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Abstract: To design photonic crystal fibers (PCFs) in a less computational cost and time consumption way, it
1s better to use empirical relations method instead of other effective index methods. In this study, we intend to
investigate both empirical relations method and modified fully vectorial effective index one to compare
them with an accurate and powerful method like as full-vector fimte element method. We found that empirical
relations method has less error than the method of modified fully vectorial effective index in calculating PCFs
parameters such as n,; and the second order dispersion. In this study, we also calculate the third order
dispersion by these methods. Finally, we will introduce the suitable method for designing PCFs among methods
of empirical relations, fully vectorial effective index, modified fully vectorial effective index and scalar effective

index.
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INTRODUCTION

During recent years, lots of studies have been done
about PCFs or holy fibers. This is due to their capabilities
of these fibers in handling propagation modes through
themselves (Saitoh and Koshiba, 2005). This aspect has
mtroduced these devices as the most popular and
applicable optical mstruments such as channel allocation
mn the wavelength division multiplexing transmission
systems and Pressure Sensor Applications (Kim, 2003).

PCFs are categorized as mono-material fibers which
have a central light guiding area surrounded by rods in a
triangular lattice (Li ef al., 2004). These rods are filled by
air and their diameters and hole pitches are almost the
same as the amount of wavelength. This novel structure
of PCF causes new properties such as wide single-mode
wavelength range, unusual chromatic dispersion and high
or low non-linearity (Saitoh and Koshiba, 2005). There are
several methods to analyze these fibers including:
Effective Index Method, (EIM), Localized Basis Function
Method, Finite Element Method (FEM), Finite Difference
Method (FDM), Plane Wave Expansion Method (PWM)
and Multi-Pole Method (Saitoh and Koshiba, 2003,
Li et al., 2006, Sinha and Varshney, 2003).

Numerical methods consume too long time
consumimng and need large amount of iterative
computations (Saitoh and Koshiba, 2005). Usually these

methods are too mighty and their broad capabilities are

not required for studying of PCFs. Despite of limitations

and accuracies, other analytic methods are introduced
to replace these ones (Saitoh and Koshiba, 2005). In the
present study, Modified Fully Vectorial Effective Index
Method (MFVEIM) and Empirical Relations Method
(ERM) are studied among them.

Here, via fully vectorial effective index method
(FVEIM), the effective cladding mndex of a hexagonal umt
cell which consists of a fiber rod, 1s calculated with
respect to the rod diameter and pitch (A). Then the
effective index of PCF is obtained by using the effective
cladding index (I.i et al., 2004). However, comparing with
an accurate method like as full vector finite element
method (FVFEM), the effective index obtained by FVEIM
18 not accurate for values of d/A. In order to correct this
problem, Yong-Zhao et al. (2006) suggested a method so
called Modified FVEIM, which efficiently improved
FVEIM. In fact, MEVEIM applies an effective core radius
(r.) which changes by hole diameter and hole pitch; while
FVEIM uses a constant r, (Yong-Zhao et al., 2006). In
Empirical Relations Method (ERM), empirical relations for
parameters of V (Nommalized Frequency) and W
(Normalized Transverse Attenuation Constant) of PCFs
with respect to the basic geometrical parameters (i.e., the
air hole diameter and the hole pitch) are formed
(Saitoh and Koshiba, 2005). Then V and W are computed
and used to calculate PCF's basic parameters (Saitoh and
Koshiba, 2003). Hereafter, the obtained results of these
two methods are compared and we show that the
accuracy of the methods changes by A and d/A.
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We will also present the calculations of the second
and third order dispersions for chromatic dispersion in
PCFs with well known properties. The Sellmeier relation
has been used to calculate material dispersion.

MODIFIED FULLY VECTORIAL EFFECTIVE
INDEX METHOD

Both the effective cladding mdex and the effective
index of the guided mode of the PCF are calculated using
fully vectorial equations (11 et al., 2004).

Solving  Maxwell equations in the infinite
two-dimensional photonic crystal structure, we will get
the modal index of fundamental space filling mode (f,)
(Bjarklev et al., 2003; Buks et al., 1997).

In order to calculate ngy, for the PCF, the hexagonal
unit cell (Fig. 1) is approximated by a circular one of radius
R. In calculating ngy, using FVEIM, the boundary
conditions at point P should be perfect electric and
perfect magnetic conductor (L1 ef al, 2007). After
applying the boundary condition to the characteristic
equation, we will have the following equation:

[ U;(Ta) .

TaU,(Ta) Kal, (Ka)
{GEGIG)
Ta Ka w

where, [ =1,

L(Ka) (0, U(Ta) n.l(Ka)
TaU,(Ta)  Kal (Ka) (1)

U[T(w)p] =T, [Tomp] Y, [TonR ] - ¥, [ T(w)e]5, T(w)R ]

and T, is Bessel function. One should note that U, and T,
should play a sumilar role as J; and K, respectively, in the
characteristic equation of step mdex fiber (L1 ef af., 2004).
K(w) and T(w) are defined as

K (w) = B (w) —n’, (%)2 and T*(w) = (%)2 n,., (w) - B (w)

In all above equations, the derivatives are taken with
respect to the function arguments. Note that the optimal
radius for FVEIM 1s R = A/2 (Midrio et al., 2000) and we
use the same radius for MFVEIM.

By solving Eq. 1 for p(w), we can calculate effective
cladding index using g, (w) = B(w)c/w.

Afterwards, p.(w) is achieved via solving Eq. 2:

[ non) | Kion) J[niJi(nn)g;K;(mJ
T]ch1(nrc) 'YTCK1(YTC) nch1(T]rc) YI’CKI(YTC)

ERGIE

(2

2

Nt

P
Fig. 1: The hexagonal unit cell and its circular equivalent

where, [=1,
(W) = (%)2 n? (wip? (w) and 1 (w) = B (w) — (%)2 n, (w)

and, with n(w) being the refractive index of the core
material. Note that both n, (w) m Eq. 1 and n(w) in Eq. 2
are 1.45 as a fixed value in the current method.

In FVEIM, the parameter of r, takes a fixed value and
different values are suggested for that in the references.
But in MFVEIM, r, changes when PCF has different
relative hole diameters. In fact 1, is calculated by following

formula:
rc:b{aj[d] +32(1J +a, [E] +am} (3)
A A A A

where, b=0.6962, a,=0.0236,a, = 0.0056 anda,=0.1302
(Saitoh and Koshiba, 2005).

Afterwards, by using n.g(w) = p,(w)c/w, the effective
index of PCF is obtained.

Now, it 18 possible to calculate the total dispersion
using the following formula:

2
Dng+Dm=—idd;;‘* +D, (4
C

where D, is the material dispersion obtained from the
Sellmeier relation.

EMPIRICAL RELATIONS METHOD

In this method, the refractive index of silica is
considered constant as n,, = 1.45 and the effective core
radius is defined as (Saitoh and Koshiba, 2005).

Recently, it has been claimed that the triangular PCFs
can be well parameterized in terms of the V parameter
{(Koshiba and Saitoh, 2004) that 1s given by:
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V=2Ra gl ) = (U WY 5)

where,

U= 2‘: aff(ncnre_naff) aﬂdU_l_;aeﬁ(ncma_neﬁ) (6)
First, from the study by Saitoh and Koshiba (2003),
we calculate V by using

Aod
V(K’K]:Al 1+ A exp( A)

(Saitoh and Koshiba, 2005), where,

(deu (dem (d]b;z
Aj_am"'al Tl Tl -
A A A

Subsequently, the effective cladding index nggy,
1s obtained from Eq. 5. Then referring to Table by
Saitoh and Koshiba (2005) and from:

W&’ﬂz 1+B exp( A)

(Saitoh and Koshiba, 2005), where

d &) d EH d diz
Bx =0+ G [*j + € [7] + Gy [7J
A A A

we can calculate W. From Eq. 6 for given W and 1y, can
be obtamned and finally one can calculate the total
dispersion using Eq. 4.

RESULTS

Figure 2 shows ngy, calculated as a function of d/A
by ERM, MFVEIM and FVFEM (Koshiba and Saitoh,
2002). The accuracy of our caleulations i1s proved by
Fig. 2.

Figure 3a shows that for /A =02, 0.3, 0.4, 0.7 and
0.8, the relative difference between by ERM and MEFVEIM
is almost high, while for &/A = 0.5 and 0.6 this difference
1s smooth and low. So, we can conclude that as d/A either
increases or decreases more, two methods result in more
different amounts for n;.

Hereby, the comparison between the accuracies of
two above mentioned methods (ERM and MFVEIM) with
respect to the method of Fully Vectorial Finite Element
(FVFEM) will be made. Referning to (Saitoh and Koshiba,

1.45—e

neff

1.351

Fig. 2 nz as a function of A/A, obtamned by ERM,
MFVEIM and FVFEM
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Fig. 3: Relative difference between n,; obtained by
different methods. (a) ERM and MFVEIM for
several d/As. (b) FVFEM and MFVEIM for d/A=0 4

2005), it has been shown that achieved by ERM deviates
less than 15% from that of FVFEM, while 1t 1s calculated
1n restricted range (Saitoh and Koshiba, 2005). Moreover,
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Fig. 4 The second order dispersion obtained by ERM,
MFVEIM and FVFEM. (a)A=2 pm (b)A =3 pm

Fig. 3b shows that the relative difference between n
obtained by MFVEIM and FVFEM can exceed 15%. So, it
can be concluded that ERM is preferable from the
accuracy view point.

Next, we show the accuracy of MFVEIM and ERM
via comparing the results of second order dispersion
obtained by them with the results of second order
dispersion obtained by FVFEM. Figure 4a and b illustrate
this comparison for A = 2 and 3 um for same d/As.

The evaluation of n,z via ERM causes the parameter
of second order dispersion being closer to that was
achieved by FVFEM.

It 1s interesting to observe that for A = pm, not only
the does the second order dispersion from ERM and
MFVEIM become closer to FVFEM, but also both
methods agree better in results. And something else can
be obtained, 1s that the MFVEIM and ERM can be used
for big A. Because we have seen in our studying that the
increasing the error in small pitch in both methods
due to they can not be able tohave good accuracy for
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Fig. 5: The third order dispersion obtained by ERM,
MFVEIM (a) A =2 pm (b) A =3 um

calculating of effective interaction between mutual rods
and between core and rods.

Figure 5a and b show the third order dispersion
obtained by MFVEIM and ERM for A = 2 and 3 pm. Our
previous claim for the second order dispersion is accurate
for the third order dispersion too. It means that as pitch
increases, both methods agree more.

DISCUSSION

We have seen that ERM has less error than MFVEIM
in defined range. On the other hand, ERM 1s faster and
simpler than MFVEIM. According to Li et al. (2004, 2006,
2007) show that FVEIM is more accurate than scalar
effective ndex method (SEIM). Meanwhile, referring to
(Yong-Zhao et al, 2006), one can see that MEVEIM is
more accurate than FVEIM and it is shown that ERM is
better than SEIM (Pourkazerni and Mansourabadi, 2008).
As the result, so we can claim that ERM is more accurate,
simpler and faster than three other methods (i.e., SEIM,
FVEIM and MFVEIM) i its defined range.

2462



J. Applied Sci., 10 (20): 2459-2463, 2010

REFERENCES

Buks, T.A., J.C. Kmghtand P.5.J. Russell, 1997. Endlessly
single-mode crystal fiber. Optical Lett., 22: 961-963.
Bjarklev, A., J. Broeng and A.S. Bjarklev, 2003. Photonic

Crystal Fibres. Kluwer Academic, Boston.

, JI, 2003  Analysis and applications of

microstructure and holey optical fibers. PhD Thesis,

Faculty of the Virginia Polytechnic Institute and

State University.

Koshiba, M. and K. Saitch, 2002.
imaginary-distance beam propagation method based
on finite element scheme: Application to photonic
crystal fibers. TEEE J. Quantum Electron., 38: 927-933.

Koshiba, M. and K. Saitoh, 2004. Applicability of
classical optical fiber theories to holey fibers. Optics
Lett., 29: 1739-1741.

Li, Y., C. Wang and M. Hu, 2004, A fully vectorial
effective mdex method for photonic crystal fibers:
Application to dispersion calculation. Opt. Commun.,
238: 29-33.

Li, Y., C. Wang, Y. Chen, M. Hu, B. Liuand I.. Chai, 2006.
Solution of the fundamental space filling mode of
photonic crystal fibers: Numerical method versus
analytical approaches. Applied Phys. B: Lasers Opt.,
85: 597-601.

Kim

Full-vectorial

Li, Y., C. Wang, 7. Wang, M. Hu and L. Chai, 2007.
Analytical solution of the fundamental space filling
mode of photomc crystal fibers. Optics Laser
Technol., 39: 322-326.

Midrio, M., M.P. Singh and C.G.J. Someda, 2000.
The space filling mode of holey fibers: An
analytical vectorial solution. J. Lightwave Technol,,
18:1031-1037.

Powkazemi, A. and M. Mansourabadi, 2008. Comparison
of fundamental space-filling mode index, effective
index and the second and third order dispersions of
photonic crystals fibers calculated by scalar effective
index method and empirical relations methods. Prog.
Electromagn. Res., 10: 197-206.

Saitoh, K. and M. Koshiba, 2005. Empirical relations for
simple design of photomc crystal fibers. Opt.
Express, 13: 267-274.

Sinha, RK. and SK. Varshney, 2003. Dispersion
properties of photonic crystal fibers. Microwave
Optical Technol. Lett., 37: 129-132.

Yong-Zhao, X., R. Xia-Min, 7. Xia and H. Yong-Qing,
2006. A fully vectorial effective index method for
accurate dispersion calculation of photonic crystal
fibers. Chun. Phys. Lett., 23: 2476-2479.

2463



	JAS.pdf
	Page 1


