: A full-featured agent host can
send and receive messages and will typically cache
advertisements. A simple agent host replies to discovery
requests with information found in its cached
advertisements, but it does not forward any discovery
requests. In any JXTA deployment most peers are likely
to be agent hosts.

Rendezvous agent host: A rendezvous agent host 1s an
infrastructure host, it aids other agent host with message
propagation, discovery of advertisements and routes, and
most importantly it maintains a topology map of other
infrastructure hosts, which then used for controlled
propagation, and maintenance of the distributed hash
table. BEach agent community mamtains its own set of
rendezvous agent hosts and may have as many
rendezvous agent hosts as needed Agent hosts send
search and discovery requests to their rendezvous agent
host which in turn may forward requests it cannot answer
to other known rendezvous agent host usmg the
topology mapped distributed hash table.

Relay agent host: A relay agent host s an infrastructure,
it aids non addressable (firewalled/NAT'd) hosts with
message relaying. An agent host may request an in
memory message box from a relay agent host to facilitate
message relaying whenever needed.

If we apply this design to our earlier example,
Fig. 3 15 a collaboration diagram where we observe le
locality of the two first computers. First, all agent host are
mstance of a class called FullFeatiredAgentHost. But
because the server 1s protected with a firewall and other
security tool, we have to adapt the mobile agent
exchange. Because the instance “agentHost2” wants to
set a synchronous exchange, an instance of
RendezVousAgentHost class has to check the emission
and the knowledge reception. Then an mstance of
RelayAgentHost has in charge to select the right protocol
to export mobile agent through the firewall to agenthost3
instance. The label on each message is used to express
the causality of events.

An agent host behind a firewall can send a message
directly to an agent host outside a firewall, but an agent
host outside the firewall canmot establish a direct
comection with an agent host behind the firewall. The
same is true for agent host which are behind a NAT
device.

AgentHostl: Fullfeatured AgentHost

]

AgentHost2; Fullfeatured AgentHost|
2
11

Rendezvousl: RendezvousAgentHost| 3 . [Relayl: RelayAgentHost

AgentHost3: Ful]featured.Agenﬂ-lostI

Fig. 3: UML collaboration diagram. Note that message
routing scenario across a firewall limits the data
exchange, especially for mobile agent navigation

In order for agent hosts to communicate with each
other across a firewall, three conditions exist. First, at least
one agent host in the agent community inside the firewall
must be aware of at least one agent host outside of the
firewall. Secondly, the agent host inside and the agent
host outside the firewall must be aware of each other and
must support a common transport (HT TP or TCP). Finally,
the firewall, at the very least, has to allow outbound HTTP
or TCP connections.

MOBILE AGENT ARCHITECTURE

We choice a class structure which respects a design
pattern which was presented in a previous work
(Bernichi and Mourlin, 2007). We updated that work by
the use of dynamic tasks which allow the mobile agent to
change 1its task during it migration over the network. The
Task interface has a code constraint which impose to
develop a perform method with a mapping parameter. This
one is essential for the evolution of the task. In owr
example, a mobile agent migrates through three nodes (or
agent host), but the task depends on the lkand of agent
host. Because the order of the agent host is not necessary
a constant of its travel, we chose a work flow where each
step i the travel of a mobile agent decides of the
following step. That approach seems us to be more
adaptative.

The classes called Receiver and Sender are threads
which allow a mobile agent to import or to export some
other mobile agent (Fig. 4).

2157

J. Applied Sci., 10 (18): 2154-2160, 2010

Mohbile agent

+move(input: XML stream): XML stream

<<interface>>
Task

+perform{mapping: actionmapping): string

Inventorymobileagent #goal Inventorytask
i 3 Receiver
#mil
#receiver
+impoert{ma: mobileagent)
Sender

+export(ma: mobileagent)

Fig. 4: UML class diagram. (Partial view of a class diagram): mobile agent design pattern is applied

APPLICATION DOMAIN: SOFTWARE INVENTORY

We can perform a manual inventory by checking the
hard dnive of each PC of our network and recording the
mformation in a report. One easy way 1s to start with the
first PC and to view the Add or Remove Programs screen
on each PC. This activity seems to be boring and mistakes
are easy to do. Also, we can use a software mventory tool
to perform an automatic mventory of your company’s PCS
and servers. This can be done by a mobile agent
community where each of them has a set of agent host
where 1t has to walk through.

The commumnity will scan PCS that are on a network
or to scan each non-networked PC (stand-alone) and then
generate software inventory reports. If a mobile agent 1s
on stand-alone PCS, then a mobile agent will be needed to
mstall the tool on each PC. When the commumty
inventoried all of your company’s PCS, combine the
information into one master report.

For our case study three Task class are developed
according to the platform.

¢ The first class is called software details for the cell
phone: It provides details of the commercial / non-
comimercial software used mn the network with details
like Vendor Name, Installation Date, Software
Version, etc.

* The second class is called software metering for the
laptop: It views the software usage details in each
computer like, rarely used, occasionally used, or,
frequently used

* The thirds class is called software
compliance for the server: It provides the compliant

license

{(including over-licensed software) and non-compliant
(under-licensed) software used in the network.

The tasks are published into a lookup service where
the mobile agent can look for them.

Since, IXTA defines a series of XMIL messages for
communication between peers, we use these kinds of
XML messages for the admimstration of the IXTA
network.

In our context, for each mobile agent class, we can
build an XML schema and then by the use of JAXB
framework (Toth and Valenta, 2006), the mstances of that
class are serialized mto XML stream and the link with their
XML schema is kept. Also, after the reception, it is
possible to check the contents of the XML stream before
the de-serialization. Also, if the stream respects its
schema, the receiver agent host binds a schema; it means
generating a set of Java classes that represents the
schema. Then, for each mobile agent class, three classes
are developed and used by the JAXB compiler. First, an
unmarshaller agent class governs the process of
deserializing XML data into Java content trees, optionally
validating the XML data as it is unmarshalled. Secondly,
a marshaller agent class governs the process of
serializing Java content trees back nto XML data.
Finally, a validator agent class: performs the validation on
an in-memory object graph. Of course, the programming
language depends on the chosen language for the agent
host.

Local activity: When a mobile agent executes its task
suite, the trace of its activity 1s saved in a local file. In our
example, the first node 1s a cell phone. It receives XML

2158

J. Applied Sci., 10 (18): 2154-2160, 2010

Local configuration found
Loadi ng found configuration
Configuration | oaded

Starting JXTA

JXTA Started

Peer nane : conputerl

Peer Group nane: NetPeer Group
Peer Groupl D urn:j xt a: uui d-

Connected :true
St oppi ng JXTA

12201252656162614E50472050354E4DE5445D2F685244AEBCBI8AA03662779603
Waiting for a rendezvous connection for 45 seconds (maximum

Fig. 5: A look at the log file nghlights the main steps

Sendi ng a Di scovery Message
Sendi ng a Di scovery Message

Peer nane = conputer2
Peer nane = conputer3
Sendi ng a Di scovery nessage

Marshal i ng | nvent or yAgent
Export conputer?2

Got a Discovery Response [2 el enents] from peer :

Got a Discovery Response [2 el enents] from peer :

conmputerl

conputerl

Fig. 6: Discovery of nodes

Starting JXTA

readi ng i n socket. adv

Connecting to the server

Readi ng in data

received 579 bytes

Sendi ng back 65536 * 1824 bytes
Conpleted in :28673 msec

Data Rate :44089 Kbit/sec
Connecting to the server

Readi ng in data

received 579 bytes

Sendi ng back 65536 * 1824 bytes
Conpleted in : 14743 nsec

Data Rate :63344 Kbit/sec

Val i dating I nventoryAgent stream
Marshal I'i ng | nventoryAgent class
I nport conputer3

Fig. 7: Reading XML streams

stream via Bluetooth, apply the associated unmarshaller
class and perform the control onto a list of applications.
All the results are saved in the private part of the agent;
also these data will be serialized by the end of its
activity (Fig. 5).

Agent export: When the task suite 1s ended, the mobile
agent notifies its agent host and that one exports the
mobile agent into its lookup service and then it will
continue its visit of the network. To do that, the agent
host has to use the marshaller class related to the mobile
agent class. This XML stream 1s validated with the
associated XML schema. This is due to the changes of
the state of the mobile agent.

Then, this valid XML stream is sent to a lookup
service where the stream 1s transformed mto an object.

This first migration is quite simple because the JXTA
architecture contains only 2 peers (Fig. 6). The trace will
be complex with a relay.

Agent import: The agent host decides the reception of
mobile agent. Thus, it can precise that only one mobile
agent can be present, or more precisely the multiplicity per
class. Tt requests its lookup service to know if the mobile
agent is available. This request is about the name and the
signature of the operation of the mobile agent.

The agent host receives an XML stream and executes
reverse strategy. First, it uses the Validator class
associated to that class of agent. Then, if it 1s correct, it
calls the unmarshaller class to obtain an object (Fig. 7).

The lookup service has its own management strategy.
Also, when an agent host receives a XML stream, that
one is no longer available with that lookup service. Tt will
be available mnto another lookup service by the end of its
activity with that agent host.

DISCUSSION

When the roadmap 1s finished, the last agent host
receives mobile agent for data extraction and the creation
of the final report. Because three different tasks were done
on different agent hosts, the final result is an aggregation
of each result.

Because periodically this activity is realized, the
current collect is appended to the previous software
details and agent host stores them in a database. The
nventory scanming mterval 13 flexible and can be

2159

J. Applied Sci., 10 (18): 2154-2160, 2010

configured to meet the real-time needs. This enables
administrators to get up-to-date inventory information at
any given time without any manual mntervention.

If information has to be added for the next inventory,
new tasks have to de created and added to the task suite
for an agent host.

For instance, when new software 1s detected i agent
host, an event 1s generated and its trace 1s saved. Agan,
when a non compliance (under-licensed) of software
licensing policy, i.e., the license is inadequate and has to
purchase more licenses to be compliant, another event is
generated mto the private part of the mobile agent.

When prohibited software is detected in agent host,
this allows the administrator isolate this node from the
others.

This allows us that our toolkit of mobile agents 1s
able to cover more devices and several kinds of protocols,
whereas this is the most limitative constraint in earlier
study (Bernichi and Mourlin, 2006, Dumont et al., 2007).

CONCLUSION

We detailed a short example about mventory. This
case study 1s available to everyone for a better
understanding of present study. We also added security
rules to agent host to authenticate mobile agent and to
provide specific permission. We do not how protection
domains are managed but this is the realm of agent host.

The next step is to combine the use of JXTA protocol
with a previous work with JINT mobile agent and to
observe the possible conflicts. We will try to prove that
the IXTA implementation 15 able to load more mobile
agent on an agent host. This load is a key concept in
numerical domain,

REFERENCES

Arora, A., C. Haywood and K.S. Pabla, 2002, TXTA for
I2ZME™, extending the reach of wirless with JXTA
technology. http://pegasus.javeriana.edu.co/~-mad/
IXTA4T2ME pdf.

Baumer, C. and T. Magedanz, 1999. The Grasshopper
Mobile Agent Platform Enabling Shortterm
Active Broadband Intelligent Network
Implementation. In: Lecture Notes in Computer
Science, Covaci, 3. (Ed.). Vol 1653, Springer,
Berlin, Heidelberg, ISBN: 13-978-3-540-66238-9,
pp: 109-116.

Bernichi, M. and F. Mowlin, 2006. Mobile agent

Proceedings of the
International Conference on Systems and Networks
Commumnications, Oct. 29-Nov. 03, IEEE Computer
Society Press, Tahiti, French Polynesia, pp: 6-6.

Bernichi, M. and F. Mourlin, 2007, Software management
based on mobile agents. Proceedings of the
2nd International Conference on Systems and
Networks Communications, August 2007, TEEE
Computer Society Press, Cap FEsterel, France,
pp: 64-64.

Dumont, C., F. Mourlin and A. Mobile, 2007. Computing
architecture for numerical simulation. Proceedings of
International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies,
Nov. 4-9, Papeete, French Polynesia, pp: 68-74.

Gorissen, D., P. Wendykier, D. Kuwzyniec and
V. Sunderam, 2006. Integrating heterogeneous
information services using JNDI. Proceeding of
the 15th HCW 2006 Heterogeneous Computing
Workshop, April 2006, Rhodes Island, Greece,
pp: 1-10.

Mekki, R. and R. Fezza, 2009. A sample chat application
based on JXTA. I. Applied Sci., 9: 3912-3916.

Milojicic, D., M. Breugst, 1. Busse, I. Campbell and
S. Covaci et al, 1998 Mobile agent system
interoperability facility. Proceedings of the
2nd Intemational Workshop on Mobile Agents,
LNCS. 1477, TWMA’98), Springer-Verlag, pp: 50-50.

Milojicie, D., M. Breugst, I. Busse, J. Campbell and
3. Covaci ef al., 1999. The omg mobile agent system
interoperability facility. Proceedings of the
Personal Technologies in ACM, December 1999,
Addison-Wesley, pp: 628-641.

Toth, D. and M. Valenta, 2006. Using object oriented
technologies for native XML database systems.
Departmetn of Computer Science and Engineering
FEE, CTU in Prague Czech Republic, Vol. 176.
http: //ftp.informatik. rwth-aachen.de/Publications/
CEUR-WS/Vol-176/pres3.pdf.

Traversat, B., M. Abdelaziz, M. Duigou, I.C. Hugly,
E. Pouyoul and B. Yeager, 2003. Project IXTA Virtual
Network. Sun Microsystems, UK.

communication scheme.

2160

	JAS.pdf
	Page 1

