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Semi-analytical Buckling Analysis of Stiffened Sandwich Plates
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Department of Civil Engineering, Hashemite University, 13115 Zarga, Jordan

Abstract: Buckling of simply supported rectangular sandwich plate with multi-blade stiffeners is addressed
herein. The main objective was to present and validate an approximate, semi-analytical computational model
for such plates subjected to m-plane loading. The faceplates are modeled as shear-deformable plates using
first-order Shear Deformation Plate Theory (SDPT). The core of the sandwich panel is treated as
three-dimensional body. The stiffeners were added at the upper faceplates and modeled as simple beams with
flexural stiffness only against out-of-plane bending. Nonlinear finite element analysis was used to verify the
accuracy of the presented model. The results of the presented model are, in most cases, found to be in a good
agreement with fully nonlinear finite element analysis results. The presented model allows for a very efficient
analysis with relatively high numerical accuracy and low computational efforts compared to fully nonlinear finite
element analysis results. A munber of applications have been described, with the aim of demonstrating the

capability and versatility of the presented approach.
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INTRODUCTION

Sandwich plates have been used widely in many
branches of engineering such as aerospace, shipbuilding,
construction and other ndustries where strength,
stiffness and weight are mportant. Sandwich panels
commonly consist of two thin skins of high strength and
stiffness surrounding a relatively thick and lightweight
core. Usually, a panel might be made with skins of
1sotropic materials such as steel sheets or anisotropic
materials such as carbon or glass fiber and an epoxy
matrix, attached to isotropic or anisotropic core such as
honeycomb, balsa or expanded foam core. The faceplates
in the sandwich plates provide the primary load carrying
capability, while the core carries the transverse shear
loading.

Buckling of sandwich plate 1s an important 1ssue mn
designing many structural systems. It is one of the main
modes of failure of these structures when subjected to
different work load conditions. Sandwich plate may buckle
n various modes depending on the material properties of
the face sheets as well as the core and thewr relative
stiffnesses. To use sandwich plate efficiently, it is
necessary to develop appropriate models capable of
accuwrately predicting the buckling behavior. This
phenomenon has been mvestigated by many researchers
over the past years (Rao, 1985, Kim and Hong, 1988;
Ko and Jackson, 1993; Aiello and Ombres, 1997; Hadi and
Matthews, 1998; Cetkovic and Vuksanovic, 2009). Allen
(1969) for example used a three-layered model for the
analysis of sandwich beams and plates. However, the

analysis was based on the first-order shear deformation
theory. Higher-order shear deformation theories have
been employed to predict the buckling load of sandwich
plates (Frostig, 1998; Kant and Swaminathan, 2004,
Dafedar et al., 2003; Pandit et al., 2008). Frostig (1998)
obtained local and general buckling loads for sandwich
panels consisting of two faces and a soft orthotropic core.
Kant and Swaminathan (2004) presented a displacement
based higher-order formulation based on an Equivalent
Single Layer (ESL) theory, which cannot accurately
predict the local buckling modes. Dafedar et al. (2003)
presented analytical formulation to predict general
buckling as well as wrinkling of a general multi-layer,
multi-core sandwich plate having any arbitrary sequence
of stiff layers and cores. However, these higher-order
models that involve additional displacement fields are
computationally expensive in the sense that the number
of unknown to be solved 1s high compared to that of the
first-order shear deformation theory.

Stiffeners had been used widely in the composite
laminated panels to increase the buckling load, improve
the strength/weight ratios and reduce costs of structures.
A great deal of attention has been focused on plates
reinforced by stiffeners to improve their buckling
behavior. Since the analysis of lammated composite
stiffened panels 1s complex; many researchers used
numerical methods such as FEM to clearly understand the
buckling behavior of composite panels and to develop
some guidelines and curves, which will be helpful for the
designers (Kolakowski and Kubiak, 2005, Kim, 1996,
Kang and Kim, 2005, Perry et ¢l., 1 997, Bisagni and Lanzi,
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2002, Nemeth, 1997, Pecce and Cosenza, 2000,
Iyengar and Chakraborty, 2004; Alima, 2005; Mallela and
Upadhyay, 2006).

This study 138 mamly concemed with the buckling
behavior of simply supported rectangular sandwich plate.
The sandwich panels consist of orthotropic core and
composite laminated plate skin reinforced with isotropic
blade-stiffeners in multi directions. The stiffeners were
added at the upper faceplates, while the lower faceplates
were left without any stiffeners. The core of the sandwich
panel is treated as three-dimensional body. The first-order
Shear Deformation Plate Theory (SDPT) 18 used to
represent the behavior of the face sheets whilst the
stiffeners is modeled as simple beams with flexural
stiffness only against out-of-plane bending, the face
sheets are subjected to two types of loading, urnaxial and
biaxial, loading. Due to the complexity of the problem, the
energy method as well as the fimte element method are
used in this study. The results of the two methods have
been compared for verification of the presented models.
This study was conducted at Civil Engineering
Department, Hashemite University, Jordan. The duration
of the project is June 2008 to June 2010.

BASIC EQUATIONS AND PROBLEM
FORMULATION

The elastic buckling load of a perfect sandwich
stiffened panel (length a, width b and thickness h) is
computed using Rayleigh-Ritz method with the
coordinates xy along the in-plane directions and z along
the thickness direction (Fig. 1). The through-thickness
variations of the displacement (I,¥,w) at point (x, v, z) in
the two faceplates are expressed as a function of
mid-plane displacements u, v, w and the independent
rotations ¢, and ¢, of the normal in xz and yz planes,
respectively. The following basic assumptions are used in
the analysis: (1) the three layers forming the sandwich
plate are perfectly bonded together, (2) each layer is of
uniform thickness (3) the material of each layer is linearly
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Fig. 1: Co-ordinate system for sandwich plate with multi
directional blade stiffeners

elastic and (4) the strains in the sandwich plate are small.
The assumed displacement field, which satisfy the
boundary condition of a simply supported plate, is given
by the form of fourier series:

2

0] (1a)

2

i :O] (1b)

Since, the core is located between the two face sheets
its depth depends on the displacement pattern of the face
sheets and on the differences of the deflections between
the upper and the lower face sheets. The effects of the
existence of the high-order geometrical non-linearities of
the core can be neglected (Frostig et al, 2003), which
implies that the core actually can remains in a linear state
of deformations 1in spite of the large deformations of the
sandwich panel.
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where, the sub-notations u, 1 and ¢ are refer to upper face
plate, lower face plate and core of the sandwich plate
respectively. The unknown coefficients (Qu, Aue B R
Como Dy P Jun) Tepresenting generalized displacements
amplitudes. The independent rotations can be represented
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4 =0, W, (2b)
¢
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The unknown coefficients (S, G Puaw N
representing generalized rotations amplitudes. The
displacements at a general point in each of the three zones
can be expressed separately as:

o, =u,+z.0,

vV, =V, T zuq)yu

Ww.=w, (3)
U= u, +2z,0,

vi= vtz

The strains at general point can be expressed in term
of linear and nonlinear strains. The linear part of
strain-displacement relations {€}, has been used to derive
the face plate's lamina property matrices. On the other
hand, the non-linear strain-displacement relations {e},,
have been employed to derive the geometric property
matrices of the face plate's lamina:

{ef={e}, +{eh, (4)
The linear part of strain-displacement relations {&},

can be expressed separately for the upper and lower
faceplates as:

(1), =2.0,

(e5), =2,%,

(v2,), =0,0,+0,7, (5a)
(v), =W, +0,

(i), =2, + 4,

3, (5b)

where, the (%), and ("), are refer to the linear strain in the
upper and lower faceplates respectively. The second
order strain (€),, for the upper and lower faceplates is
expressed as:

(), = 5[(Bxﬁ1)(ayﬁl)+ (,9)(0,7) + (axwl)(aywl)}

Herein, the core 15 modeled as a three dimensional
solid element assuming the in-plane displacements vary
quadratically through its thickness whilst the out-of-plane
varies lmearly through the thickness (Yuan and Dawe,
2004). The full set of the six component of linear strain
which are taken mto account in the core are defined as:
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The stress-strain relationship at a general point in the
upper and lower faceplates for orthotropic laminated
omposite material 1s defined as:

'l [Q, Q, 0 0 0 (Er )L
x 11 12 =
oil |Q, @, 0 0 0 (=),
we=l 0 0 Q. 0 o |{(v) (8a)
=l o 0 0 Q 0|
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where, the (0%) and (¢') are refer to the stresses in the
upper and lower faceplates respectively. For the
orthotropic material which represents the behavior of the
core, stresses at a material point in local rectangular
Cartesian coordinate axes are defined as:

a, & G &3 O 0 0|2
a; C; € € 0 0 0|
g, . Gz € Gz O 0 0 )¢ (80)
g 0 0 ¢y 0 0 ||y,
T 0 0 ¢ 0|y
Toy 0 0 0 0 0 cyullvy,

According to the principle of conservation of energy,
the potential energy, ITI', of a typical ith layer enclosing a
space volume, V, can be expressed as:

M =u'+w 9)

where, U' represents the strain energy stored i the
sandwich panels and W' indicates the work done by
externally applied stresses o', and ¢',; acting in the x and
v directions, respectively. The strain energy due to the
two faceplates and core of the sandwich panels is given
as:

1 ba N 2

U= [[[e" ][], d.d,d.,
—t,/200

U, =2 o T )ad, (10)

2—0.“!'2!] 0 ;

1 B2 ba T
U= [[e'T ] ddaq,

[i}

For the case of sandwich panels with blade-isotropic
stiffeners, two modes of buckling are usually considered,
the local buckling of the plate between the stiffeners
and the overall buckling (primary buckling) of the
plate-stiffener combination. Herein, the derivation of
buckling load is concern with the primary buckling. The
assumed displacement field for the stiffeners is given by
the form of fourier series:
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Fig. 2: Cross-section of an eccentric stiffener

where, 7, and K, are the location of the stiffeners in the x
and y direction respectively. The bending strain energy
due to the stiffeners can be given as:

=X 0w e+ 35 [0, (12

L= [(z-2,) dA, +D,t7? (13)
A,

where, 1, " and I, ™ are the effective moment of inertias
about the axis of bending for the stiffeners in the x and y
directions, respectively. z, 18 the distance from the plate
middle plane to the centroidal axis (through the centre of
area) of a section consisting of the stiffener and an
effective plate area of width b,. In the case of an eccentric
stiffener, the stiffener will lift the axis of bending above
the middle plane (Fig. 2). The effective moment of mertia
mentioned in Eq. 13 is an approximation, whose accuracy
will depend on the assumed value of b,. Tt is found that
z, = 0 is an acceptable value for eccentric stiffeners in
many practical cases as well In practical design work, a
z-value calculated with a b, of about b, = 20t has been
suggested (Brubak, 2005; Brubak et al., 2007). Herein, the
stiffeners have been modeled as simple beams with
flexural stiffness only against out-of-plane bending. This
simplification implies that possible torsional and local
buckling of stiffeners cannot be predicted. This may not
represent a serious limitation in practical cases since the
practical constructional stiffener specifications in typical
design rules generally impose constructional design
prevent any local buckling of the stiffeners. Thus, the
simplified stiffener model seems like a reasonable one
(Brubak and Hellesland, 2007).

The potential energy of the externally applied
stresses 0, and o', acting in the x and y directions for
the upper and lower faceplates 1s given as:
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By substituting the expressions for strain energy and
the work done in Eq. 14, the potential energy for the
sandwich panels with blade isotropic stiffeners can be
expressed as follows:

[M=U,+U, +U +U +W (15)

where, U, U, U, U, are the stramn energy of the upper
faceplate, core of the sandwich plate, lower faceplate and
stiffeners in the x and v directions respectively, while the
W 18 the potential energy of the external applied stresses
0., and o' acting in the X and y directions on the top and
bottom faceplates. Substituting Hq. 10, 12, 14 into Eq. 15
and differentiation with respect to the coefficients
(U Ae Brnes Rz Corme Dz Froe T Sie G Lo i) @12
by setting the vanation m the total potential energy equal
1O ZETO O ay moy Fou o Do R e S O P Mo 11 = © . The critical
buckling load for sandwich plate with multi-blade
1sotropic stiffeners subjected to umaxial or biaxial loads
can be found On other words, by minimizing the total
energy II, the governing equations can be derived as:

(K+3K;)8=0 (16)

where, the K and K, are the standard stiffness and
geometric stiffness matrices, respectively. A is the critical
buckling stress. 8 is the vector of generalized degrees
of freedom associated with the displacement field
functions This governing equation was mcorporated mto

MATHEMATICA software in order to determine the
critical buckling stresses of the sandwich blade-stiffened
panels.

FINITE ELEMENT MODELING FOR
BLADE-STIFFENED SANDWICH PANELS

Modeling composite stiffened sandwich panel needs
extra attention in defining the properties of the sandwich
plate components. This type of modeling is associated
with mmnerical difficulties that require a very experienced
user with a large background and experience with non-
linear FEA modeling. However, this type of analysis is
very expensive in term of computational time and memory
needed. In the present study, Eigen-buckling analysis 1s
performed for the sandwich blade-stiffened panels using
a finite element package ABAQUS. The FE model is
composed of mainly eight noded quadrilaterals,
stress/displacement solid elements with large-strain
formulation (C3D8) for all stiffened sandwich panel
components (faceplates, core and stiffeners) as shown in
Fig. 3. Fach node has three degrees of freedom
(ABAQUS, 2004). Tied constrains were applied to obtain
a full bond between the faceplates, core and stiffeners.
Simply supported boundary conditions were applied at all
edges of the faceplates and core by restraining the motion
in the z direction and allowing for free rotations. The
composite sandwich stiffened panels are divided mto
sufficient number of elements
development of buckling modes and displacements. Some
trial runs were also carried out to study the convergence
of the results. For uniaxial loading, the compressive loads
were applied in the x direction, while for biaxial loadings,
the loads were applied 1 the x and y directions of the
faceplates as shown in Fig. 1.

to allow for free

Fig. 3: FE model for stiffened sandwich panel
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Fig. 4 FE model for isotropic sandwich panel (a) cross-section of the hat-stiffened sandwich pane andl (b) general

view (FE mesh)

Table 1: Comparison of results between current study and results available
in the literature for critical transverse buckling loads (N, (KN/m)
for simply supported double-hat stiffened sandwich plates

Aspect ratio (b/a)

Solution method 1.0 1.5 2.0

Heder (1993) (analytical approach) 680.00 505.00 477.00
Heder (1993) (FEM) 857.00 632.00 582.00
Yuan and Dawe (2004) 777.52 569.52 524.52
Present 768.00 564.00 520.00

In order to verify and validate the FEM described
above, three simply supported rectangular sandwich
plates of deferent aspect ratio were considered here. A
single central double hat-stiffener was added along the
length (a = 2000 mm) of the sandwich panel inthe
x-direction as shown in Fig. 4a and b. The panels width 1s
b, with b/a = 1, 1.5 and 2 m turn. Transverse uniform
stresses (0,) were applied at the upper and lower
faceplates. The isotropic material properties adopted in
this example for the faceplates and stiffeners are defined
by Young's modulus E = 12.5 GPa and Poisson's ratio
v =0.25. While the isotropic material properties of the core
are defined by Young's modulus E = 0.22 and Poisson's
ratio v = 0.3 (Heder, 1993; Yuan and Dawe, 2004). Table 1
shows a comparison between the current study and
results available in the literature for the three stiffened
sandwich panels. From these results, it can be observed
that the present study and the values available in the
literature are in good agreement. In this comparison, it's
notable that the results provided by Heder FE model are
higher than the results provided by Yuan and Dawe
(2004) and the current model. In the FEM provided by
Heder (1993), the faceplates and stiffeners are modeled
using four-node shell elements, while the core is modeled
using eight-node solid elements. Tt's noted that the
assembly of shell and solid elements 13 not fully
compatible. Also the method of applying boundary
conditions and loads is somewhat different in details from
that specified in the current study. On the other hand, the

results provide by Heder (1993) analytical approach 1s
lower than the current study results. This 1s mainly due to
the considerable level of assumptions and approximations
in his simple analytical model. This explains most of the
marginal difference between the results provided by Yuan
and Dawe (2004) and the current study in one side and the
results provided by Heder (1993) on the other side.

NUMERICAL EXAMPLE

The study, here, has been focused on the buckling
behavior of simply supported stiffened sandwich plates
subjected to in-plane compressive loads (uniaxial and
biaxial loads). A number of applications have been
described, with the aim of demonstrating the capability
and versatility of the presented approach. Unfortunately
there 1s a shortage of earlier solutions with which to
compare numerical results. In order to overcome this
problem, the finite element model described mn the
previous section will be used to provide solutions for
comparison with those arising from the semi-analytical
model. The material properties for the faceplates and the
core of the sandwich panels are given in Table 2. Tn this
table E,, E,, F; are the modulus of Elasticity, G, G5, Gy
are the Shear modulus corresponding to the planes 1-2 ,
1-3 and 2-3, respectively and v, Vv;, v, are the
The adopted elastic
material properties for the isotropic stiffeners in each

corresponding  Poisson  ratios.

computation are Young's modulus E = 200 GPa and
Poisson's ratio v = 0.3,

Example 1: Sandwich plate with orthotropic face-sheets
and orthotropic core: A square symmetric sandwich
plates have been analyzed for predicting the critical
buckling stresses: The plate dimension (axb) is
1000 mm>1000 mm. The thicknesses of the upper and
lower face-sheets are t, =t, = 5 mm. The thickness of the
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Table 2: Material properties of the sandwich plate

Mechanical properties Faceplates Core
E, 1.9x10° Gpa 3.2x1071 GPa
E; 10.0 GPa 2.9x1074 GPa
E; 10.0 GPa 4.0 GPa
Gy 5.2GPa 2.4x1072 GPa
Gas 338 GPa 6.6x107! GPa
Gy 5.2GPa 7.9x107! GPa
Vg 0.32 0.99
Va3 0.49 3x1077
Vg 0.32 3.2x107°
2000+ ——FEM (Uniaxial) = Eq. 16 (Uniaxial)
—— FEM (Biaxial) - Eq. 16 (Biaxial)
15004
o
= 1000
O
&
500 S
Fr'r"‘"""m
0 T T T T T T T 1
0 0.01 002 0.03 004 0.05 006 0.07 0.08

Ratio of core thickness to plate width (z./ b)

Fig. 5: Nondimensional buckling stress for orthotropic
sandwich panels subjected to uniaxial {o,,/0,, = 0)
and biaxial (o,/0,, = 1) stresses

@ (b)

Fig. 6 FE model for orthotropic sandwich panel subjected
to uniaxial stresses (a) general view (FE mesh) (b)
first mode shape

l/bs

orthotropic core (t,) is varied from 10mm up to 80 mm. The
compression stresses were applied in umaxial and biaxial
directions as shown m Fig. 1. The general buckling
stresses obtaned from Eq. 16 were compared with the FE
model and shown in Fig. 5. It can be concluded that the
calculated wusing both techmiques (Energy
approach and FE analysis) are found to be fairly m good
agreement. The buckling mode shapes obtained are similar
in respect with the buckling mode shapes available in the
literatures as shown in Fig. 6a and b.

results

Example 2: Square stiffened sandwich plate with
orthotropic face-sheets and orthotropic core: The first
illustrative example considered here is a square symmetric
blade-stiffened sandwich plates: The plate dimension
(axb) is 1000=x1000 mm. The thicknesses of the upper
and lower face-sheets are similar to the previous example
t,=t, = 5mm. The thickness of the orthotropic core (t,) 1s
varied from 20 mm up to 80 mm. One stiffener in each
direction was added at the top of the faceplates as
shown in Fig. 7a-c. The height of the isotropic
stiffeners 1s (h,) = 50 mm, while the width of the
stiffeners is (b,) =5 mm. The face sheets were subjected
to compression uniaxial and biaxial stresses (o,,/0,, = 0.0,
0.5, 1.0 and 2). The nondimensicnal critical buckling
stresses obtained using the semi-analytical model (Eq. 16)
for stiffened sandwich plates were compared with the FE
model and shown in Fig. 8. Tt can be clearly seen from the
figure that the results calculated using both techniques
{energy approach and FE) are found to be fairly in good
agreement.

The second example concermns with a square
sandwich plate (a = b = 1000 mm) stiffened with five blade
stiffeners in each direction as shown m Fig. 9a-c. All
dimensions of stiffeners and sandwich panels used in this
example are similar to the dimensions mentioned in the

1 A 1
b/2 @

(b)

al2 '
b/2

©

Fig. 7. FE model for orthotropic sandwich panel stiffened with one equally spaced isotropic stiffener in each direction
subjected to uniaxial stresses (a) location of the stiffeners (b) general view (FE mesh) and (¢) first mode shape

2984



J. Applied Sci., 10 (23): 2978-2988, 2010

—— FEM (5,/c, = 0.0)
—#—FEM (c,/5,=0.5) -
2500+ FEM (o,/c, = 1.0)
—— FEM (6,/5,=2.0) -

- Eq. 16 (5,/5,=0.0)
+ Eq. 16 (0,/5,=0.5)
- Eq. 16 (6,/0, = 1.0)
- Eq. 16 (0,/0,=2.0)

S % 6

2000

15004

6.b'/ (Eh)

10007

5007

0 T T T T T T T 1
0 0.01 002 0.03 0.04 005 006 0.07 0.08

Ratio of core thickness to plate width (t,/ b)

Fig. 8 Nondimensional buckling stress for orthotropic sandwich panels stiffened with one equally spaced isotropic
stiffener in each direction subjected to uniaxial and biaxial stresses

>
hs | | | | |
h |l |
! \ ! ! ! ! !
a6 T a6 | a6 | a6 | a6 [ ao |
b/6 b/6 b/6 b/6 bl6 b/6

@

(b) (0

Fig. 9. FE model for orthotropic sandwich panel stiffened with five equally spaced isotropic stiffeners in each direction
subjected to uniaxial stresses (a) location of the stiffeners (b) general view (FE mesh) and (c) first mode shape

previous example. Again the stiffeners have been added ——FEM (6,/5,=0.0) - - Eq. 16 (5,/0,=0.0)
at the top of the upper faceplate. The upper and lower —= ?EM gzi?éi ': EQ- Egﬁi?g;
fe.ice.sheets were subjected to compression uniaxial and 5000+ — FEM (G':'/Gi=2:0) - Eg: 16(6)‘/6:=2:0)
biaxial stresses (o, /0., = 0.0, 0.5, 1.0 and 2). The 40004
nondimensional buckling stresses obtained using the <
energy approach (Eq. 16) were compared with the FE o 30007
model and shown in Fig. 10. Tt can be clearly seen that the ”; 2000
comparison reveals very good correlation between the e
results of the fimite element model and the semi-analytical 10007
model. 0 T T T 3

0 0.02 0.04 0.06 0.08
Example 3: Rectangular stiffened sandwich plate with Ratio of core thickness to plate width (t/ b)
orthotropic face-sheets and orthotropic core: A
rectangular symmetric blade-stiffened sandwich plates Fig. 10: Nondimensional buckling stress for laminated
have been analyzed as an illustrative example for sandwich panels stiffened with five equally
predicting the crtical buckling stresses. The plate spaced 1sotropic stiffeners i each direction
dimension (axb} is 2000 mm >1000 mm. The thicknesses of subjected to uniexial and biaxial stresses
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10004 ——FEM (Uniaxial)- = - Eq. 16 (Uniaxial)
——FEM (Biaxial) - = -Eq. 16 (Biaxial)
750

o.b'/ (E)
w
[=3
9

2507

.‘\\““‘*\

————— .

T T T 1
0 0.02 0.04 0.06 0.08

Ratio of core thickness to plate width (t/ b)

Fig. 11:Nondimensional buckling stress for orthotropic
sandwich panels subjected to uniaxial (o, /a,, = 0)
and biaxial (0, /a, = 1) stresses

(@ (b)

Fig. 12: FE model for orthotropic sandwich panel stiffened
with one isotropic stiffener in each direction
subjected to umaxial stresses (a) general view (FE
mesh) and (b) first mode shape

the top and bottom face-sheets are similar to the previous
examples (t, = t, = 5 mm). The thickness of the orthotropic
core (t,) 13 varied from 20 mm up to 80 mm. Imitially the
sandwich plates have been analyzed without adding any
stiffeners to the upper faceplates. The results of the
nondimensional buckling stresses under a compression
uniaxial and biaxial loads conditions are shown i Fig. 11.
One stiffener in each direction was added at the top of
upper faceplates as a second illustrative example to
compute the critical stresses for the umaxial and biaxial
cases (0,/0,, = 0.0, 0.5, 1.0 and 2). The location of first
stiffener at a/2, while the location of the second stiffener
at b/2 as shown in Fig. 12a and b. The height of the
1sotropic stiffeners 1s (h,) = 50 mm, while the width of the
stiffeners 18 (b)) = 5 mm. Figure 13 shows the
Nondimensional buckling stresses for the sandwich plates
obtained using the energy approach (Eq. 16) and FE
model. It can be obviously seen that the results are found
to be in good agreement.

For all numerical examples showed in this study, it
can be clearly seen that adding stiffeners to the sandwich
plates will improve their behavior and increase their
buckling resistance. In fact, stiffeners are one of the most

—+—FEM (6,/G,=0.0) - % - Eq.16(c,/0,=0.0)
—&—FEM (5,/6,=0.5) - - Eq. 16 (,/c,=0.5)
2000- FEM (o,/5,= 1.0) - - Eq. 16 (c,/5, = 1.0)
—— FEM (6,/6,=2.0) --C - Eq.16(c,/0,=2.0)
1500 N
=
=
< 1000
rle
&
500
0 T T T 1
0 0.02 0.04 0.06 0.08

Ratio of core thickness to plate width (¢,/ b)

Fig. 13: Nondimensional buckling stress for orthotropic
sandwich panels stiffened with one isotropic
stiffener in each direction subjected to umaxial
and biaxial stresses

economical ways used to increase composite structures
buckling resistance capability (Brubak and Hellesland,
2007). It can be also seen from the figures that as the
thicknesses of the core increases, the non-dimensional
buckling stresses decreases. This doesn’t mean that the
over all buckling stress decreases. In fact as the
thicknesses of the core increases the buckling stresses
increases. It is worth mentioning that the comparison
between the semi-analytical model and FE model reveals
some notable discrepancies, mainly with the sandwich
plate supported by multi-stiffeners. This 15 mamly due to
the effect of the torsional stifthess which is accounted for
in the finite element model, but not in the energy method.
This explains most of the marginal difference between the
results for both umaxial and biaxial loading. It 13 also
worth mentioning that, the present method is found to be
more economic than a nonlinear FEM analysis (ABAQUS)
in term of computational time and memory needed to
compute the critical buckling stresses of the same problem
on the same computer. This clearly demonstrates that the
present method (Energy method) is comparatively very
efficient computationally.

CONCLUSION

In the present study, an approximate, semi-analytical
model has been derived for stability analysis of simply
supported sandwich plates reinforced with multi-blade
stiffeners. As there is a shortage in investigation on the
buckling of stiffened sandwich panels, 3D nonlinear finite
element model was presented and employed to provide
solutions for comparison with those arising from the
semi-analytical model. The comparison reveals very good
correlation between the results of the fimte element model
and the sermi-analytical model. Most of the margmal
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differences between the results are due to the effect of the
torsional stiffness of the stiffeners which 1s accounted for
in the finite element model, but not in the semi-analytical
model. The presented model 15 very efficient in terms of
computational time and memory needed compared to fully
nonlmear finite element analysis. Reinforcmg sandwich
panels could be an efficient and
economical way to increase their buckling resistance

with stiffeners

capability. Many new results are presented, which helps
to have some understanding regarding the structural
behavior under different situations. Also, these new
results could be useful for future
COILPArisons.

research and

REFERENCES

ABAQUS., 2004. Abaqus Analysis Users Manual.
Karlsson and Sorenson Inc., USA.

Atello, ML A and L. Ombres, 1997. Local buckling loads of
sandwich panels made with laminated faces.
Composite Structures, 38: 191-201.

Alinia, M., 2005. A study into optimization of stiffeners in
plates subjected to shear loading. Thin-Walled
Struct, 43: 845-860.

Allen, HG., 1969. Analysis and Design of Structural
Sandwich Panels. Pergamon Press, London

Bisagni, C. and L. Lanzi, 2002. Postbuckling optimization
of composite stiffened panels using neural networks.
Composite Structures, 58: 237-247.

Brubak, L., 2005, Semi-analytical buckling strength
analysis of plates with constant or varying thickness
and arbitrarily oriented stiffeners. Research report
in  mechanics, No. 05-6. Norway: Mechanics
Division, Dept. of Mathematics, University of Oslo;
65 pp.

Brubak, L. and T. Hellesland, 2007. Approximate buckling
strength analysis of arbitrarily stiffened, stepped
plates. Eng. Structures, 29: 2321-2333.

Brubak, 1. Hellesland, J. and E. Steen, 2007. Semi-
analytical buckling strength analysis of plates with
arbitrary stiffener arrangements. J. Constructional
Steel Res., 63: 532-543.

Cetkovic, M. and D. Vuksanovic, 2009. Bending, free
vibrations and buckling of laminated composite and
sandwich plates using a layerwise displacement
model. Composite Structures, 88: 219-227.

Dafedar, I.B. Desai, Y.M. and A A, Mufty, 2003. Stability
of sandwich plates by mixed, higher-order
analytical formulation. TInt. J. Solids Structures,
40: 4501-4517.

Frostig, Y., 1998. Buckling of sandwich panels with a
flexible core-high-order theory. Int. J. Solids
Structures, 35: 183-204.

Frostig, Y. T. Thomsen and I. Sheinman, 2005. On the
non-linear high-order theory of umdirectional
sandwich panels with a transversely flexible core. Int.
T. Solids Structures, 42: 1443-1463.

Hadi, BK. and F.I. Matthews, 1998. Predicting the
buckling load of anisotropic sandwich panels: an
approach including shear deformation of the faces.
Composite Structures, 42: 245-255.

Heder, M., 1993. A simple method to estimate the buckling
stress of stiffened sandwich panels. Composite
Struct., 26: 95-107.

Iyengar, N.G.R. and A. Chakraborty, 2004. Study of
interaction curves for composite laminate subjected
to in-plane umiaxial and shear loading. Composite
Structures, 64: 307-315.

Kang, J. and C. Kim, 2005. Mimmum-weight design of
compressively loaded composite plates and stiffeners
panels for postbuckling strength by Genetic
Algorithm. Composite Structures, 69: 239-246.

Kant, T. and K. Swaminathan, 2004. Analytical solutions
using a higher order refined theory for the stability
analysis of laminated composite and sandwich plates.
Struct. Eng. Mech., 64: 405-417.

Kim, C.G. and C.3. Hong, 1988. Buckling of unbalanced
amisotropic sandwich plates with finite bonding
stiffness. ATAA T, 26: 982-988.

Kim, K.D., 1996. Buckling behavior of composite panels
using the fimte elements method. Composite Struct,,
36: 33-43.

Ko, W.L. and R H. Jackson, 1993. Compressive and shear
buckling analysis of metal matrix composite sandwich
panels under different thermal
Composite Struct., 25: 227-239.

Kolakowski, 7. and T. Kubiak, 2005. Load-carrying
capacity of thin load-walled composite structures.
Composite Struct., 67: 417-426.

Mallela, U. and A. Upadhyay, 2006. Buckling of lammated
composite stiffened penels subjected to m-plane
shear: A parametric study. Thin-Walled Struct.,
44: 354-361.

Nemeth, M.P., 1997. Buckling behavior of long
symmetrically laminated plates subjected to shear and
linearly varying axial edge loads. TP 3659, NASA.
http: /catalogue.nla.gov.aw/Record/4131924.

Pandit, M.K., BN. Singh and A H. Sheikh, 2008. Buckling
of laminated sandwich plates with soft core based on

environments.

an mmproved higher order zigzag theory. Thin-Walled
Struct., 46: 1183-1151.

2087



J. Applied Sci., 10 (23): 2978-2988, 2010

Pecce, M. and E. Cosenza, 2000. Local buckling curves Rao, K.M., 1985. Buckling analysis of anisotropic

for the design of FRR profiles. Thin Wall Struct., sandwich plates faced with fiber-reinforced plastics.
37:207-227. ATAAT, 23:1247-1253.

Perry, CA., Z. Gurdal and J.H. Starnes, 1997. Minimum Yuan, W.X. and D. J. Dawe, 2004. Free vibration and
weight design of compressively loaded stiffened stability analysis of stiffened sandwich plates.
panels for postbuckling response. Eng. Optimization, Composite Struct., 63: 123-137.

28:175-197.

2088



	JAS.pdf
	Page 1


