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Abstract: The widely used dynamic models for identification of linear time invariant systems in process
industries are Auto Regressive with Exogenous Input (ARX) and Finite Impulse Response (FIR) models. Ther
popularity 1s due to their simplicity in developing the model. However, they need very large amount of data to
reduce variance error, in addition ordinary ARX model structures lead to inconsistent model parameters.
Orthonormal Basis Filter (OBF) model structures permit incorporation of prior knowledge of the system in the
form of cne or more poles, which renders it the capacity to capture the system dynamics with a few number of

parameters (parsimonious in parameters). In addition, the resulting OBF models are consistent in parameters.
The model parameters can be easily developed using linear least square method. In this study, OBF model
development for simulation and real case studies is presented.
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INTRODUCTION

Models of real systems are used, practically, m all
fields of science and engineering. In engineering, models
are required for the design and development of new
processes and for analyzing and improving existing
processes. In process industries, models are used in
controller design, optimization and fault detection and
diagnosis. Models are extensively used in advanced
process control design and implementations. Nearly all
optimal control design techniques rely on the use of the
model of the system to be controlled. In Model Predictive
Controllers (MPC), models are used to predict the future
values of the output which is used in calculating the
optimum input values. The process of developing system
models from experimental data 13 known as system
identification.

A general linear dynamic model consists of
deterministic and stochastic parts. According to this
general model, the output is the sum of the mput u (k) and
noise e (k) filtered by their respective filters (I.jung, 1999,
Nelles, 2001). Equation 1 represents the general linear
model shown m Fig. 1.
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This general model leads to a much complicated
model where parameter estimation is usually difficult;
therefore it 1s most commonly simplified by making
assumptions on the polynomials A, B, C, D and F. Some
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Fig. 1: Block diagram for the general linear model

of the most commonly used linear models derived from
this general model.

Auto regressive with exogenous input (ARX):
Autoregressive with exogenous input (ARX) model
is derived from the general linear model by assuming
C(q) = D{q) = F(q) = 1. ARX models are very popular in
industrial application because of the simplicity in
estimating the model parameters (Nelles, 2001 ).

_B@ 1 2
309 = L0+ el (2)

Auto regressive moving average with exogenous input
(ARMAX): The ARMAX structure is derived from the
general linear model by assuming D(q) = F(gq) = 1. The
parameters of the ARMAX model are calculated by
nonlinear optimization or by extended least square
method.
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Output Error (OE): The output error structure does not
include a noise model where A(q) = Cl(q) = D(q) = 1.
Estimation of the model parameters involves nonlinear
optimization.

yk) - %u(k) +e(@) 4

Box Jenkins (BJ): The Box Jenkins structure is the most
flexible among the linear model structures. It 1s derived
from the general structure by assuming A(q) = 1 (Nelles,
2001).
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Finite Tmpulse Response (FIR): The finite impulse
response model 1s the sunplest of the linear models. It is
a linear combination of delay filters, 7, q7, ....

¥(k} = B{qu{k)-+e(q) (6)

The FIR and ARX models are the most popular linear
models in process industries. Tt is because the model
parameters can be easily estimated using linear least
square method. However, both models have major
drawbacks. FIR model requires large number of parameters
(non-parsimonious) to accurately capture system
dynamics and ARX model, for most practical systems,
results in inconsistent parameters (Nelles, 2001).
When model parameters are non-parsimonious, large
mput-output data set 1s required to mimimize variance
errors in model parameters. When a model i3 inconsistent
in parameters, there will be a systematic error (bias) in the
estimated model parameters that cannot be removed by
increasing the number of data points.

The ARMAX 1s the next commonly used model
structure. Tts model parameters can be estimated using
nornlinear optimization or extended least square method.
However, the common denominator dynamics A(q) may
not describe many practical problems, where the noise is
not correlated with the input. BT models are the most
flexable of all the linear models. However, their application
is very limited due to the difficulty in estimating the model
parameters (Nelles, 2001). Estimaton of BIJ meodel
parameters involves non-linear optimization and because
of the large number of parameters, it 1s rarely applied in
Multiple-Tnput Multiple-Output (MIMO) systems. One
common problem in all the lnear models 15 that prior
knowledge of time delay is required to accurately estimate
the model parameters.

Recently, there has been a significant progress in
system 1dentification based on Orthonormal Basis Filters
(OBF) and their implementation in MPC and fault tolerant
control (Patwardhan and Shah, 2005; Patwardhan ez af.,
2006). The OBF models allow incorporation of a priorn
knowledge of system dynamics into the model and due to
this, they can accurately capture the dynamics with a
fewer number of parameters. Unlike ARX models, OBF
models do not have the parameter inconsistency problem.
OBF models are parsimonious in parameters compared
to FIR and step response models (Nelles, 2001,
Patwardhan and Shah, 2005; Van den Hof et al., 2005).
The parameters of OBF models can be easily determined
using linear least square method and time delays can also
be easily estimated and mcorporated into the models
(Patwardhan and Shah, 2005).

The present study compares the accuracy of FIR,
ARX and OBF models in two case studies, viz., (1) a
simulated example, a SISO system and (2) a pilot-scale
distillation column, a MIMO system.

A brief introduction to various basis filters used in
OBF based system identification is provided in the next
section together with techniques for the estimation of time
delay and model parameters.

Orthonormal basis filters: The OBF models can be
considered as a generalization of FIR models in which the
filters q', q—, ... are replaced with moere complex
orthonormal basis filters which allow mcorporation of a
prior knowledge of the system (Patwardhan and Shah,
2005; Van den Hof et al., 2000, Wahlberg, 1991). Two
filters, f, and f,, are said to be orthonormal if they satisfy
the property.

<fm(q),fn(qJ):{1 (m=n) (7)

0 (m#n)

where <> represents the inner product defined on the set
of all stable transfer functions. Thus, a stable system,
G(q), can be approximately represented by a finite-length
generalized Fourier series expansion as:

G(q)=Z“lL.f,(q) (8)

where, q is forward shift operator, {L;},_, ,  is model
parameters and f(q) 1s orthonormal basis filters for the
system G(q).

One of the important steps in OBF model
development is the selection of an appropriate type of
orthonormal basis filter. The various types of orthonormal
basis filters are discussed below.
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Laguerre filter: The Laguerre filters are first-order lag
filters with one real pole. They are, therefore, more
appropriate for well damped processes (Nelles, 2001;
Patwardhan and Shah, 2005; Van den Hof et al., 2003).
The Laguerre filters are given by:

- i dopa”

&)
(a-p) i<t

where, p is pole (estimated).

Kautz filter: Kautz filters allow the incorporation of a pair
of conjugate complex poles; they are, therefore, effective
for modeling weakly damped processes (Nelles, 2001,
Patwardhan and Shah, 2005; Van den Hof et al., 2003).
The Kautz filters are defined by

_Al-a’0-p?)

1 P vatb-1)g-b
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g(a,b,q,i)

where

(12)

-1
. —-bg* +a(b-1)q+1
g(a,b.q,i) = 3(7)(1
q +a(b-1)-b

Al<a<land-1<b<1n=1,2, ...

Generalized orthonormal basis filter: Heuberger et al.
(1995) introduced the generalized orthonormal basis filters
and showed the existence of orthogonal functions that, in
a natural way, are generated by stable lmear dynamic
systems and form an orthonormal basis for the linear
signal space 12 . They showed that pulse, Laguerre and

Kautz filters are generated from inner functions and their
minimal balanced realization. Ninness and Gustafsson
(1997) umfied the construction of orthonormal basis
filters. The GOBF filters are formulated as:

o (L-pig) (13)

fi(q.p)=

where p= {pJ :j=L2,...,n,} is an arbitrary sequence of

poles mside the wt circle appearing in complex conjugate
pairs.

Markov-OBF: When a system involves time delay and an
estimate of the time delay is available, Markov-OBF can
be used. The time delay in Markov-OBF is included by
placing some of the poles at the origin (Patwardhan and
Shah, 2005). For a SISO system with dead time equal to d
samples, the basis function can be selected as:

f=z'for i =1,2,..d (14)

yL-[pf = a-po
(—p)l:ll
fori=1,2,..,N

f..(ap)= (15

J'

Estimation of time delay: Patwardhan and Shah (2003)
presented a two-step method for estimating time delays
from step response of GOBF models. In the first step, the
time delays in all input-output channels are assumed zero
and the model 1s identified with GOBF. In GOBF models,
the time delay 1s approximated by a non-mmimum phase
zero and the corresponding step response i3 an inverse
response. The time delay is then estimated from a tangent
line drawn at the point of inflection.

A similar approach to determine the time delay 1s
presented by Tufa et al. (2008). In this method, the time
delay estimated by the previous method is divided into
apparent and contributed time delays. The apparent time
delay represents the true time delay and the contributed
time delay represents the time delay due to the tail of the
sigmoidal response curve which is significant for higher
order systems. The latter method gives more accurate
estimation of time delay when the order of the system 1s
high.

Estimation of GOBF poles: Finding an appropriate
estimate of the poles for the filters 1s an important step in
estimating the parameters of the OBF models. Arbitrary
choice of poles may lead to a non-parsimonious model
unless an iterative technique is used. Van den Hof et al.
(2000) showed that for a SISO system with poles
{a?| : \a]u |<1forj=1,2,..,m,}, the rate of convergence of

the model parameters is determined by the lowest
magnitude of eigen value:

J_pk

P (16)
1-pa,

p=max
ba

Therefore, a good approximation by a small number
of parameters can be obtamed by choosing a basis for
which p is small. Tt is shown that the poles determined by
Van den Hof et al. (2005) method closely match the
dommant poles of the system (Patwardhan and Shah,
2005; Wahlberg, 1991).

Model parameter estimation: Once the dominant poles of
the system and the types of filters are determined, the
model parameters can be estimated using linear least
square method. The parameter vector, 8, of the model are
then calculated by the linear least square (Eq. 17).

2518



J. Applied Sci., 10 (21): 2516-2522, 2010

0=(X"%)"X"y (17)

where, 0 is model parameters, X is the regressor matrix
and y is output sequence.

The regressor matrix, X, 1s formed by filtering the
mput sequence u(k) with the corresponding filters £(q, p)
and arranging them m a matrix form as shown in Eq. 18.

ug (m} ug;(m-1) ug, {1)
u,{m+1) u,(m oo u ()
g (N=1)  u;,{(N-2) ug, (N-m)

where, u; (k)= £ (q, p) u (K)

If an estimate of the dominant pole 15 not available, an
iterative technique can be employed where an arbitrary
sequence of poles can be used as a starting point and
better estimates of the dominant poles are obtained from
the noise-free step respomse of the GOBF model. The
iterative techmique for estimating the poles and the
determimistic part of the OBF model 1s explamed by
Tufa et al. (200%).

PRESENT STUDY

In thus study, the advantages of OBF models over
FIR and ARX models are illustrated through a case study
by simulation and OBF and OBF plus ARMA noise
models are then developed for a real plant case study of
a MIMO system.

Case study 1: In this case study, OBF, ARX and FIR
models are developed from the same data set generated
by simulation from a system represented by Fig. 1 using
SIMULINK. The input is a ‘PRBS’ data set generated
using the idinput function in MATLAB. The model of the
system to be identified 1s given by Eq. 19.

1-1.5q" +048q% + 0.6q~° (k)
1-2.657q" + 2352397 - 0.6939q (19)

-1
%e(k)
1-1.4q~ +0.48q

ylki=q~

The prediction capability of the various models are
compared using the Percentage Prediction Error (PPE)
defined by Eq. 20.

> 5tk -, 00 (20)

(PPE) ==L %100
N CAGEAGH

where y, represents the mean value of measurements

{y; ()¢ and ¥, (k) the predicted value of y; (k).
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Fig. 2. The input-output data used for model

development for the case of 1000 data points
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Fig. 3: The prediction using 500-validation datapoints of
the GOBF, FI and ARX models compared to the
actual output using 1000 data points for model
development

Two thousand data points are generated and the 1000
data points shown in Fig. 2 are used for model
development while the remaining 1000 data points are
used for validation. Five hundred of the validation data
are depicted in Fig. 3.

The prediction of the GOBF, FIR and ARX models
with number of model parameters 8, 40 and 8, respectively,
compared to the response of the origmnal system without
noise (simulation in all cases), for the validation data, is
given in Fig. 3. Ttis seen from Fig. 3, that the GOBF model
1s much closer to the response of the original system than
the other two models.

The percentage prediction error, PPE, for each model
type developed with 500, 1000, 2000, 3000 and 4000 data
points for GOBF, FIR and ARX models with various
number of model parameters is given in Table 1. For the
comparison, the number of parameters for the GOBF
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Table 1: Percentage prediction error of the various models with different
number of parameters and data points

Table 2: Major dimensions and nominal operating conditions of the
distillation column

PPE

No. of OBF FIR FIR FIR ARX ARX ARX

data points 8 30 40 60 -4 3-8 16-16
500 235 3646 2600 181  56.59 26.80 7.17
1000 6.97  11.30 474 321 61.23 28.59 7.60
2000 471  10.66 406 234 7648 4146 8.09
3000 1.98 10.79 3.09 122 7091 43.56  10.32
4000 1.41 1039 298 078 7378 4253 11.03

model 1s fixed at 8. It 1s observed from the table that, FIR
model requires between 40 and 60 parameters to describe
the model as accurate as GOBF model with 8 parameters.
In addition, as the number of data points increases the
percentage prediction error decreases for the GOBF
model. In the case of ARX model, increasing the number
of model parameters improves the accuracy. However, the
accuracy does not improve with increasing number of
data points. This shows the inconsistency problem of
ARX models, in that, the bias of the parameters cannot be
eliminated by increasing the number of model parameters.

Case study 2: In this case study, a GOBF model is
developed for a binary distillation column. The distillation
column 1s a part of a reaction-separation system where the
product stream from the reactor becomes the feed stream
for the distillation column. Isopropyl Aleohol (IPA) 1s
dehydrogenated m the catalytic packed bed tubular
reactor. The products from the reactor, acetone and
hydrogen, together with un-reacted TPA are cooled in a
plate heat exchanger and sent to a vapor-liquid separator
where hydrogen is separated from condensed acetone
and IPA. This acetone-IPA mixture is stored in an
mtermediate storage vessel and fed to the distillation
column for separation. The bottom product of the column
consisting mamly of IPA 13 recycled back to the reactor.
In the present study, the distillation column 1s operated
alone with acetone-IPA mixture as the feed and the
product streams are recombined. A snapshot of the 5.5m
high distillation column 1s shown mn Fig. 4. The major
dimensions and nominal operating conditions of the
distillation column are given in Table 2.

The input sequences are designed as a low frequency
Pseudo Random Bmary Signal (PRBS) generated using
the idinput function in MATLAB with band [0 0.04] and
levels 18 22 kg h™ and 0.4 0.8 T. min™" for steam and reflux
flow rates, respectively. Four thousand data points are
collected with a sampling interval of 5 sec. The first three
thousand data points are used for model identification
and the rest are used for validation. The input-output data
used for identification of the distillation column is
depicted in Fig. 5.

Description Values
Height 5.5 m
Diameter 0.15m
Number of trays 15

Type of tray Bubble cap
Tray spacing 35cm

Tray numbering Bottom to top
Feed tray Tray 7

Feed rate 0.5 I min
Reflux flow rate 0.7 1min
Steam flow rate 20kgh!
Distillate flow rate 0.3 1min
Bottom product flow rate 0.3 1 min
Bottom product flow rate 0.2 1 min
Feed composition, mole fraction 0.1824 (acetone)
Bottom temperature 80.5°C

Top temperature 72.7°C
Column pressure 1.013 bar

" s N

Wl

P ZaN

K\

-0

i"!f-.{:,, |

Fig. 4: The pilot-scale distillation column

GOBF model: The transfer function of the distillation
column is given in the following form:

f@ S e

where, G 18 GOBF models, H, is Stochastic part of the
model and e, e, 1s mnovation sequences.
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Fig. 5: The input-output sequence used for identification
for changes in (a) steam flow rate and (b) reflux
flow rate in the pilot scale distillation column
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Fig. 6: The prediction of the GOBF model with () and
without noise model (-----) compared to the original
(--)ymeasured data for the distillation column

Individual GOBF models with eight terms each are
developed with alternating poles 0.7788 and 0.8187. The
estimated GOBF model parameters corresponding to the
transfer functions are:

L,,=[0.0235 0.0084 0.0128 0.0074 0.0044 0.0094 -0.006%

0.0211]
L.~ [0.0192 0.1217 -0.0681 0.1262 -0.0676 0.0066 -0.0627 -
0.0443]
L,= [-0.0055 0.0302 -0.0048 0.0222 0.0027 0.0354-0.0213
0.0583]

L= [-0.8270 -0.0936 -0.7039 0.2749 -0.0700 -0.3731 0.6136
-0.7887]

The GOBF and the GOBF plus noise model, are
compared to the actual measured output in Fig. 6.

The result shows that a GOBF model can capture the
dynamics of the distillation column with good accuracy
and MIMO systems can be easily developed using GOBF
model.

CONCLUSION

The OBF models capture the dynamics of linear
systems with much smaller number of parameters than FIR
models. GOBF model structures
parameter estimation, while ARX leads to inconsistent
parameter estimation. GOBF model parameters are
estimated using linear least square method. It is shown
that if the system involves time delay, then an iterative
procedure can be employed to sinultaneously estimate
the delay time and the model parameters. In addition, it 1s
demonstrated that GOBF model can be extended to
develop MIMO model for a real pilot scale distillation
column. It 1s also illustrated that the stochastic part of the
model can be developed using the residual sequence
obtained from the noise-free GOBF model.

enable consistent
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