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Abstract: This review study gives a widespread overview of the solutions of several engineering problems
based on some multidimensional partial differential equations like parabolic, hyperbolic, elliptic, AGE, IADE
equations. Different analytical methods of treatment as well as those of numerical methods are presented in this
paper. Finally, some evaluation phases of several experiments in order to solve some current engineering

problems and recommendations are demonstrated.

Key words: Partial differential equations, numerical analysis, parallel algorithms, engineering problems

INTRODUCTION

Many researchers have taken interests in developing
finite difference methods that could approximate the
solution of a one dimensional parabolic diffusion
equation. Classical methods, however, have their own
restrictions. Explicit methods are simple but generally
suffer the disadvantage of conditional stability and low
accuracy. Implicit methods, on the other hand, may
possess unconditional stability and higher accuracy.
Their features, however, are less amenable to parallelism
(Smith, 1978).

Over the years, many highly refined iterative and
alternating schemes have been developed, m which many
of them not only exlubit superior properties m terms of
stability, accuracy and rate of convergence, but they are
also suitable for parallel computing. One of the schemes
which have been cited often is the Alternating Group
Explicit (AGE) method introduced by Evans and Salumi
(1989¢). Tt employs the fractional splitting strategy applied
alternately at intermediate time step on tridiagonal
systems of the difference scheme. The approach, which 1s
second-order accurate in both time and space, has been
found to be stable, convergent and parallelizable.

Based on the AGE method, many new alternating
schemes have been developed. Baolina and Wenzhib
(1994) presented the Alternating Segment Crank-Nicolson
method for the diffusion equation. The method is
unconditionally stable and has the obvious property of
parallelism. Zhu and Zhao (2007) designed a set of New
Alternating Segment Explicit-Implicit (NASED) schemes
that alternate between explicit and implicit segments at
any two consecutive time levels. The schemes are proven
to be stable under reasonable conditions, have truncation
errors of third order in space and capable of parallel

computation. Zhen et al. (1994) developed a class of
Hopscotch algorithms for the finite difference solution of
the diffusion equation under consideration. The algorithm
is convergent and efficient with regards to parallel
computing. Feng (2009) presented a class of alternating
group explicit iterative parallel method (AGI) by using
an unconditionally stable symmetry sx-pomt implicit
scheme of high accuracy. Zhu et al. (2004) designed an
explicit implicit scheme for parabolic equations with
discontimious coefficients. The method is mntrinsically
parallel. Baolina (1991) developed a class of alternating
schemes m three time levels, which are the
unconditionally stable AGE and the ASE-T (alternating
segment explicit-implicit) methods. In the design of
these two methods, Saul’'yev asymmetric schemes
(Saul’yev, 1964) have been used. Tavakoli and Davami
(2006) applied a method which 1s based on domain
decomposition concept and used the asymmetric Saul’yev
schemes for mtemal nodes of each sub-domain and
alternating group explicit method for sub-domain’s
interfacial nodes. The approach is fully explicit,
unconditionally stable and has merit in terms of accuracy.

Sahimi et al (1993, 2001) proposed an alternative to
the AGE method, which is the Tterative Alternating
Decomposition Explicit (IADE) method. To approximate
the solution of the diffusion equation, the IADE scheme
employs the fractional splitting of either the Mitchell
Fairweather (IADE-MF) variant (Mitchell and Fairweather,
1964) or the D’ Yakonov (TADE-DY) variant (DD’ Yakonov,
1963) for a fixed acceleration parameter r>0 . Each variant
15 second-order accurate m time and fourth-order aceurate
in space. By analyzing the results of some numerical
experiments based on the chosen variant for the TADE
method, Sahimi ef af. (2001) concluded that the two-stage
IADE procedure has merit as an alternative iterative
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method with respect to stability, accuracy and rate of
convergence. As the method 15 fully explicit, its feature
can be fully utilized for parallelization.

The fimte difference method 1s a well-established and
conceptually simple method that requires a point-wise
approximation to the govermng equations. While the
finite volume method is a further refined version of the
finite differences method and has become popular in
computational fluid dynamics. The vertex-centered finite
volume technique is very similar to the linear finite
element method (Lewis ef al., 2004). The basis concept of
the finite element method is that any solution domain can
be divided into several simple subdomains known as finite
elements. Thus, the approximate solution of the problem
in the complete domain can be determined by assuming a
simple form of solution m each fimte element (Rao, 2002,
Gutpa and Meek, 2003).

In Alias et al. (2009a), they focused on the
application of this method mn solving the 1mtial stages of
crack propagation problem which means the deformation
due to the stress and strain of a material. Propagation
problems refer to time-dependent, transient and unsteady-
state phenomenon. The method was applied to evaluate
the stress intensity factors for plates of arbitrary shape
using conventional finite elements (Cheung et al., 1996).
Fracture mechanics (Bui, 2006) was used to mvestigate
the failure of brittle materials, which was to study material
behavior and design agaimnst brittle failure and fatigue.
The engineering study of fracture mechamcs (Stanley,
1977) does not emphasize how a crack 1s imtiated; the goal
15 to develop methods of predicing how a crack
propagates.

In Alias et al. (2010a), the researchers discussed the
solution of two dimensional Partial Differential Equations
(PDEs) using some parallel numerical methods namely
Gauss Seidel and Red Black Gauss Seidel The
selected two-dimensional PDEs in order to solve the
problem were parabolic and elliptic type. Parallel Virtual
Machine (PVM) 1s used mn support of the commumication
among all microprocessors of Parallel Computing System.

It 1s abundantly clear that many important scientific
problems are governed by partial differential equations
according to Alias er al. (2009a). The difficulty in
obtaining exact solution arises from the governing
partial differential equations and the complexities of
the geometrical configuration of physical problems
(Alias et al, 2003a, b, 2008a, b). For example, imagine a
metal rod insulated along its length with no heat can
escape for its surface. If the temperature along the rod is
not constant, then heat conduction takes place. In
such situations, the numerical method 1s used to obtain

the numerical solutions (Smith, 1965). These partial
differential equations may have boundary value problems
as well as 1nitial value problems. In general, the transient
particle diffusion or heat conduction 1s Partial Differential
Equations (PDE) of the parabolic type and Laplace’s
equation for temperature, diffusion, electrostatic
conduction 1s elliptic and wave equation or transport
equation is the PDE of hyperbolic type (Alias et al., 2008a,
2009b; Evans, 1995). The parabolic partial differential
equations are normally used in such fields like molecular
diffusion, heat transfer, nuclear reactor analysis and fluid
flow (Nakamura, 1993; Smith, 1985).

In Alias et al. (2009b), New Iterative Alternating
Group Explicit NAGE) was introduced which 1s a powerful
parallel numerical algorithm for multidimensional
temperature prediction. The discretization was based on
finite difference method of Partial Differential Equation
(PDE) with parabolic type. The critical 3-Dimensional
temperature large scale of
computational complexity. This computational challenge

visualization involves
inspired the authors to utilize the power of advanced high
performance computing resources.

Incomplete blow-up is a condition under the
quasilinear heat equation (Alias et al., 2010b). The Porous
Medium Equation (PME) with power source are admitting
incomplete blow-up. It 1s used as one of the filtration
process in the mdustty. Authors proposed a new
variance of the Alternating Group Explicit Scheme (AGE)
algorithms to solve mcomplete blow-up problem through
High Performance Computing (HPC).

Mizoguchi (2005) presented multiple blow-ups to
solve a semilinear heat equation problem. Natalini et al.
(1996) presented an mcomplete blowup of entropy
solutions to first-order quasilinear hyperbolic balance
laws. They specified a general procedure to continue
solutions beyond the blowup time, which made use of
monotonicity methods. The continuations thus obtained
were possibly unbounded and satisfied suitable
generalized entropy and Rankme-Hugoniot conditions.
Then they proved the umqueness of continuations
satisfying such conditions as well. Armmeta and Bernal
(2004) showed that blow-up occurred only on the
boundary while they analyzed the existence of solutions
that blow-up in finite time for a reaction-diffusion
equation. Mizoguchi and Vazquez (2007) demonstrated
multiple blow-ups for semilinear heat equations at
different places and different times and also solutions for
a semilinear heat equations 1T described by Mizoguchi
(2006). Nonlinear Volterra integral equations of the second
kind with selutions that blow-up or quench had analyzed
by Roberts (2007).
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SOME PROBLEM DEFINITIONS IN BRIEF

Here, some engineering and bioscience problems are
explained briefly which were focused to solve through
partial differential equations m many studies by the
researchers:

Thermal control process on PCB: In the context of
thermal control system design, there are two major design
approaches, that is, the system is either passive or active
controlled. When there is a need to deal with more
sophisticated system which requires high performance
temperature controlling, the active thermal control system
design 1s better suited. In electronic eng meering, complex
semiconductor devices are subjected to a number of tests
during the manufacturing process to determine device
functionality and to mnsure future reliability. The first test
1s usually at the wafer level. During this test the individual
die on the wafer are probed to determine die integrity and
die parametric properties. This quick test allows rejection
of bad die and sorting of die for further testing (Gardell,
1995). Then, burn-in test will follow after the wafer level.
The test thermally and electrically stresses the parts to
accelerate early life, or infant mortality, failures. The
device junction temperatures are typically held between
100 to 140°C to accelerate stress. Because the parts are
also subjected to higher than normal voltages, the power
dissipation levels can be very high, significantly higher
than in normal operation (Tustanmiwsky)] and Babcock,
2004). So, Ghaffar et al. (2008) just focused on this part,
where the problem under consideration 1s peak junction
temperature of semiconductor devices estimation.

Brain tumor growth: A brain tumor s a growth of
abnormal cells or normal cells in an inappropriate place in
the brain. A primary brain tumor is one that starts in the
brain, rather than cancer in another part of the body that
has spread to the bramn. Primary tumors can be grouped
mnto non-cancerous (bemgn) and cancerous (malignant).
Malignant brain tumors are commonly called brain cancer
and they are usually invasive and life-threatening. Brain
tumors also may be metastatic or secondary brain tumors.
These tumors are formed from cancer cells that begin
growing elsewhere in the body and travel to the
brain, usually through the bloodstream. The study of
(Alias ez al,, 2009b) was to visualize or capture the growth
of brain tumor in three-dimensional space and to develop
or identify the three-dimensional brain tumor growth. The
aim was to identify the discretization of the mathematical
models which will be converted to standard form and to
umplement the algorithm to perform the iterative methods

from the discretization of the mathematical model. Angelis
and Preziosi (2000) described the evolution of tumor
in vivo and related to the boundary problem.

Breast cancer growth: Breast cancer 1s the most general
disease among women, except for non-melanoma skin
cancers. Due to early detection and increased awareness,
resulting deaths have been decreasing recently. The
second leading reason of cancer death in women is breast
The possibility that breast cancer will be
responsible for a woman’s death is about 1 in 33. Early
detection is the key to successful treatment. Alternative
methods for tumor recognition have been researched to
couple with Thermal Simulation (Gonzalez, 2007),
Microwave Imaging system through Space Time
beamformer (Bond ef al., 2003; Gunnarsson, 2007 ) and 2D
Time Domam (FDTD). So, the
mathematical modeling could be advantage solutions in
terms of insights and predictions. The research of the
Alias et al. (2006b) focused on the study of elliptic
equations, particularly Helmholtz’s wave equation and

cancer.

Finite-Difference

hyperbolic equations to monitor or predict the cancer cell
growth through computational modeling.

Temperature behavior of rubber materials: Heat transfer
process occurs due to the polymer flow as convection.
The motion of fluid transfers an energy along its flow path
and thus convects heat during mould filling (Davis ef al.,
2003). To predict the temperature behavior on rubber
mvolving phase change processes, this
prediction solving by the mathematical simulation. A

material

mathematical model was presented for the prediction
of temperature profiles and heat transfer rates during
the blow moulding process (Edwards er al, 1981).
Darwis et al. (2009) focused on the research to study the
influence of operating conditions on cooling time. The
experimental attention to be focused on to using a chilled
mould and gas circulation to give enhanced cooling rates.
Analytical data obtained on a small laboratory at Lembaga
Getah Malaysia as an exact solution and limited to testing
on an mdustrial production line for the manufacturing of
large barrels have been confirmed the validity of
theoretical approach.

Food drying for preservation: It is very necessary to dry
the tropical fiuits to a certain level after harvest. Drying
processes are widely used in food production especially
fruits, but a scientific approach has not so widely been
applied, so rather empiric rules are often used to set up
industrial production, particularly in small-medium firms.
The main objective of food drying process 15 water
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removal up to particular moisture content in order to
prevent food from microbial spoilage and deterioration
reactions and to icrease the product shelf life
(Curcio, 2006). Drying is a process involving simultaneous
heat and mass transfer phenomena. Formulation of
adequate mathematical models to describe the transfer
phenomena during dehydration fruit 1s very important to
optimize the process-leading in improvement product
quality and reduction process cost. Simulation results and
information of drying kinetics of fruit material such as
time-temperature-moisture content distributions, as well
as theoretical approaches to moisture movement, 1s very
essential for the prevention of quality degradation and for
the achievement of fast and effective drying. Such
mformation will be very useful to optimize production
processes of tropical fruits dried. Hence, the authors’
contribution of the study (Alias et al, 2009) is
successful modified the mathematical simulation in
representing the actual process of dehydration n
commercial foodstuff industry in terms of heat and mass
transfer inside tropical fruits material.

PARTIAL DIFFERENTIAL EQUATIONS
TOWARD SOLUTIONS

Numerical methods/Parallel algorithms are utilized for
solving large sparse problems which are based on domain
decomposition methods. They are straight forward parallel
implementation with fine grain approaches and highly
convergent and accurate and also, well suited to
unplement on distributed, shared and hybrid memory
architecture. Numerical methods/Parallel algorithms can
able to solve grand challenge application for
multidimensional problem. Here, the most implemented
partial differential equations are elucidated which lead to
solve many engineering problems as those presented in
the previous section. In this review study, it can be seen
that multi-dimensional partial differential equation had
been considered for the application of numerical methods
1n several studies.

One- dimensional parabolic equation: Equation 1 shows
the one-dimensional parabolic equation.

au_&'u (1)

subject to mnitial condition,

Ux,0)=F(x), 0<x<l

and boundary condition

U{0,t)=gft), 0<t<T,
UQ,t) =h{t), 0<t=<T

The finite difference discretization of Eq. 1 results in

FU_ 1 2 .
P §[(1 -85, 1+ 08y,

(1-0)u; ;- 2u;; +u, )+ 0
- o

41, i-1,j4 2ui,j+1 + ui.+1,]+1)

+ O(AX)

Two-dimensional parabolic equation:

ar Fu &u
R
oy

Thinyt, (Xy.0eR x0,T) 2)

this 18 subject to the mitial condition,

U, v,0)=1(x,y), (x,v.t)cRx0

and U(x, v, t) subject to the boundary Q which is 6R with
condition

Uz y.t) = GeLy.1), (xy.0)edRx{0,T)

The region R 1s a rectangle defines by:

R={xy:0<x<L 0y <M}

The finite difference discretization of Eq. 2 results in,

&u  gu 1

: +?: (AX)2 [G(Si + Sif)uu,lwl +(1- 9)(53 + Si)ul,J,k]
1
= e [0y p + Firons T Ui e + Wi pp) +
U ) Q= O,y o+ T U )]
+ O{(A%)" + (AY))

Three-dimensional parabolic equation: Equation 3 shows
the three dimensional parabolic equation:

2 2 2
%:%+%+%+h(x,y,t) (3

which subject to the initial condition below

U{x,v,2,0) =F(x,v,z), (Xv.Z1)eR x0

Additionally, U(x, y, z, t) 1s subject to boundary £2
which is dR with boundary condition,

Ux, y,z,0) =G(x,v,z2.t), (X, v.Zt)e dR x(0,t)
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and the discretization of Eq. 3 is as follows:

U FU QU 1
t—t—=
&l ey e (ax)?

2 2 2 (p+H) _ 2 2 25 (p)
[0(3; +5, + Bz)m 1+1-0)63; + 8 + Sz)m]

1
_ (pH) (pHY (e () (pH)
= ) [E)(u“i_l‘in + 6um U+ THSR) RS KA

(p+1) (p+1) _ (p) (p) b
Fu et a e)(uu,,mk +Outy +ul,

] ] ] ]
UGk U e Tk T u:,_],k+1)

+O((Ax) + (AyF +(Az))

Formulation of IADE and AGE families

TADE methods: Six strategies of parallel algorithms are
immplemented to exploit the convergence of ITADE
(Alias et al., 2003a; Evans and Sahimi, 1989a, b). In the
domain decomposition strategy the IADE Michell-
Fairweather which is fully explicit is derived to produce
the approximation of grid-1 and not totally dependent on
the grid (i-1) and (i+1). In TADE Red Black and TADE SOR
strategies, the domain 1s decomposed mto two different
subdomams. The concept of multidomain 135 observed in
the TADE Multicoloring method. The decomposition of
domaimn split into several different groups of domain. On
the vector iteration strategy, parallel TADE is run in two
sections (Alias et al., 2003a; Hageman and Young, 1981).
This method converges if the inner convergence criterion
is achieved for each section.

The objectives of the parallel algorithms are to
minimize the communication cost and computational
complexity (Fig. la, b).

The sequential algorithm for TADE shown that the
approximation solution for grid v, 1s depend on u,; and the
approximation solution for w,.,; is depend on u,.,;. To
avold dependently situation, some parallel strategies is
developed to create the non-overlapping subdomains.

TADE-New: On the strategy of incomplete block LU
preconditioners on slightly non-overlappmg subdomains,
the domain 13 decomposed mto p processors with
incomplete subdomain (Alias ef af., 2003a). This strategy
implemented the mcomplete factorization with parameter
of algebraic boundary condition as follows,

»  Attime level lc+1/2
(k+%) (k+l)

1
(k)
(k) (k) (k)
AUH T 5 *1U1-1 —ViuUD — 88U + BW1-2U1-2 - BW1-1U1-1 g (4)
=-DDf_), ieQ

o Attime level lk+1

+L _
A d pus -7 d u® oy ddn® - ddu®y 0l e @ (5)

i+l i+l
ieQ

Alternating Group ExplicittAGE) method: Based on the
Douglas-Rachford formula (Evans and Sahimi, 1989a, b),
the AGE fractional scheme mvolves the splitting of matrix
A from system of linear equations Au = f (Alias ef af.,
2003a, b). A 1s spht into the sum of its constituent
symmetric and positive defimte matrices G, G,, G,, where,

G+G, =

(b)

Fig. 1: (a, b) IADE Algorithm to mimmize the communication cost and computational complexity
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A, A, 0
A, A, -
G+G, = 0 Y A
- 2
0 A Ay Crnem 1)

The AGE fractional scheme is based on four
intermediate levels, (k+1/4), (k+1/2), (k+3/4) and (k+1).
Using explicit (2x2) blocks for matrices (G,+3;) and
(G;+G,), we have a group of (2x2) block systems wlich
can be made explicit as follows:
R

Loa

4 L

Loa

Lo

a 4]

AGE BRIAN method: BRIAN method 1s based on the
AGE algorithm with Douglas- Rachford variant and linear
mterpolation (BRIAN) concepts using the fractional
strategy (Douglas et al., 2003; Evans and Salimi, 1988).
BRIAN algorithm (Alias ef af., 2003b) has been developed
as an alternative to the parallel and sequential algorithm
of DOUGLAS method (Evans and Satumi, 1989b). The
formula for BRIAN method for 2-dimensional problem
leads to five intermediate levels is as follows:

1
k)

k
(G + 1D, ¥ = (1= G, -G, -G uly +F
G I (k+%) - G ) (k-ﬁ%)
(G +1l )U(r) =Ll + Mg, (6)
3 2
(43 (43
5 €3] 5
(G +1Du,, © =Gu +1u,,
4, 3
(k43 (43
3 €3] 5
(G, +Mug, ” =G+,

and with linear interpolation, we obtain,

1 4
(k+=) (k+=)

5 _ 3l
Uy =20 7 gy

AGE DOUGLAS algorithms: DOUGLAS Algorithms is
based on the Douglas-Rachford formula for AGE
fractional scheme (Salimi and Muda, 1989) takes the form:

(k+

1
(G, +1Dug, ¥ = (-G, - 2G, - 26, — 26, ul® + 2f

1 1
@ e
? _aa® s
w =Gl + g, (7

3 1
(k+2) 1 (k+2
(Gy+1Du,y ¢ = Gyupl +rug,?

(G, +1Hu

3
e+
() _ ) 3
(G, + rI)u(,) =G U, T,

where, A is the sum of its constituent symmetric and
positive define matrices G,, G, G; and G,,

A=G +G,+G,+G,

Parabolic equation:

au &u &u au

E:al (x,y,t)§+a2(x,y,t)$+b1(x,y,t)&+ ®)
au

bz(X,Yi)%* c(x,y.t)

where, a<0, ¢z0 and b’-4ac = 0. The PDE is said to be
parabolic if det(Z) = 0. The heat conduction equation and
other diffusion equation are examples. The heat equation
15!

au  &u
T ol
a X

where, K 1s a constant. Initial-boundary conditions are
used to give.

ux ty=gx,t)forx 3 Q t=0
uix 0=(x)forx e,

where ux x = f{ux, uy, w, %, y) holds in Q.

Hyperbolic equation:

2 2 2 2
6_;1_ aa—]'21+2b du +ca—l21 +d@+e@+f§+gu:0 (9
o &x &xoy Oy a & oy

where, b*-4ac>0. The PDE is said to be hyperbolic if
det(7)<0. The wave equation is an example of a hyperbolic
partial differential equation. The wave equation 1s:

2. 2
Fu 13u_

x: Bt
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where, P is a constant. Tnitial-boundary conditions are
used to give:

ux v.O=gx v.0)forxed Qt>0
u(xy,0)=v,xy)inQ
ut(x,y, 0)=v (X, ¥)inQ

where, ux v = f (ux, ut, x, v) holds in (.

Elliptic equation:

du d'u ou_ a0
a(x,y) po +2b(x,v) axay+c(x,y) & = d(x,y,uax, 8y) (10)

where, b’~4ac > 0. The PDE is said to be ellipticif Z is a
positive defimite matrix with det(Z) = 0. Laplace’s equation
and Poisson’s equation are examples. The Laplace’s
o'u du

T

give the constraint u(x, y) ond€d, where, ux x +ux y =1
(¢, uy, u, X, y)

equation 1s: 0. Boundary conditions are used to

EVALUATION PHASES OF EXPERIMENTAL
SOLUTIONS

Partial differential equations occur from a variety of
physical and engmeering problems and assume a huge
diversity of forms. Normally these forms are very
complex, with nonlinearities, variable coefficients, high
dimensionality, coupled equations of mixed type and
uregular boundaries. Numerous constructive algorithms
have been developed for solving these problems;
nevertheless, the time and space complexities high and
the class of problems to which all applies are limited. It
has been seen in the previous sections that there exist
some necessary conditions such that partial differential
equations can be applied for solving those problems.
Below are some phases that were implemented in order to
evaluate the efficiency of those parallel experiments.

There are a master task and a number of worker tasks
in the PVM implementation of the modeling codes. Master
task is responsible to divide the model domain into sub
deomams and distribute them to worker tasks. Then, the
worker tasks perform time marching and communicate
after each time step. Time execution, speedup, efficiency,
effectiveness and temporal performance were analyzed
by looking at the performance of the parallel algorithm
(Islam and Ahas, 2010a, b).

Increasing number of processors significantly
reduces the ratio but all the methods that experimentally
performed, represent the ability n mamtaining the
condition where time for computation 1s always more than

time consumed for communication. This reflects the
beneficial ability of the blends of methods used with
parallel algorithm that had been developed (Sahimi ef af .,
1993; Foster, 1995). As more problems need to be solved,
each method results in higher time consumed for
computation rather than communication. The ratio
between computation and commumcation 13 known as
granularity. High granularity reflects that computational
cost dominating the overall execution time. However, too
high granularity will lead to loss parallelism characteristics
where the algorithm developed mvolved large size of data
passing between processors. Thus, best combination of
parallel algorithm and method being used will lead to
better parallel performance evaluation where there is
balance between computation and commurnication cost.

The following definitions are used to measure the
parallel strategies, speed up, efficiency, effectiveness and
temporal performance. Where T, 1s the execution time on
one processor, T, is the execution time on p processors
and the unit of L, is work done per micro second.

Speed-up ratio 8, =TT, (11
Efficiency E =8/ (12)
Effectiveness F,=8/C, (13)
Temporal performance L,=T,™ (14)

The execution time: Execution time 1s the amount of time
needed for a complete run of a computer program routine.
The time required for a computer to decode and perform
a compiled instruction.

The Speedup: The Amdahl’s law states that the speed of
a program is the time to execute the program while
speedup is defined as the time it takes to complete an
algorithm with one processor divided by the time it takes
to complete the same algorithm with N processors. The
formula of speedup for a parallel application 1s given:

Time (1)
Time(p)

Speedup(p) =

Where:
Time (1) = Execution time for a single processor and
Time (p) = Execution time using p parallel processors

The efficiency: The efficiency of a parallel program 1s a
measure of processor utilization. Efficiency 1s defined as
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the speed-up with N processors divided by the number of
processors N. An efficiency of 100% means that all of the
processors are being fully used all the time.

Efficiency = Speedup
P

Where:
p = No. of processors

The effectiveness: Effectiveness 1s used to calculate the
speedup and the efficiency. The effectiveness is:

Effectiveness = m
pTime(t)
Where:
P = No. of processors
Time(t) = Execution time using p parallel processors

The temporal performance: Temporal performance 1s a
parameter to measure the performance of a parallel

algorithm which 1s:

Temporal = #
Time(t)

Where:
Time (t) = Execution time using p parallel processors

Computation time and communication time ratio: Parallel
execution time, t,., 18 divided into two parts,
computational time, . and communication time, t ..
The t,,, is the time to compute the arithmetic operations
such as multiplication and addition operations in the
parallel algorithm. As all the processors doing the
operation at the same speed, calculation for the t_ ., 1s
depending upon for the size of the message. The cost of
communication comes from the two major phases in
sending a message: the start-up phase and the data
transmission phase (Becker ef al., 2003). The total time to
send K units of data for a given system can be written as:

tcnmm = tstaxtup + thata + tl[ﬂE (1 5)

where, t,.. 18 time needed to communicate a message of
K bytes, t,.., 1s sometimes referred as the network latency
time. T, 1s also referred to time to send a message with
no data. It includes tume to pack the message at source
and unpack the message at the destination and to start a
point-to-point communication.

The t,,,1s time to transmit units of information. Tt is
also the transmission time to send one bytes of data. The
toarnp A0 t,,, are assumed as constants and measured in
bits sec™. T,y, is the time for message latency and time to
wait for all the processors to complete the works. The
evaluation of these communication costs via sunple codes
that tume the send/recv messages.

The research focus on,

t,.. = Time for parallel execution
t:nmml = OL'tclata + Btstaﬁ:up

Where:
o and P dependents onm and L.

Here, t_,., 15 the Communication time 1 which 1s
obtained from the
communication time.

Commurication cost for parallel processing 1s,

subtraction of 1idle tume from

Lmtdata+ L(tstaWJp+tid19 (1 6)

Where:
m = Units of data that sending across processor
I. =No. of step overall the execution

Granularity analysis: Many metrics are used throughout
the performance evaluation of parallel programs
(Bahi et al, 2008, Cosnard and Trystan, 1995;
Kwiatkowski, 1999). Perhaps the simplest and most
intuitive metric of parallel performance is the parallel
runtime. Tt is the time from the moment when computation
starts to the moment when the last processor finishes its
execution. The parallel run time is composed as an
average of three different components: computation time,
commumnication time and idle time (Kwiatkowski, 2006).
The computation time (T_.,) is the time spent on
performing computation by all processors, commumnication
time (T.,,,) 18 the time spent on sending and receiving
messages by all processors, the idle time (T,4,) is when
processors stay idle. The problem with parallel runtime is
that it does not account for the resources used to achieve
the execution time. Specifically, if one were to indicate that
the parallel runtime of a program, which took 10s on a
serial processor, is 2s, we would have no way of knowing
whether the parallel program (and associated algorithm)
performs well or not. The second metric 1s scalability. The
property of a program to adapt automatically to a given
number of processors 1s called scalability (Douglas ef af.,
2003). Scalability 15 more sought after than efficiency (Le.,
gamm of computing time by parallelism) on any specific
architecture/topology. Another one is speedup. Speedup
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is the ratio of the running time on a single processor to
the parallel running time on p processors (Douglas et al.,
2003; Alias et al., 1998, 2009b). In other word, the ratio of
two program execution times, particularly when times are
from execution on 1 and p nodes of the same computer.

CONCLUSIONS

We have presented a lengthy study review for
parallel algorithms for solving multidimensional partial
differential problems in different fields of engineering and
physics. Some partial differential equations which lead to
solutions have been illustrated. Also, various mumerical
and analytical methods of solution have been
demonstrated briefly. And finally some phases that are
implemented for solving the problems are presented.

For this review, we have not been concerned greatly
with the outcomes found in those different researches in
which partial differential equations were used to compare
and analyze algorithms. The varied and composite
problems’ natures in partial differential equations create
this job mainly difficult and at this phase no commonly
adequate measures of analytic or efficient techniques
have been defined. This problem of methods and
measurements have addressed and established a diversity
of hopeful advances by numerous authors cited here.

We consider that significant appraisal of the
comparative effectiveness of a variety of methods can
only be prepared m the context of a universally
established meaning of efficiency. Besides, significant
analyses of classes of algorithms depend upon the
aptitude to 1llustrate these classes theoretically. Outcomes
from researches in which classes of algorithms are
represented by a small number of haphazardly chosen
members are of little value.
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