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Abstract: The purpose of this study was to investigate the transport properties of a random dimer model in 1 D.
A Kronig-Permey model with 8-peak potentials is used to examine how the resonance energy is affected by the
electric field. We discussed the influence of an electric field on the nature of the electronic states and compared
the result to the case without field. We found that there are important differences, mainly for a large system size
I.. Localized wave functions have been obtained at particular energies which make transition between extended
and stretched-exponential localized states. The most inportant conclusion so obtamed 1s that the electric field
applied to such systems suppresses progressively the effect of the correlation, the transmission coefficient
decreases leading to the absence of transport in this kind of electrified chains.
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INTRODUCTION

There is a growing interest for questions pertaining
to wave spread in disordered lattices, which are related to
the search of optical or acoustic localization and recently
of cold atom localization (Economou and Alkire, 1988,
(JTohn and Stephen, 1983; Skipetrov et al, 2008). The
well-studied case of electronic systems with independent
site disorder does not fully cover all cases of such
wavelike excitations in complex media. A well-known
result of the Anderson model for the site energy 1s the
absence of long- range transport in one dimensional
system. All electromic states in one diumension are
exponentially localized regardless of the amount of
disorder (Anderson, 1958).

Much attention has been paid to special disorder
correlations for which new phenomena are expected to
appear. For instance, although Anderson localization
occurs in one dimension, one finds partial delocalization
even for an infinitesimal amount of disorder m the
presence of correlations (Datta ef al., 1993, Sanchez et al.,
1994). A number of recent works dealing with tight-
binding Hamiltonian strongly suggest that the occurrence
of correlations in neighbour random parameters are not
independent with a correlation length (Evengelou, 1990),

(Dunlap et af., 1990, Wu and Phillips, 1991). Furthermore,
the existence of a mobility edge between extended and
localized states was found for 1D random system with
weak long-range correlated disorder) (Molina, 2005;
Esmailpour ef al., 2006). Long-range disorder nduces the
appearance of delocalization and long range transport.
The Random Dimer Model (RDM) can be shown to
be an example of the correlated disordered system. In this
1D random model, the site energy takes one out of two
possible values, one of which is distributed at random to
pairs along the chain, so that the correlation length
coincides with lattice spacing. On the basis of this interest
the authors claimed that the RDM has N states which
are extended over the whole sample, with N the number of
sites in the system. A discrete number of extended states
was found numerically (Evengelou and Wang, 1993),
{(Evengelou and Economou, 1993) and was observed
recently in the experiment with semiconductor random
superlattices (Bellani et af., 1999). In Kronig Penney
model, the electronic field delocalizes the eigenstates
where the wave functions decay with a power
(Soukoulis et al, 1983; Cota et al., 1983), in this regime,
checked experimentally. For
sufficiently large field strengths, the eigenstates become
extended (Markos and Kramer, 1993; Markos and

the resistance was
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Henneke, 1994). When the electric field vanishes, it is
well-known that the spectrum is then pure and dense),
(Abrahams ef al., 1979, Landauer, 1970). The wave
functions are exponentially localized, with a localization
length that decreases with increasing disorder (Mott,
1968). The transmission coefficient has been used
successfully to analyze the nature of the electronic states.
The effect of exponentially localized eigen-states can be
observed in the exponential decreases of the transmission
coefficient with the length of the system (Anderson et al.,
1980, Thouless, 1974). Moreover, the cormection between
resistance, or more precisely, conductance and
transmission coefficient can be carried out via Landauer
formula (Landauer, 1970). One find:

In(1+p)=-"2T

with p the resistance. Such a behaviowr can be expected
from the self-averaging of the Lyapunov exponent 7y
which 1s the mverse of the localisation length in 1D
systems. This characteristic length 1 is defined as:

[

Fl=——L11InT
2L

This parameter is always positive and describes the
spatial scaling properties of a disordered system
(Soukoulis and Economou, 1981 ; Liffshitz ef af., 1988).

In this study, we first discussed the delocalization
induced by correlations in the Kronig Penney model.
Here, we used an array of &-function potentials with
independent random strengths and study numerically the
transmission properties for a finite length of the lattice.
We derived exact results for the main characteristics of
the model using a transfer matrix combmed with a
Poincaré map approach. Secondly, we examined the size
dependence of the transmission coefficient of a linear
RDM chain subject to electric field. When F = 0, the
transmission coefficients at particular energy close to 1
and a deep mimimum around the resonant energy in the
resistance is found, indicating that the localization length
of those states is large. For F # 0, we observed that the
transmission decreases with increasing F where F 1s the
electric strength. However, this mimmum disappears and
the values of resistance become extremely large. As soon
as F is present, the electron gains the energy V(x): V(x) =
-Fx. This electrical potential suppresses the resonance
energy induced by correlation. That mduces a transition
between extended and localized behaviour. Finally, we
discussed our calculations of the Lyapunov exponent that
indicate that all states around the resonance m the

presence of the electric field have a localization length
smaller than the system size. We expected from this result
a mobility edge that depends on the strength of the field
in the RDM.

MODEL

Here we considered a 1D Kronig-Penney model with
random §-function potentials subject to an applied electric
field. The problem 1s defined by the Schrodinger:

7§+ Sh80x ) ¥ (x)<E¥(x) (D

where, A, is a set of independent random variables that
measures the strength of the d-potentials. Here E is the
energy of the electron measured in atomic units and ¥ is
the wave function. We proceed with the problem of the
disordered lattice containing a certain number of pair
impurities placed randomly. We kept the positions of the
d-functions to be regularly spaced {x, = n} but we
introduced a correlated disorder, for which A, takes only
two values: A and A', where appears only in pairs of
neighbouring sites (dimer impurities). The electronic
potential V(x) 1s given by -Fx term n Eq. 1 with Fdenoting
the electric field strength..

In this section, we presented a numerical study of the
transmission coefficient of this model. Our approach is
inspired by Soukoulis et al. (1983), Flores et al. (1989)
who investigated the transmission coefficient and the
nature of the electronic states in 1D disordered systems.
They found that the transmission coefficient behaves as,
with fol This reveals power-law localization.

F

Here, we calculated the transmission coefficient Tin
the above model (RDM) using the transfer matrix
approach. We took an electron impinging from the left of
a set of §-function potentials with wave function ¥ (x) =
e'»*+me % The energy of the electron is E = ¢’y with g,
the momentum of the incident electron. The wave function
1n the right-hand side of the sample of length L 15 ¥(r) =
Ty e** Here q =+/E+FL with I = N+2; gdenotes the
momentum of the emerging wave. t, and r, are the
transmission and the reflection amplitudes of the RDM
with N scatterers respectively between two impurities, we
will replace V(x) by a constant value so that the solution
between two impurities are plane wave functions
(Soukoulis ef al., 1983; Cota et al., 1985).

However, this 1s valid only when the electric potential
between the ends of a sample 15 infinitesimally small.
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The solution of Eq. 1 can be computed recursively for
both transmission and reflection amplitude using well-
known transfer-matrix technics (Kirilov and Trott, 1994).
Then, the transmission amplitude can be written as:

A, { o, + g_&‘}An_l - [BB_nJAn" (2)

where A, = t, and:

a]={1— '[LJAJ }, B, =—1[L}x]e‘% (3)
2q, 2q,

Equation 2 supplied two boundary conditions,
Ag=1land A, =1 to determine the amplitudes completely.
g, 18 the momentum of the electron at the site n. Fmally,
the transmission coefficient can be calculated for each
chain from:

=% 1 4
q, Ity
RESULTS AND DISCUSSION

We first discussed our numerical results on the
transmission coefficient for a RDM and mvestigated what
changes occur when the electric field 1s applied along the
lineair chain.

We choose for convenience the length 1. = 1000 and
a dimer concentration equal to 201%. We fixed A =1 for the
values of potential strength of the host lattice and A' = 1.5
for the dimer impurities.

Present results are similar to the ones obtained in by
Sanchez et al. (1994), Dunlap et al. (1990), where a uruque
energy was found in the allowed band (recall their model
is a single band) and where a perfect transmission T = 1
was see in the RDM. In such case, the system of
electronic  transport ballistic.  Thus,
nondecreasing transmission coefficient for particular
energy shows the existence of extended states arrown this
one.

becomes

In Fig. 1, we showed the transmission coefficient
versus energy for intervals near the first resonance. The
spectrum of the Kronig Penney model follows the
equation |2q cos gt sin q| <1 (this is the condition to be
able to move in the perfect lattice) when 4 1s fixed. Here,
we have averaged the transmission coefficient for 1000
realizations with an accuracy of 11%. We found that
around the first resonance E, = 3.75 the transmission
coefficient reaches values very close to 1. All realizations
show the same peak around E_. It is clear from Fig. 1 that

the states close to the resonant energy have good
transmission properties, similar to those of the resonant
energy.

When F # 0 | there are some unportant differences
with respect to the case F = 0. For the same concentration
of dimer impurities, we observe that the transmission
coefficient decreases for a field as small as 5.107*. In this
case, the small F will only slightly shift the resonant
energy and the transmission coefficient will completely
vanish.

We showed in Fig. 2, the resistance of a RDM in both
the presence and the absence of an electric field with the
same concentration of mpurities. The lower curve,
corresponding to a dimer model with F = 0, extubits a
mimmum resistance about ten orders of magnitude below
the resistance for 10~ (the middle curve). For the F
considered in Fig. 2, the curve saturates to essentially a
constant value with energy. However, the resistance
becomes extremely big compered to the same RDM

1 -
0.8
0.6
0.4

0.2

0.0

Fig. 1: Plot of resistance versus energy in RDM, with
1. = 10" for different values of the electric field

Fig. 2: Plot of resistance versus energy in RDM, with
1. = 10" for different values of the electric field
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without electric field Such as the localization scenario is
quite different in the presence of an electric field.

The dependence of the resistance with system size
15 useful to study the spatial structure of the electronic
states. Exponentially localized states lead to a nonohmic
behaviour of the resistance, which increases exponentially
with the system size.

In Fig. 3, around the resonance, the resistance has a
constant value which indicates that the band of state exist
with very good transport for a dimer model without field.
In this case, the effect of the correlation in the random
dimer potential 13 dominant, the electron gains more
kinetic energy behaving essentially as a free particle in a
potential well.

Not only the resonant energy has a low resistance for
any length of the chain (lower curve), but also when F 1s
far from zero F = 10, the plot shows a relatively small
resistance, exhibits a good behaviour (middle curve). For
F = 510" and for large L the resistance rises quickly to
large values.

To investigate the nature of electronic states around
the resonance, we have analyzed the average scaling of In
T with the system size.

In Fig. 4, we showed the results for {In T) versus L
for a fixed value of the energy and for different values of
field. First, as was done for the resistance, we compared
ourresults to the size dependence of transmission

let+18

coefficient when the electric field is present. We saw that
for F = 0 the curve is flat and {In T} reaches a constant
value. We concluded that the states are extended. These
extended states are not of the Block-type encountered in
periodic solids (Hilke and Flores, 1997, Xiuging and
Kintian, 1997).

When F = 0 on the other hand, we observed three
things. For small L<2000 we obtaned similar behaviour as
for F = 0 However, for increasing F, the value of <In
T>changes considerably for relatively small changes of F
which suggests exponential decreasing for transmission
coefficient, with an exponent that depends on F. For
L=>700, the electronic states are stretched exponential-
localized. This means that this phase has a zero measure
in the thermodynamic limit. For F = 5.107 this phase, will
diverge for large L. Here, the system will be retum to
equilibrium.

We investigated the Lyapunov coefficient which
represents the mverse of the localization length /. As 1s
shown m Fig. 5, when F = 0, energies close to the
resonant energy E, have y-<107". This is in agreement with
the notion that delocalization of the electronic states
oceurs {,>10%

When we increased F, we observed an mcrease of
the Lyapunov exponent that stays much smaller than one.
This effect coincides with the standard definition of v)
(Laffshutz et al,, 1988). The localization can be explained by

le+16
le+14
le+12
1e+10 F
1e+08
1e+06
10000

100

0 1000 2000 3000 4000

5000 6000 7000 8000 9000
L

10000

Fig. 3. Plot of the resistance p versus length I, at the resonant energy E.For F = 0 (dark) a band of state exist with very
good transport. For F = 0, a good transport exist for L>700 (red). IfF = 5.107* (blue) the resistance converges to

a large value
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-<InT>

0 2000 4000

Fig. 4. Plot of {In T) versus length I at the resonant energy E, for different values of F F = 0 (dark), F= 10"{-4} (red) and

F=510""blue)

0,001

0,0001

le-05F

le-06F

2.5 3 3.5 4 4.5

Fig. 5: Plot of Lyapunov exponent versus energy with
L = 10" and for different values of strength of field
F=0(dark), F=10"" (red) and F = 5.107* (blue)

the fact that when the electric field strength is increased,
the effective potential component as FN>E, indicating that
the states decay as exponential-law. We concluded that
the delocalization-localization can be observed in dimer
systems field suppresses
progressively the effect of the correlation.

such as the electric

CONCLUSION

We have studied the effect of electric field on a linear
chain with correlated disorder. To analyze the properties
of electronic transport, we have used the Kromg-Penny
model. Based on the results, we have noted that the

electric field impedes the movement of the electrons in the
presence of correlation. For relatively small field, we
notice that the transmission is stretched exponential-law
decaying with the length. This decaying depends on the
strength of the electric field.

The electric field has an effect on the resonance
energy that carries with it a variation of transmission
coefficient which influences the nature of the electronic
states. The Lyapunov exponent was also used to analyze
the localization length, we have found out that when the
electronic field mereases, the Lyapunov exponent is
saturated by a constant value that is lower then the
system’s size, which indicates a localization of the
electronic states.
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