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partially exposed to the general users. Therefore, security priva
problem with digital document and video is that undetectable modif

encryption standard achieving
hallenge of researchers when be used as
implementation.
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ADVANCE ENCRYPTION STADR
(AESY RLINDAE

ength in bits of the key. Bach additional bit in the key
effectively doubles the strength of the algonthm, when
defined as the time necessary for an attacker to stage a
brute force attack, 1.e., an exhaustive search of all possible
key combinations in order to find the right one
(Rabah, 2005b). This is the second version of the
Rijndael documentation. The main difference with
the first version 18 the correcton of a number of
errors and inconsistencies, the addition of a

Information Processing
November 200]. Tt was

afidard algorithm, as

{Rabah, 2006).
18 seldom performed
fer other encryption keys
d for digital signatures. AES

a new block Sfilhe same size. AES 1s symmetric since the
same key is used for encryption and the reverse
transformation, decryption (Rabah, 2005a). The only
secret necessary to keep for security 1s the key. AES may
be configured to use different key-lengths, the standard
defines 3 lengths and the resulting algorithms are named
AFS-128, AES-192 and AES-256, respectively to indicate

motivation for the mumber of rounds, the addition of
some figures in the section on differential and linear
cryptanalysis, the inclusion  of Brain Gladman’s
performance figures and the specification of Rimndael
extensions supporting block and key lengths of 160 and
224 bits (Abomhara et al., 2010).

MATHEMATICAL PRELIMINARIES

Several operations in Rindael are defined at byte
level, with bytes representing elements n the finite field
GF (2%). Other operations are defined in terms of 4-byte
words. In this section mtroduced the basic mathematical
concepts (Alanazi ef af., 2010).
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The Field GF (2%): The elements of a finite field [LiNi&6]
can be represented in several different ways. For any
prime power there i1s a single fimite field, hence all
representations of GF (2°) are iscmorphic. Despite this
equivalence, the representation has an impact on the
implementation complexity. For the classical polynomial
had chosen representation. A byte b, consisting of bits b,
b; bs; b, b; b, b, by, 1s considered as a polynomial with
coefficientin {0, 1}, b, x"+ b, x* +byx* + b, x*+ b, x’+ b, ¥*
+b, xt+ byx .Example; the byte with hexadecimal value *57°
(binary 01010111) corresponds with pelynomial[x® + x* +
x* +x+1] (Naji et al.,, 2009a).

Addition: In the polynomial representation, the sum of
two elements 1s the polynomial with coefficients that are
given by the sum modulo 2 (1e, 1+1 = 0) of the
coefficients of the two terms. Example; *57° + 83" = ‘D4,
or with the polynomial notation; in binary notation had;
01010111 + 10000011 = 11010100. Clearly, the addition
corresponds with the simple bitwise EXOR (denoted by®)
at the byte level. All necessary conditions are fulfilled to
have an Abelian group; internal, associative, neutral
element (00), inverse element (every element 15 its own
additive mverse) and commutative. As every element 134
own additive inverse, subtraction and additigm is the s
(Naji et al., 2009b).

Multiplication: In the polynomial
multiplication in GF (2) corresponds with

polynomials’a (x), ¢(x) such that:
bix) alx) + mix) e(x)=1 ()

Hence, a(x). B@modm(x)=1 or

b~'{x) = a(x) mod m(x) (2)

Moreover, it holds that a(x). b(x) + c(x) = a(x). b(x) +
a(x) + c(x). Tt follows that the set of 256 possible byte
values, with the EXOR as addition and the multiplication
defined as above has the structure of the finite field GF(2%)
(Alaa et al., 2009).

Multiplication by x: If there is multiply b{(x) by the
polynomial x, then; b,x*+ b, x’ + b, x* + b;x* + b,x’ + b, x*
+ by x, x. b(x) is obtained by reducing the above result
modulo m(x). If b7 = 0, this reduction is the identity
operation, If b7 = 1, m(x) must be subtracted (ie.,
EXORed). Tt follows that multiplication bax (hexadecimal
02) can be implemented at byte level as WR{t shift and a

operation is denoted by b = x time
hardware, xtime takes only 4 EXOR:
higher powers of x can multiplica
application of xtime. By addigg i

ds with a polynomial of degree
ed by simply adding the
e addition in GF (2% is
ddition of two vectors is a
. Multiplication is  more
that has two polynomials over GF

3

plication by x: If multiply b(x) by the polynomial x,

byx'+b,x*+b x¥+ by x (4

x @ b(x) is obtained by reducing the above result modulo
1 +x*. This gives:

b,x'+b, x*+b,x + b, (5)

The multiplication by x is equivalent to multiplication
by a matrix as above with all:

a;= ‘00" except a, ="01". Let ¢(x) =x @ b(x). Then:

[e]

5] [00 00 00 01][b,
¢ | |01 00 00 00 b,
o1 (00 01 00 00| b,
¢, | |00 00 01 00| b,

(2]

Hence, multiplication by x, or powers of x,
corresponds to a cyclic shift of the bytes inside the vector
(Zaidan et al., 2009a, b).

Design rationale: The three criteria taken into account in
the design of Rijndael are the following:
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+  Resistance against all known attacks

* Speed and code compactness on a wide range of
platforms

¢ Design simplicity

In most ciphers, the round transformation has the
Feistel structure. In this structure typically part of the bits
of the intermediates state are simply transposed
unchanged to another position. The round transformation
of Rijndael does not have the Feistel structure. Instead,
the round transformation i1s composed of three distinct
invertible umform transformations, called layers. By
uniform, means that every bit of the state is treated in a
similar way. The specific choices for the different layers
are for a large part based on the application of the Wide
Trail Strategy, a design method to provide resistance
against linear and differential cryptanalysis. In the Wide
Trial Strategy, every layer has its own function:

*  The linear mixing layer: Guarantees high diffusion
over multiple rounds

¢ The non-linear layer: Parallel application of S-boxes
that have optimum worst-case nonlinearity properties

¢ Thekey addition layer: A simple EXOR of the Ro
Key to the intermediate state

Before the first round, a key addition layer j
The motivation for this initial key additic
following. Any layer after the last key 4@t

attacks) can be simply peeled off
the key and therefore does not con

the linear mixing
the mixg gT 1

educe the security of
similar to the absence of
fon in the " last round of the DES

length and the key length can be independently specific
to 128, 192 or 256 bits (Zaidan et al., 2009a).

THE STATE, THE CIPHER KEY AND THE
NUMBER OF ROUNDS

The different transformations operate on the
intermediate result, called the state. The state can be
pictured as a rectangular array of bytes. This array has

By, | 8 [ 8o | 8oy | o | 20 Ko ooy [ Koo | Koo
8, |8 | & [ B, e f 8y L LW L]
B |85, [ 8 | 8y | 800 | 20 Kol ks [ Kesa | K
8y, |8 [ B | 8s | 200 | 20 | Kao K | s by
Fig. 1. Example of state (with Nb = 6) and cy ey (with
Nk = 4) layout
four rows, the number of columns 1s ted by
is equal to the block length divide Cip ey
is similarly pictured as are TOWS.

The number of columns o
Nk and is equal to
representations are
3 #®dimensional array
re each vector consists of the
i rectangular  array
nce have lengths of 4, 6 or
the ranges 0.3, 0.5, 0.7. 4-

[¢]

to specify the four individual bytes
es vector or word the notation (a, b, ¢, d) will
, ¢ and d are the bytes at positions 0, 1, 2
agpectively within the column, vector or word
gconsidered (Zaidan et al., 2010a).

he input and output used by Rijndael at its external
tface are considered to be one-dimensional arrays of
8-bit bytes numbered upwards from 0O to the 4*Nb-1.
These blocks hence have lengths of 16, 24 or 3 bytes and
array indices i the ranges 0..15, 0..23 or 0..31. The Cipher
Key is considered to be a one- dimensional arrays of 8-bit
bytes numbered upwards from O to the 4*Nk-1. These
blocks hence have lengths of 16, 24 or 32 bytes and array
indices in the ranges 0..15, 0..23 or 0..31.The cipher input
bytes (the “plaintext” if the mode of use is ECB
encryption) are mapped onto the state bytes. 1 the order
yps 8105 B0 Bags Agys Apys By Ay, 8y and the bytes of
the cipher key are mapped onto the array in the order kg,
kio koo ks ko ks ke, kel ke, o At the end of the
cipher operation, the cipher output is extracted from
the state by taking the state bytes in the same order.
Hence if the one-dimensional index of a byte within a
block is n and the two dimensional index is (i, j). Had:
i=nmod 4 j=[n/4];n=T+ 4% j. Moreover, the index i is
also the byte number within a 4-byte vector or word and
j is index for the vector or word within the enclosing
block. The number of rounds is denoted by Nr and
depends on the value Nb and Nk. It is given in table one
(Zaidan et al., 2009b).

Key schedule: The Round Keys are derived from the
Cipher Key by means of the key schedule. This consists

2163



J. Applied Sci., 10 (18): 2161-2167, 2010

Table 1: No. of rounds (Nr) as a function of the block and key length

Nr Nb=4 Nb=#6 Nb=8
Nk=4 10 12 14
Nk=6 12 12 14
Nk=8 14 14 14

Key expansion (byte key[4* k] word W[Nb *(rr+1)])

for (1=0; i<Nk; [++)
W] = (Key[4*i]. Key[4*i+1], Key[4"i+2, Key[4*i+3]])

for (i=Nk; i<Nb*(Nr+1); i++)

{
temp = w[i-1];
if (i%Nk==0)
Temp = SubByte(RotByte (temp) © Reon[i/Nk];
WIi] =W[i - Nk] " temp;
}
}

KeyExpansion (byte key[4* Nk] word W[Nb*(nr+1)])

for (i =0 i<Nk; T++)
Wi] = ckey[4*i], key[4*i+1], key[4*it+2, key[4*1+3]]);

for (i = Nk; i<Nb*(Nrr1); i++)

Fig. 2: Function of key Expansion for Nk<6

of two components: the key Expansion and the Round
Key Selection. The basic principle is the following
(Zaidan et al., 2010a).

The total number of round key bits is equal to
block length multiplied by the number of ro
plus 1 (e.g., for a block length of 128 bits ‘ 1010 ,
1408 Rounds Key bits are needed).

*  The cipher key 1s expanded imnto an ex
¢+  Round Keys are taken from this ¢
following way: the first Round
first Nb words, the second one
words and so on (Table 1

other words are

th smaller indices.

applying th&@Rijndael S-box to the byte at the
corresponding position in the input word. The function
Rot Byte (w) returns a word in which the bytes are a cyclic
permutation of those in its input such that the input word
(a, b, ¢, d) produces the output word (b, ¢, d, a). Tt can be
seen that the first Nk words are filled with the cipher key.
Every following word w[i] am equal to the EXOR of the
previous word W [i-1] and the word Nk position earlier W
[I-Nk]. For words m positions that are a multiple of Nk, a
transformation consists of a cyclic shift of the bytes in

{
temp = w[i-1];
if (i % Nk == 0)
Temp = SubByte(RotByte (temp)
elseif (i%oNk==41)
Temp = SubByte (tem);
WIi] =W[i - Nk] ~ termnp;
}
}
Fig. 3: Function of exp forN
w,,ﬂw, w, [w, | w, w, | wdw, [w, (W, [w,[w,|w,| ...
Round key 1
K xpansion and Round Key Selection for

=6and Nk =4

rd (Rot Byte), followed by the application of a table
lookup to all four bytes of the word (SubByte). For Nk<6,
has (Zaidan et al., 2009a). Figure 3 shows the key
expansion function for Nk<6.

The difference with the scheme for Nk = 1s that for 1-4
a multiple of Nk, SubByte is applied to W[i-1] prior to the
EXOR. The round constants are independent of Nk and
defined by:

Reon[i] = (RC[i], <00, <00°, “00°)

With RC [T] representing an element in GF (2*) with a value
of x*V 5o that:

RC[1]=1(le.01)
RC[i] =x (ie., 02) «(RCfi-1) =x 7

Round key selection: Round key T is given by the round
key buffer words W[Nb * 1] to W[Nb * (:+1)]. This 1s
illustrated in Figure 4. The Key schedule can be
implemented without explicit use of the array W[Nb *
(Nr + 1)]. For implementations where RAM is scare, the
Round Keys can be computed on-the-fly using a buffer
of Nk words with almost no computational overhead
(Zaidan et al., 2010b). Figure 4 shows the key expansion
and the round key selection as fellow.
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THE CTIPHER
The cipher Rijndael consists of:

An initial round key addition
Nr-1 rounds
A final round

In Fig. 5, the pseudo C code for cipher Rijndael
function has illustrated.

The key expansion can be done on beforehand and
Rijndael can be specified in terms of the expanded key
(Zaidan et al, 2010b). Figuwe 6 shows the code of
expanded key function.

The Expanded Key shall always be derived from the
Cipher Key and never be specified directly. There 1s
however no restrictions on the selection of the Cipher
Key itself.

Hardware suitability: The cipher 1s suited to be
implemented in dedicated. There are several trade-offs
between area and speed possible. Because the
umnplementation m  software on  general-purpose
processors 1s already very fast, the need for hardwg
implementations will very probably be Lamited to
specific cases (Zaidan et al., 2009a):

Extremely high speed chip with no agg
the T tables can be hardwired and tls
conducted in parallel

Compact co-processor on a s

Rijndael (State, ExpandedKey)

{

AddroundKey (State, ExpandedKey);

For (1=1; I<Nr; i++) Round (State, Expandedkey-+Nb*1);
Final Round (8tate, ExpandedKey+Nb*Nr);

)

Fig. 6: Function of expanded key

(18): 2161-2167, 2010
THE INVERSE CIPHER

In the table-lookup implementation it 1s essential that
the only non-linear step (ByteSub) 1s the first
transformation in a round and that the rows are shifted
before MixColumn is applied. In the invglige of round, the

of Rijndael is such that
of its inverse 15 equ:

his is sHOWn in the following
L, 2010). Figure 7 and 8 shows

s ub iz indifferent. ShiftRow simply transposes
rtes and has no effect on the byte values. ByteSub
s on individual bytes, independent of their position.
Second, the sequence:

AddRoundKey (state, RoundKey?),
InvMixColumn (State);

Can be replaced by:
InvMixColumn (State);
AddRoundKey (State, InvRoundKey);

InvRound (State, RoundKey)

{

AddroundKey (State, RoundKey ),
TrvMixColum (State);
InvShiftRow (State);

TrvByteSub (State);

Fig. 7: The mverse of a round

InvFinalRound (State, RoundKey)
{

AddroundKey (State, RoundKey ),
TrvShiftR ow (State);

InvByteSub (State);

Fig. 8 The mverse of the final roumd
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With obtained by  applying
InvMixColumn to the corresponding RoundKey. This is

invRoundKey

based on the fact that for a hnear transformation A, has
Axtk)=AX)+ A (k)

The equivalent inverse cipher structure: Using the
properties described above, the inverse of the two-round
Riyjndael variant can be transformed into:

AddRoundKey (State, Expanded Key+2*Nb);

InvBytesSub (State),

InvShifiRow (State);

InvMixcolumn (State);

AddRoundKey (State, T-ExpandedKey+Nb);

TnvBytesSub (State);

TnvShiftRow (State);

InvMixcolumn (State);

AddRoundKey (State, I-ExpandedKey+Nb),

It can be seen that has agam an mitial Round Key
addition, a round and a final round. The Round and the
final round have the same structure as those of the cipher
itself. This can be generalized to any number of roun
Defined a round and the final round of the inverse ci
as follows:

I_Round (State, I RoundKey)

{

TnvByteSub (State);

TnvShiftRow (State);
TnvMixColumn (State);
AddroundKey (State, T RoundKey);
}

T_FinalRound (State, T_Roundk

{
TnvBytrSub

ndacl Cipher can now be

(CipherKey, W
AddRoundKey

(State, T FapandedKey+ Wb*Nr);

For (i=Nr-1; i<0; i-)

Round (State, T FxpandedKey+ Nb*i);
FinalRound (State, T FxpandedKey);

}

The key expansion for the Inverse Cipher is defined
as follows:

Apply the key Expansion.

Apply InvMixColumn to all Rounds Keys except the first
and the last one.

In pseudo C code, this gives:

I_KeyExpansion(CipherKey,I ExpandedKey)

{

KeyExpansion(CipherKey,I ExpandedKey);

For(i=1 ; i Nr; i++)

TrvMixCohimngl FxpandedKey + Wb*i);

}

ance of the inverse cipher is
1 ant than that of the

CONCLUSION

this study an overview for theoretical and
ematical Perspectives for Advance Encryption
tandard (AES)/Riyndael, which are content the several
operations in rijndael are defined at byte level, with bytes
representing elements in the finite field GF, Polynomials
with Coefficients, Design Rationale, The State of the
Cipher Key and The Number of Rounds which is include
(key schedule, Key Expansion, Round Key Selection),
cipher phase and The Inverse Cipher. This study has
been provided flexibility and simplify handle with this
algorithm.
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