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Abstract: In this study, a fuzzy model for forecasting the Nile river flow is developed. The fuzzy model is
represented by a set of rules based on the Takagi-Sugeno type. The Gustanfson-Kessel (GK) algorithm was
applied to determine the antecedent membership functions and least-square estimation was used to determine
the consequence parameters. The performance of the fuzzy model was tested using a set of measurements
recorded at Dongola station in Egypt. The readings span over the period from 1975 to 1993, These
measurements were split in to two groups one for training and another for testing. The performance of the
developed proposed fuzzy model was checked in both training and testing cases. The developed fuzzy logic
model showed a better modeling capability compared to traditional modeling.
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INTRODUCTION

Time variations of river flow rate have always been
predicted for actual use m advance of the daily power
system’s operation by using various methods, to be able
to convert the cleaner energy  stored in water
reservations mto electric energy as effectively as possible
in hydro-power plants. Tt is also important to mention that
models for river flow forecasting are fundamental tools in
water resources studies, since they determine and provide
the basis in establishing future reservoir water inflows.
These predictions are of significance importance in the
planning of water resources system, being responsible
for the optimization of the system as a whole. This is
why forecasting river flows i3 a fundamental topic in
many engineering applications  like constructing
dams, analysis and forecasting, planning and designing
of reservoirs, hydro-power generation, irrigation, water
management, controlling floods and others (Sheta and
Mahmoud, 2001; Sheta and De Jong, 2001).

A variety of models have been proposed for
forecasting the annual flow of rivers. Few of them use
the Linear Prediction (ILP) model (Kothyari et al., 1993,
Zeng and Singh, 1996; Said, 1993) Auto-Regressive
Moving Average (ARMA) model, Kalman Filter, Neural
Networks (NNs) and Neuro-Fuzzy (Karunanithi et al.,
1994; Burlando et ai, 1993; Baareh et i, 2006,
El-Shoura et al., 1998; EL-Shafie er al., 2007). The
importance of estimating and forecasting river flows to the

people living in the commumnities and villages around and
beside the rivers made them study and record their levels
since earliest history. In fact, there are records for the
flow of the Nile niver dating back to around 3000 BC
(Said, 1993). Tt is also important to mention that the
ancient Egyptians recorded the annual peak river levels
for the years 3050 tall 2500 BC. This has produced one of
the longest time series of a natural phenomenon. Tt can
therefore, being used as a benchmark time series for
studying and comparing forecasting  algorithms.
Another important reason to study the Nile river flow is
that the Nile river’s average discharge is 3.1 million L
(680,000 gallons ) per second. This is why it is important to
study, model and analyze the flow of the Nile river and be
able to build a model for its forecasting, simulation and for
projections.

In this study, we explore the use of fuzzy logic model
to build a suitable model for forecasting the Nile river
flow. Modeling nonlinear dynamics using fuzzy systems
has increasingly been recognized as a distinct and
important system identification paradigm (Klirand and
Folger, 1992, Dubois and Prade, 1992). It refers to a
process whereby a dynamical system is modeled and not
in the form of conventional differential and difference
equations, but in the form of a set of fuzzy rules and
corresponding membership functions. A detailed
description of the forecasting problem will be provided.
Also, the methodology for building our fuzzy model 1s
introduced.
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Characteristic of the flow problem: Flow in streams and
rivers are complex random processes. They are random
because they do not attain a stable form. Their flow value
differs from a year to year and from month to month even
from day today. Most river flows exhibit seasonal nature.
Forecasting period is determined according to the river
flow nature and its mmportance. They are complicated
processes because they are nfluenced by many factors
such as vegetation, cover, soil types, channel
characteristics, ground aquifers, prediction distribution,
ramnfall, evaporation losses, consumption of river water
other factors. Many difficulties and problems
trying to solve the stream flow
forecasting (Fan, 1994). The main reason is flow are
multi-dimensional processes and they are defined by
many factors like magmtude, velocity and timing
duration.

and
arise when

Model identification problem: The problem of forecasting
could be interpreted as a model identification problem.
Selecting a suitable model structure for flow forecasting
depends on many factors like the size of the basing of
mterest, availability of data records for the flow in that
basin, availability of remote sensing instruments such as
weather radar, satellites and etc. Present goal is to use set
of measurements, known as training set, to build a model
for the flow and then test the performance of the
developed model using another set of measurements,
called testing set. The selection of a model structure from
which the process model can be obtained is an important
task in any system identification problem (Ljung, 1987).
Having established that the process exlibits nonlinear
characteristics, a choice of nonlinear model set must be
made.

Models which are linear in the parameters have
received a considerable amount of attention m recent
years than hierarchical multilevel models, block oriented
models based upon functional series
expansions (Haber and Unbehauen, 1990). This 1s
because models which are linear m the parameters, in
comparison to hierarchical multilevel models, offer
simple structure identification algorithms, a better
option to the measured output signal and easier
mncorporation of a prior knowledge into the model. Block
oriented models such as Hammerstein and Wiener
models can only be applied if the process has, or can be
approximated by, a block-oriented structure, wlich
restricts the class of system that can be represented
(Wigren, 1993, 2007).

or models

Fuzzy modeling and identification: In this study, we
concentrate on approximation of a nonlinear system by a
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set of local linear models. Each local model is valid for a
certain range of operating conditions and an interpolative
scheduling mechanism combines the outputs of the local
models into a contmuous global output. Such a model
structure can be convemently represented by means of
fuzzy If-Then rules. Using membership functions, the
antecedent of the rule defines a fuzzy region in the
product space of the antecedent variables in which the
rule is valid. The antecedent variables must convey
information about the process operating conditions. The
consecquent of the rule is typically a local linear regression
model. The overlap of the antecedent membership
of different rules provides
interpolation of the rules” consequents.

A rule-based fuzzy model requires identification of
the antecedent and consequent structure, of the
membership functions for different operating regions
of the consequent regression
parameters. While the latter task can be solved using
linear estimation techniques, the construction of the
membership functions is a nonlinear optimization problem.
The presented approach does not require any prior
knowledge about the operating regimes and also an
appropriate  number of rules
automatically. Tf a sufficiently rich identification data set

functions a smooth

and  estimation

can be determined
covering the operating ranges of interest 1s not available,
the rules obtained from data can be combined with prior
knowledge, if any, transformed mto the membership
functions for the relevant operating regions and the local
models. The models provided by the user can also be
nonlinear (semi) mechanistic models based on the first
principles.

Fuzzy model structure: Takagi-Sugeno (T3) fuzzy models
are suitable to model a large class of nonlinear systems
(Kosko, 1994; Babuska et al., 1998). Consider a nonlinear
type system given its input and output, we can determine
what the next output will be. In the discrete-time system
we can write the relationship between the system input
u(k) and output y(k) at time k as follows:
yk) =fuk-1), yk - 1)) (1

vk = k-1, yk-2),..,vk-n+l), uk - 1), ulk - 2),..., utk - m+1))
(2)

where, u(k-1),..,u(k-m+)andy (k-1),...y (k-n+1)
represents the past mputs  and  outputs,
respectively, n and m are integers related to the model
order. For example, a singleton fuzzy model of a dynamic
system may consist of rules of the following form:

model
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Ri:Ifykk-1)is Al and ... andy(k -n+ 1) is A,
andu(k)isBl and .. andufk -m+ 1} is B
then y(k) is ci

3)

Here, we are more interested in the special case of

the NARX which is the NAR (Nonlinear Auto
Regressive) model which can be represented as
follows:

y®=1fyk-1),yk-D), .,yk-n+l) 4
A singleton fuzzy model of a dynamic system may
consist of rules of the following form:

Ri: Ify(k- 1)is Al and ... and y(k - n+ 1) is An then y(k) is i (3)

Since, fuzzy models can approximate any smooth
function to any degree of accuracy (Wang, 1992) models
of the type NARX can approximate any observable and
controllable models of a large class of discrete-time
nonlinear systems (Leontaritis and Billings, 1985).

Model structure selection: The structure of the model i.e.
the values of n, m are determined by the user on the basis
of prior knowledge and/or comparing several candidate
structure m terms of the prediction error or other selected
criteria (Sheta and El-Sherif, 1999, Kumar et al., 2004).
Once the model structure is selected the next step is to
estimate the parameters of the fuzzy model. These
parameters include the antecedent membership functions
and the consequence polynomials. An additional number
of parameters need to be selected so that it is the number
of rules (clusters) 0 which needs to be specified by the
user. The methodology to build a fuzzy model for
forecasting the Nile river flow can be described in the
following steps:

Using the flow sequence of measurements y(k - 1),
vk - 2), y(k - 3), y(k - 4) and the user defined
parameters we form the nonlinear regression problem
to find y(k)

Compute the antecedent membership finction from
the cluster parameters

Given the antecedent membership functions, estimate
the consequence parameters by the least-square

method

This technique was introduced (Babuska et al.,
1996) and was successfully applied to solve varety of
modeling and control of Multi Input Single Output
(MISQ) system process (Babuska and Verbruggen, 1996;
Sosaet al., 1997).
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Regression matrix: Using the set of measurements N for
the Nile river flow we build the regression matrix @ and
the output vectory.

yk-1)
yk)
D=

VKA N=Dr vk+N-4)
y(lo)
yk+1)

al

.y(k +N)

Fuzzy clustering: Given the regression matrix and @ the
specified number of clusters 0 Gustanfson-Kessel (GK)
algorithm (Gustafso and Kessel, 1979) 13 applied. This
algorithm computes the following:

The fuzzy partition matrix U = [pik] 0 * N with uk €
[0, 1]. 1 stand for the rule number

The prototype matrix, V = [v1,...,v0]

The set of cluster covariance matrices F = [F,..., F,],
F, are positive definite matrices in R®""™*Y p is the
dimension of the antecedent space which equal:

ny wu
X me X m
j=t j=t

where, n and m are the number delayed inputs and
outputs, respectively and m,, n, are the number of
inputs and output, respectively. Here, m, equal 4, n,
equal 1

Given the triple, (1], V, F) the antecedent membership
functions and the consequence parameters Ai, Bi and ci
can be computed.

Gustanfson-Kessel (GK) algorithm: In this section, we
will describe the Gustanfson-Kessel (GK) algorithm for,
the general case, of Multi-Input Multi-Output (MIMO)
systems. Consider z, the input output data matrix, where
z = [u, y] and the number of clusters ¢ and some €>0 are
givern Assume ] 1s the iteration number. Initialize the fuzzy
partition matrix U" at random. Then, start the following
procedure:
Repeat for j=1, 2, ....

s Step 1: Compute cluster means:
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i J1ym
j72k:1(u,k ) Zx
Vi~ N P

Zkzl(”‘ik )

Step 2: Compute covariance matrices:

2:=1(qu l)m (zk - er)n(Zk - Vj)T
2:=1 (H::)

Step 3: Compute distances: 1

i

2 i) = i o 1 -1 i
d (z,vi)f(zk—vi) [det(Fl)pHFi J(zk—v‘)

Step 4: Update partition matrix:
If d%(z v\)= O for 1<i<o and 1 <k<N,

1

J

My~ e -
D N (LR T T

Otherwise:
Wy, = 0if d(z v\ 0 and W, € [0,1] with:

2;“; =1
until || U-U || <€

Consequent parameters: In our case, the fuzzy model
mputs are u = [yl, y2, y3, y4], y1 stand for y(k -1) and the
model output is y. Here, there are several possibility to
estimate the consequence parameters Ai, Bi and a
(Babuska and Verbruggen, 1996). Here, we adopt the
weighted least-square estimation. Let 07 be the vector
which has the coefficient of the consequence polynomial
Al Bi and ci. Let @ be the matrix [¢p, 1] and the matrix W
be a diagonal matrix with dimension R™ having a
membership degree pk as its kth diagonal element.
Assuming that the column of the matrix X are linearly
independent and pk > 0 for 1 =k =1, then:

0 =(PTWD)'d™Wy (6)
where, 8 is the least-square solution of the equation
y =X06-+8 where the kth data pair(y, y) is weighted by pk.

The Nile river flow data: To build a fuzzy model for the
Nile river flow, we used measurements of the average
daily flow volume for each ten day period at the
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Dongola station located in Egypt. The readings span
over the period from 1975 to 1993. These measurements
were split m to two groups one for traimng and
another for testing. A Matlab toolbox for modeling of
fuzzy systems (Babuska, 1998a) was used to implement
The
Gustanfson-Kessel

routines of the toolbox
(GK) clustering
algorithm, whose implementation is given (Gustafso and
Kessel, 1979).

the following results.

contain the

FUZZY FORCASTING MODEL

The Fuzzy Model Identification (FMID) Matlab
toolbox developed by Babuska (1998b) was used to
produce our results. The developed fuzzy model has
the advantage over traditional models such as the
auto-regression models and other time series model is that
we have now number of models (three models in our case)
to represent the variations in the flow. Each model 1s
capable to provide accurate estimation to the Nile river
flow within its domam of measurements. This makes the
developed fuzzy model able to represent the river flow
better and can provide an accurate forecasting measure.

The mput-output training data was used to build the
regression matrix ¢ and the output vector, respectively.
The number of clusters 0 need to be set in advance. o is
a scalar number, since, we have a single output system.
The rest of the toolbox parameters are optional. The
termination tolerance for the clustering algorithm can be
set priori:

The set of rules which describe the relationship
between u and y 1s given as:

Ify(k-1)is All andy(k -2) is Al2 and y(k -3) is Al13
and y(k -4) is A14 then y(k) = 1.22¢ 10°y(k -1) - 5.40¢
107" vk -2) + 2.900 10 y(k -3) + 4,94+ 10y(k -4) +
14.6

Tfy(k-1)is A21 and y(k -2) is A22 and y(k -3) is A23
and y(k -4) is A24 then y(k) =897« 107'y(k -1)-2.11+
107 vk -2)+ 2120 107 y(k 3)+ 9.92¢ 107yl -4)-23.5
Tfy(k-1)is A31 and y(k -2) is A3Z and y(k -3) is A33
and y(k -4)is A34 then y(k) =638 107 y(k -1) + &.94»
107 vk -2) - 834 107 y(k -3)- 5.82¢ 107 y(k - + 264

The consequent parameters and the cluster centers
are given in Table 1 and 2.

In Fig. 1 we show the membership function in our
case. We have used three clusters to build our model.
Figure 2 and 3 show the actual and predicted Nile
river flow in both training and testing cases. As a
figure of merit, we

considered  the Variance-
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Fig. 1: Membership functions
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Fig. 2: Actual and predicted Nile river flow in the tramning case
Table 1: Consequent parameters Table 2: Cluster centers
Rules yik-1) yk-2) yk-3) yk-4 Offset Rules yik-1) yik-2) yk-3) yik-4)
1 1.22x10°  -5.40x10Q° 2.90x1072 4941072 1.46x10 1 1.01x10° 1.07x10° 1.13x10° 1.19%10%
2 8.97x1071 -2.11x107! 2.12x10! 9.92x107%  -2.35x10! 2 3.40x10° 4.11%10° 4.83x10° 5.32x10°
3 6.38x1071  8.91x107! -8.34x107! -5.82x1071  2.64x10° 3 4.08x10° 2.88x10¢ 1.93x107 1.30x10%
Accounted-For (VAF) as a major of performance in the of the VAF for both traming and testing cases were

modeling process. The VAF is calculated as: The value
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93.7383 and 90.3624, respectively.
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Fig. 3: Actual and predicted Nile river flow in the testing case

CONCLUSIONS

In this study we discussed the process of developing
a fuzzy model for forecasting the Nile river flow in Egypt.
The application and performance of the fuzzy model was
tested using a set of measurements recorded at Dongola
station in Egypt. The analysis of the results concluded
that the fuzzy model was successfully able to build a
relationship between the model input (i.e., historical
measurements) and output (Le., current measurements).
The results for both training and testing cases had a high
VAF value, which mean good modeling capabilities. The
fuzzy rules were developed based on the Takagi-Sugeno
type model. The Gustanfson-Kessel (GK) algorithm was
applied to determine the antecedent membership
functions and the least-square estimation was used to
determine the consequence parameters.
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