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Abstract: This study proposed to de-noise the IMU signal by effectively band-limiting the signal at the output
of each inertial measurement sensor prior to its mechanization and further processing by the Strapdown INS
(SDINS) algorithm. Wavelet Multi-Resolution Algorithm (WMRA) is utilized to improve the performance of the
inertial sensors by removing their short term noise. The aim of this study is to reveal how WMRA is utilized

to improve the performance of the mnertial measurement unit systems and investigate how wavelet analysis can

be used to analyse and de-noise output of the low-cost mertial sensors. The proposed multi-level
decomposition was applied to real accelerometer and gyroscopes data obtained from MEMS IMIUJ
(MotionPal IT). Different level of decomposition and thresholding filter was evaluated to obtain optimal results.
Analysis of the results demonstrate reducing the INS position and velocity error for the specific IMU.

Key words: Vehicular navigation, strapdown inertial navigation system, inertial measurement unit, wavelet
multi-resolution algorithm, global positioning system

INTRODUCTION

The Global Positioning System (GPS) has been at the
head of current navigation technologies. However, the
surveyors are still facing problems m places where the
GPS signal gets lost due to different factors such as
blockage by building, canopy and other natural and
non-natural obstructions. Many of the studies are being
carried out to address the issue of signal loss. Where
some high sensitivity receivers can detect the reflected
signals as well as direct signals but the accuracy degrades
significantly if multipath is stronger than the direct signals
(Syed et al., 2006). However, Inertial Navigation System
(INS) 15 one of the most popular mechanical navigation
systems that can provide a navigation solution in case of
GPS signal loss. Tt is worth to mention that the output
given by the mertial sensors 1s in terms of accelerations
and rotational velocity that need to be processed to get
position and velocity information.

Inertial Navigation Systems (INSs) has been around
since the mid of twentieth century and now gaimng
popularity due to technological advancements in
micro-machined sensors that reduce the size of IMU as

well as the associated cost. The good thing about IN'S 1s
its independent and jam proof navigation data, as
compared to GPS that is dependent on satellite signal;
however, INS accuracy degrades with respect to time
making 1t a major drawback. Most of the errors in the INS
are caused by sensor imperfections (nstrumental errors);
therefore, accuracy mostly depends on the type of
sensors available. However, the cost of the INS 1s directly
proportional to the accuracy, implying that high
performance accurate sensors are still very expensive and
limited to certain applications (Shaikh et al, 2003;
Miskam et al., 2009).

An IMU 15 a black box housing inertial sensors that
are mounted on three orthogonal axes. The combmation
of three accelerometers and three gyroscopes provide
linear accelerations and angular velocity, respectively
along three orthogonal axes. Both accelerometer and
gyroscope operate on the inertial principles (Newton's
Laws of Motion) that could be used to provide navigation
solution (Mostafa, 2001). The measurements from the
IMU are mathematically integrated to obtain position
information and orientation (rotation about an axis). By
tracking both the current linear accelerations and angular
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velocity it is possible to determine the position of the
body in fixed coordinate system (Mostafa, 2001,
Schmidt and Barbour, 2001). The advantage of INS 1s that
it could operate independently and provide reliable
navigation data, as compared to GPS that is dependent on
satellite signal. However, INS accuracy degrades with
respect to time due to mtegration drift Semsor
mnperfections coupled with instrumental emrors also
aggravate accuracy of the INS. The cost of high
performance accurate sensors is still high and beyond the
reach for certain civilian applications. Also, it 1s worth to
mention that Tactical and navigation grade sensors are
limited to commercial and military applications
(Shaikh ez al., 2003; Skaloud and Schwarz, 1999).

The first INS was built and based on mechanical
gyros with very complex and power consuming
architecture. Later on strapdown solutions have been
realized by using modern integrated electro-mechanical or
electro-optical sensors (Shaikh er al, 2003). These
strapdown systems are mostly based on the MEMS
(Micro Electro-Mechanical System) technology that is
relatively inexpensive and compact. These cost-effective
sensors, due to their short-term sustamability and
opposite characteristics, are widely used in inertial
navigation systems.

This study focuses on developing and implementing
the strapdown INS algorithm by effectively band-limit the
INS signal prior to its mechamzation and further
processing. The motivation behind this concept is
schematically depicted in Fig. 1. Where Fig. 1a shows the
main two types of errors in the mertial measurement unit
are long and short term errors (Skaloud and Schwarsz,
1999). Where multi-level decomposition is utilized to

(gyroscopes and accelerometers) by removing their short
term errors as shown m Fig. 1b. The separation of the high
and low frequency inertial sensor noise components can
be done by deionizing the inertial measurements before
using them as input to the SDINS algorithm as done in
this study. Tt must be mentioned that when using
multi-level of decomposition the short term error was
extensively reduced by wavelet deiomzing (optimal low
pass filtering) while the long term error still affect the TNS
performance for long time processing. In this study we
can remove the effect of the short term error of the stand
alone INS only, while the long term error can be removed
by aiding the INS with another navigation devices such
as GPS to eliminate or reduce the long-term error as shown
inFig. lc.

BACKGROUND ON INERTIAL
NAVIGATION SYSTEMS

Types of inertial navigation systems: Inertial navigation
can be classified mto three basic categories:

Geometric: In this type, the navigation information was
available in analog fashion directly from the gimbals
angles. Tt is necessary to physically instrument two
reference frames to provide this information and these two
frames are an mertially non-rotating frame and a local
navigation frame. In this kind of navigation system
minimal computation capacity is required. At least five
gimbals are necessary to provide the navigational
quantities of interest, called latitude, longitude and
vehicle roll, pitch and yaw (Lin, 1991).

Semi-analytic:  Semi-analytic

systems  physically

unprove the performance of the inertial sensors instrument only one reference frame, either an inertially
Amplitude Eliminated
optimal
Short-term Short-term low-pass
Noise filtering
L L
® Frequency ®) Frequency
Amplitude | .
i Reduced by i
f gpsNg | Eliminated
! integration 1} optimal
Noise Short-term Tow-pass
filtering
© Frequency

Fig. 1. A schematic plot of mertial noise m frequency domain: (a) before filtering, (b) after optumal low pass filtering only
and (c) low-pass filtering with esttimated INS/GPS error algorithm
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non-rotating frame or a local navigational frame. Three
gimbals are required to affect thus coordinate navigational
frame, but it is highly recommended to install four gimbals
because there 15 a case of singularity m the first
implementation for the computation of latitude and
longitude  being
(Brittng, 1971).

accomplished 1n a computer

Analytic: Which 15 also called a strapdown inertial
navigation system, which does not physically instrument
a reference frame but rather use the gyroscopes outputs
to calculate analytically the relative orientation between
the system’s imtial and present state (Lin, 1991).

It 1s important to make a distinction between the
primary types of inertial navigation systems: Gimbaled
and Strapdown.

In inertial-platform gimbal mechanization, the
gyroscopes mounted on a stable element measure angular
rates and ginbal-drive systems use the angular rate
information to null the angular motion sensed by the
gyroscopes. In this the gyroscopes and
accelerometers on the stable element are inertially

manner,

stabilized from the vehicle motion and the stable member
physically represents an inertial reference frame. By
double integrating the specific force taken from the
accelerometers with a correction for gravity, position
determination is possible (Bielas, 1994).

In strapdown inertial systems, sensors are mounted
directly (or perhaps with vibration isolators) on the
vehicle. Inertial sensors outputs now represent specific
force and angular rate with respect to mertial space
coordinatized in vehicle body axes. Therefore, to maintain
an inertial reference frame, a computer-generated
transformation matrix algorithm between body and inertial
frame must be used to process the rate gyroscope outputs
as the vehicle moves and its orientation changes. Then
the accelerometer information must be transformed from
the body frame to the inertial reference frame (Lin, 1991).

Errors in INS: Most of the error sources that distort the

navigation solution are sensor errors or random
disturbances. These are the residual errors exhibited by
the installed gyros following

calibration of the INS. The dommant error sources that

and accelerometers

affect the accuracy of the navigation solution obtained
from INS
norn-orthogonality and random noise as ilustrated n
Table 1 (Grejner-Brzezinska and Wang, 1998).

There are nine navigation errors caused by the

such as alignment, scale factor, biasing,

accelerometers and gyroscopes. These errors in the

Table 1: Sensor generated errors in the TNS (Grejner-Bizezinska and Wang,
1998)
Type of error
Alignment errors
Accelerometer bias

Description
Roll, pitch and heading errors
A constant offset in the accelerometer output

or offset that changes randomly after each turn-on
Accelerometer scale Results in an acceleration error prop ortional
factor error to sensed acceleration

Nonorthogonality of
gyros and accelerometers
Gyro drift or bias (due to
ternperature changes)
Gyro scale factor error

The axes of accelerometer and gyro
uncertainty and misalignment

A constant gyro output without

angular rate presence

Results in an angular rate error proportional
to the sensed angular rate

Random noise Random noise in measurerment

Table 2: MotionPakII parameters specifications (Salychev et ai., 2000)

Performance Rate Charnels Acceleration channels
Range +100 deg sec™! 5G

Bias <2 deg sec™! <12.5 mG
Alignment to base <1 <1

resolution <14 degh™ <10 G

accelerations and angular rates lead to steadily growing
errors in position, velocity and attitude information. These
navigation errors caused by the mathematical integration
operation in the TNS algorithm. The GPS navigation
system can be used to aid the INS and prevent these time
drift errors (Chiang et al, 2008). In addition to these
navigation errors the INS algorithm also suffers from
acceleration and angular rates sensor reading inaccuracies
caused by the earth gravity and rotation. These errors
must be handled carefully especially m strapdown system
rather than gimbaled mertial sensors (Britting, 1971).

Knowledge of the error sources enables the system
to cancel their effects as it navigates. In a strapdown
system, however, only few of the sensor errors can be
calibrated. Errors that cammot be calibrated will propagate
nto navigation errors when the system begins to
navigate. These systems also require lengthy alignment
time. If both of these necessities are not met, even
the most accurate INS can become worthless
(Noureldin ez al, 2004; El-Shiemy et al, 2004).
Figure 2 shows the effect of one-degree INS sensor
errors on the position of the moving body noise, ias,
scale factor, combmed and 1mtial condition accurnulated
ITOr.

A row IMU data collected from a low cost inertial
sensor (MotionPakll) was used in this paper for analysis
and de-noising the sensors outputs in order to improve
the accuracy of the position and velocity components.
Table 2 shows the specification of MotionPak IT used in
this study to provide real data for further mampulation
and de-noising for both the accelerometer and gyroscope
in terms of sensitivity range, bias, alighment and
resolution obtained.
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Fig. 2: Effect of one-degree INS sensor errors on the position of the moving body

WAVELET MULTI-RESOLUTION ANALYSIS

The concept of multi-resolution approximation of
functions provides a powerful framework to understand
wavelet decompositions. The basic idea 18 that of
successive approximation, together with that of added
details as one goes from one approximation to the next
finer one (Donoho and Johnstone, 1995). The main
advantage of wavelet analysis is that 1t allows the use of
long-time wavelet precise
low-frequency information is needed and shorter intervals

intervals where more
where high-frequency information 1s sought (Burrus et al.,
1998). Wavelet analysis 1s therefore capable of revealing
aspects of data that other signal analysis techniques miss,
such as trends, breakdown points and discontinuities in
higher derivatives and self-similarity (Burrus ef al., 1998).
Wavelets are also capable of compressing or de-noising
a signal without appreciable degradation of the original
signal. Tn general, the wavelet transformation of a
time-domain signal 1s defined m terms of the projections
of this signal into a family of functions that are all
normalized dilations and translations of a wavelet function

(Jaideva and Chan, 1999).

Discrete Wavelet Transform (DWT): Since dealing with
discrete-time inertial sensor signals, the (DWT) is
imnplemented 1instead of the Continuous Wavelet
Transform (CWT). The DWT of a discrete time sequence
x(n) is given as (Jaideva and Chan, 1999; Ahmed et al.,
2008; Burrus ef al., 1998):

C,, = {x(m), @, ()= 273 x()®,, (2n - k) (D

d,, ={x(m), ¥, ()} =273 x(m)¥, , (2'n—k) 2

where, @, is the scale function and W, is the wavelet
function and 2%% @, (2° n-k), 20, (2° n-k) are the
scaled and shifted versions of ®,, and 1, respectively,
based on the values of s (scalmg coefficient) and k
(shifting coefficient). The s and k coefficients acquire
integer values for different scaling and shifted versions of
D, (), P, (n) and C,, d,,, respectively.

The original signal x(n) can be generated from the
matching wavelet function using the following equation:

x(n) = ch,k‘bs,k(n) +22d5_k‘~1—'s_k(n) (3)

The wavelet function 1, 1s not limited to exponential
functions as in the case of Fourier Transform (FT) or
Short Time Fourter Transform (STFT). The only restriction
on W, 1s that it must be short and oscillatory (it must
have zero average and decay quickly at both ends). This
restriction ensures that the summation in the DWT
transform equation 1s fimte (Jaideva and Chan, 1999
Alnuaimy et al., 2009; Putra et al., 2010).

Since the low frequency fraction of the inertial
measurement reading contamn the majority of the inertial
sensor dynamics during the static alignment phase, these
inertial measurement readings can be de-noised using
wavelet multi-level of decomposition to separate the low
and high frequencies (Skaloud and Schwarz, 1999).
Wavelet multi-level of decomposition separates each of
the IMU reading (three for both the accelerometer and
gyroscopes) into two parts. The first part is called
approximation; this part 13 the output of low-pass filter of
wavelet multi-level of decomposition, which includes the
long-term noises, in addition to the earth gravity and
rotation rate frequency components. Both of these two
components exist together within very small frequency
band at low frequency. The wavelet multi-level of
decomposition are tnable to separate earth gravity and
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rotation rate from the TMU readings and thus it will
propegate mto the INS algorithm computation. The
second part which is called the details obtained from the
high pass filter of wavelet multi-level of decomposition
includes the undesirable high frequency noise
components of the SDINS and a lot of noise disturbances
such as velicle vibration.

Equations 1-3 are referred to as the analysis and
synthesis equations. The wavelet transform offers
advantages over its Fourier domain counterpart, where
the basis function offers only a fixed frequency
resolution and no localization in time (Burrus et al., 1998,
Chik et al., 2009).

Theoretically, wavelet decomposition process can be
continued for ever. Basically, the decomposition process
can continue until the mdividual coefficients consist of a
single frequency. On the other hand, an appropriate level
of decomposition 1s elected based on the nature of the
signal on a suitable criterion (Skaloud and Schwarz, 1999).
In this study the data rate of the inertial sensors of
MotionPak II 15 32 Hz Consequently, five levels of
decomposition will limit the frequency bandto 0.5 Hz. We
conclude that five Level of Decomposition (LOD) are
adequate to reduce the high frequency noise from the real
inertial sensor measurement.

The proposed IMU de-noising procedure consists
of (1) performing a wavelet analysis, using the analysis
equations, (2) applying a thresholding of the wavelet
coefficients and (3) recovering the de-noised signal using
the synthesis equation. It 1s obvious that the choice of
threshold in the second step above 1s crucial to the
quality of the de-noising process and should be mads
carefully in addition to the selection of the type of wavelet
function and its order.

Selection of the appropriate filter: The wavelet transform
has a flexible feature of using a variety of filters that differ
by their coefficients. After using all types of the wavelet
filters such as (Daubechies, Coiflet, Biorsplines, Symlets).
The deionizing result shows that Db3 wavelet filter 1s the
best filter type used to remove the high frequency noise
from the accelerometer and gyroscopes of the IMU wlich
reduce the mean square error.

Performance analysis of different thresholding
algorithm: Thresholding operations are applied on the
coefficients of the wavelet and wavelet packet transforms
and generally can be classified into Hard-thresholding
and Soft-thresholding as described by Burrus et al
(1998).

The choice of threshold is crucial to the quality of the
deionizing process and should be made carefully. In
thresholding process coefficients smaller than threshold
value (Thrv) are judged negligible, or noise other than
signal (Rizzi et al., 2009).

TIn this study six methods are used to select the value
of Thrv. the first method 15 based on estuimating the
standard deviation o, of the noise at each scale by
dividing the noise power for the noisy signal over the
standard deviation for the details coefficients as in
Thrv = 0%/0, (Ma et al., 2002; Li and Zhao, 2009), another
approach 1s used this relationship (Veterli ef al, 2000,
Li and Zhao, 2009).

2
Thrv = 1,7(2 o, InMp
2
Where:

o’ = Represents Neise Power for noisy signal
o, = Standard deviation for the detail coefficients
N = Sequence length

Third method 1s stein's unbiased risk estimate (SURE)
with MatLab code rigrsure, selection using fixed form
threshold with Matlab code sqtwolog, selection using
mixture of the last previous two selection rules with
MatLab code heursure and the last selection rule
use mimimax principle with MatlLab code mimmaxi
(Misite et al., 2002).

Hard and soft threshold functions are widely used in
practice, resulting in good effect. Hard thresholding
function can preserve the accelerometer and gyroscopes
output signals and characteristic but results in unsmooth
accelerometer and gyroscope de-noised signal. However,
soft threshold function can achieve smooth accelerometer
and gyroscopes signal.

In this study soft thresholding was used to remove
some of the noise of the details part of the signals with
keeping the original features of the signal and improve the
Signal to Noise Ratio (SNR). Where, Fig. 3 shows the
Root Mean Square Error (RMSE) after applying soft
thresholding using the six methods mentioned previously
for the IMU accelerometers and gyroscopes, the lowest
value for RMSE would have the highest value of SNR and
the corresponding method is optimized to select the
threshold value. Analysis shows that Steins Unbiased
Risk Estimation (SURE) method 1s the best selection
technique for the IMU output. An optimum selection rule
is important to choose the threshold value for the wavelet
analysis as it has a significant effect on position and
velocity components and enhance the de-noising
algorithm performance.
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Fig. 3: Performance comparison after using six threshold selection rules

PROPOSED IMU DEIONIZING FOR SDINS

A strapdown INS (SDINS) algorithm has been
implemented using Matlab for the wavelet multi-resolution
algorithm to de-noise the IMU outputs and provide
reliable navigation mformation. Wavelet deiomzing
analysis was conducted for kinematic inertial data over
2500 sec. Comparison has been made with relatively
accurate GPS information as shown in Fig. 4 to compare
the appropriate wavelet Level of Decomposition (LOD)
required for removing the high frequency noise and
disturbances from the IMU device.

Terrestrial strapdown system dynamic equation: The
differential equation of the relative quaternion between
body coordinate and geographic coordinate (Britting,
1971 )

u:%Q?n.u,LQb.u (4)

7 %=in

where, the angular velocity skew-symmetric matrix €,
and €, are given by:

F o —w, w, w,|
w 0 -w, w
o =| Vo v % (5)
W, Wy, 0 W
|-Wy Wy -Ww, 0 |
0 W, W, W
W 0 w w
Q; _ ¥ R P (6)
W, -—w, 0 w,
|~Wg —Wp -w, 0

and

W, (W]e + l)cosL
w, |= -L (M
Wy, —(WW +1)sinL

where, [L, 1, h]: are geodetic positions (latitude, longitude
and height). wg, Wy, Wy are the body angular velocities in
the body coordinate (roll, pitch and yaw), respectively.
Body fixed coordinate to navigation coordmate (C,")
can be described in terms of the quaternion parameters:

2 2 2 2
up +ul —ul —ul 2(uyu; +uguy)

2(uju, —ugu,) (8)

2 2 2 2
Uy —u; —u, +u,

2(u,u, —uyu;)
Cr=| 2(uuy+uuy)  ui-ui+ui-ul
20wy —upu;)  2{ugu, +uguy)

The differential equations of the vehicle position in
terms of latitude, longitude and heading can be arranged

in matrix form:

L] [IAR, +h) 0 0 [V,
i|= 0 V((R, +hjcosL) 0 ||V, 9
h 0 0 -1 v,

where, [V, V; V] = V Geodetic velocity vector (North,
East and down). R,, and Ry are the radii of curvature in the
north and east direction and given by:

Ry=— 0 10
(1 —¢’sin? (L))1 ’ (10)

T,

Ry = —nte (11)

£ J(l —e*sin’ (L))

and e : eccentricity (= 0.0818)
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Fig. 4: Schematic diagram of development strapdown inertial navigation system

The differential equations relating the second
derivative of the geodetic position and velocities can be

derived as:

Vi
v, Ve
VD

Ve

(Ry +h)ycosL

VuVp

(R +h)

+ ZWE:|VE ginL +

VEVD
{(Rg +h)

+2WJVN sinL + +2w, VcosL

(Rg +h)cosL

]CE'fb+ {

2w, V. L
Ry +h) (Ry+h) = B0 TE:

(12)
where, " is specific force outputs in the body coordinate

=[£. £ £]" g, is gravity force applied on down direction.
Gravity force (g,) can be found from initial gravity g,

g, = 9.780327[ 1+ 0.0053024sin’ (L) - 0.0000058sin’ (2L) | (13)

and

g, =g, —[3.0877x10° —0.0044x 10 sin*(L) |-h + 0.072x10*h?
(14)

Equation 4, 9 and 12 represent the mechanization
equation for the terrestrial navigation system.

The raw data obtained from the inertial sensor
contains substantial noise that needs to be filtered.

Vibration in the IN'S data can cause a lot of problems
if not well taken care of. Vibration of the vehicle
contributes to the noise mn the data making it maccurate;
therefore, proper filtering techniques should be devised
to get accurate and worth while results. As mentioned
before, wavelet delonizing technique was used to filter the
noise of INS data, which is widely used in filtering
technique in the field of signal processing. Tt can be seen
that wavelet-deiomizing result 1s fairly smooth. It 1s found
that five level of decomposition is adequate to reduce the
short term error of the INS position and wvelocity
components.

The anticipated de-noising procedure was applied to
a real data collected from the Multi-Axis Inertial Sensing
System (MotionPak II) MEMS-grade IMU. The
MotionPakIl consists of three orthogonally mounted
micromachined quartz angular rate sensors and three
silicon based accelerometers. The specifications of the
MotionPak I IMU are given mn Table 2.

The outputs of the mertial measurement unit were
de-noised by applymng five LOD to bound the output lugh
frequency noise. As the MotionPak Il measurements are
supplied at a data rate of 32 Hz, the five decomposition
levels bound the frequency band of the original signal
from 16 to 0.5 Hz.
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Table 3: The standard deviation and mean square emror of the inertial sensors (before and after wavelet De-noising)

Position Velocity
Level of decomposition  X-Axis W -Axis Z-Axis Noith East Down
LO
Mean -3.2871e+003 9.8951e+003 1.8852e+004 167.0052 127.8663 -194.2489
SD 2.9163e+003 1.0207e+004 1.8087e+004 105.4729 91.1954 139.1683
L1
Mean -2.2599¢+003 1.4670e+004 1.6869e+004 123.0976 161.5681 -220.9847
SD 2.1907e+003 1.4308e+004 1.6443e+004 84.4170 1121307 153.4484
L2
Mean -389.7102 2.5430e+003 3.1665¢+003 22.7750 27.0107 -38.58%
SD 3683211 2.3750e+003 2.9519e+003 14.6322 18.2277 257651
L3
Mean -152.9385 1.3169e+003 1.4857e+003 13.1436 17.3643 -24.5748
SD 207.0210 1.5515et+003 1.7709¢+003 12.4476 16.2135 22.6270
L4
Mean 182.4194 -756.2387 -962.2448 -7.8726 -2.0770 11.8066
SD 184.3020 757.0310 969.6090 5.6305 6.4787 8.4720
LS
Mean -112.7109 -302.1440 54.2811 2.5196 -1.6277 2.5545
SD 100.9315 268.8678 483019 1.4710 0.9225 1.4639

It must be mentioned that increasing the mumber of
decomposition level could possibly lead to remove some
of the useful frequency components such vehicle motion
dynamic. Tt is clear that applying wavelet multi-resolution
analysis to de-noise the inertial sensor outputs has
proven its achievement in enhancing the output of the
INS algorithm by reducing the estimated position and
velocity errors as shown in Fig. 5a-f.

We found that five level is adequate to restrain most
of the high frequency noise (short-term errors) existing in
the mertial sensor measurement to keep away from
removing part of the earth's rotation and gravity
components. Figure 6a-c¢ and 7a-c¢ show the MotionPak 11
raw measurements for force and angular velocity
measurements before and after five level of decomposition
process, respectively. It 15 obvious that most of the high
frequency noise components are suppressed after the
fifth level and hence reducing the measurement
uncertainty. Table 3 shows the mean values and standard
deviation of the IMU output for five
decomposition.

Noise was also observed in the INS data during static
mode. Since the equipment 13 sensitive and logs data with
a sampling rate of 32 Hz, even the minor variation in the

level of

environmental affects the data.

A combination of several filtering techniques can
remove the INS noise to quite some extent. Figure 8Ba-f
show the position and velocity of the INS algorithm after
de-noising the accelerometers and gyroscopes output for
five LOD compared with the reference GPS data. Also,
from this figure we can observe that five LOD is adequate
to remove the i the
accelerometers and gyroscopes reading from the TMIJ.

short term error existed

Figure 5 shows the resultant error in position and velocity
after de-noising and indicates that five level of
decomposition are suitable to remove the ligh frequency
error of the IMU measurement. Increasing the level of
decomposition results in undesired features of the
navigation solution since the original features of the IMU
data will be lost and from this results we can conclude
that appropriate LOD can be optimized using an
optimization technique such as genetic algorithm, particle
swarm optimization and other optimization techniques
without using reference GPS data for comparison to
obtain accurate results.

CONCLUSIONS

The intuition of filtering short-term noise from an
IMU defined by the motion of the vehicle has been
studied. A de-noising algorithm based on wavelet
multi-resolution analysis has been introduced. Tn addition
the results shoed that the proposed algorithm procedure
could be performed and reduce the error for acceptable
range of INS operating peried and reduce the short term
error to provides more accurate position and velocity 1f
compared to the results obtained from non-denoised
inertial data before the error will growth gradually.

Most of the current inertial de-noising methods suffer
from the comparatively high noise levels of the inertial
measurement unit. While, the anticipated technique is
highly beneficial in providing fast and accurate navigation
solution for several applications and mproves the short
term error of the low cost inertial measurement device. It
was demonstrated that wavelet as a tool can be useful for
analysis of the measurements. Tt also showed that wavelet
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based de-noising can be used as excellent tool to remove
the noise from the measurements reading of the IMU.
Finally, experimental results obviously indicates the
capability of the proposed pre-filtering approach to
reduce the standard deviation of the estimated error and
mcrease the SNR of the accelerometer and gyroscopes
measurements as the RMSE reduced and provide an
accurate navigation solution for several navigation
application. The proposed method contribute positively
i reducing the high frequency noise of the inertial
sensors where GPS aiding can not provide the predictable
reduction m the high frequency noise of the ertial
SeNSOrs.
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