

# Journal of Applied Sciences

ISSN 1812-5654





# An Experimental Evidence of some Lead Iodide Polytypes Compatible with the Dielectric Functions Model

<sup>1</sup>Mahmoud A. Hassan, <sup>2</sup>Mousa M. Jafar, <sup>3</sup>Marie Matuchova and <sup>2</sup>Basim N. Bulos <sup>1</sup>Department of Electronics Engineering, Princess Sumaya University, Amman 11941, Jordan <sup>2</sup>Department of Physics, Faculty of Science, University of Jordan, Amman 11942, Jordan <sup>3</sup>Institute of Chemical Technology, Technicka 5, 166 28 Prague, Czech Republic

**Abstract:** The wide-bandgap and highly-resistive lead iodide (PbI<sub>2</sub>) crystalline semiconductor has been considered as a promising room-temperature nuclear radiation detector in environmental applications. The PbI<sub>2</sub> single crystals yet grown, however, suffer from problems of phase transformation among its diverse polytypic modifications and formation of polytypes admixture during growth or under post-growth working conditions and from the presence of structural defects and native impurities that normally cause notable deterioration in the performance of devices integrating them. The behaviour of experimental dielectric constant  $\varepsilon_1$  of undoped melt-grown 2H-polyttype PbI<sub>2</sub> single crystals with isothermal annealing temperature  $T_a$  ( $\leq$ 94°C) may be taken as a sign for the occurrence of a reversible 2H=12R phase transition in them. However, the effect of reducing the amount of structural native defects and imperfections in such undoped PbI<sub>2</sub> crystals by thermal annealing cannot be entirely excluded. The measured room temperature value of  $\varepsilon_1$  at 1 kHz ( $\sim$ 6.5 for  $T_a$  = 94°C) of these PbI<sub>2</sub> single crystals is compatible with the findings of theoretical dielectric functions model and is consistent with experimental values of  $\varepsilon_1$  reported by other workers for melt- and gel-grown PbI<sub>2</sub> single crystals.

Key words: Lead Iodide, polymorphism, nuclear-radiation detector, dielectric constant, loss tangent

## INTRODUCTION

Several physical properties of lead iodide (PbI<sub>2</sub>) crystalline material were investigated by many researchers (Shah et al., 1997; Deich and Roth, 1996; Hermon et al., 1998; Shoji et al., 1998; He et al., 2007; Hayashi et al., 2008; Matuchova et al., 2005, 2006, 2009a, b, 2010; Hassan and Abdul-Gader Jafar, 2006; Jafar et al., 2009; Yadav et al., 1980; Dugan and Henisch, 1967; Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii et al., 1980; Konings et al., 1995; Palosz, 1983; Rao and Srivastava, 1978; Salie et al., 1987; Palosz et al., 1990; Bibik et al., 1985) because it is considered as a potential candidate for the use in future solid-state nuclear radiation detectors, which could work efficiently at Room Temperature (RT) or higher (<120°C) without cryogenic external cooling (Shah et al., 1997; Deich and Roth, 1996; Hermon et al., 1998; Shoji et al., 1998). PbI<sub>2</sub> crystalline wafers can be utilized in costeffective environmental portable devices for detecting uranium traces in drinking water. It has other feasible room-temperature medical and scientific applications, for example, in X-ray medical imaging systems and in laboratory X-ray and y-ray detectors in the intermediate energy range (1 keV-1 MeV).

The PbI<sub>2</sub> compound typically crystallizes in either the hexagonal (H) or rhombohedral (R) layered-sandwich Bravais lattice structure, with its constituent Pb- and I-atoms being positioned within weakly-bonded identical layers in a translational sequence of the type I-Pb-I-I-Pb-I-.... that are perpendicular to the c-axis (Palosz, 1983; Rao and Srivastava, 1978; Salje *et al.*, 1987; Palosz *et al.*, 1990; Bibik *et al.*, 1985; Shah and Wahab, 2000). In general, lead iodide single crystals can be grown from gel, vapour, or melt (e.g., Bridgman-Stockbarger growth method).

High quality  $PbI_2$  single crystals are very much suitable for exploiting them in the aforementioned electronic devices because high purity and perfectly crystalline  $PbI_2$  has many expedient physical properties such as, among several others, wide bandgap energy ( $E_g \sim 2.3 \text{ eV}$  at 300 K) and high electrical resistivity (>10<sup>11</sup>  $\Omega$ cm), thus giving rise to very low RT leakage current in devices integrating them, large mass density of 6.2 g cm<sup>-3</sup> (allowing the construction of small, compact portable devices), great stopping power for nuclear radiation (high atomic numbers of its constituent elements:  $Z_{pb} = 82$ ,  $Z_1 = 53$ ), good chemical stability (low vapour pressure) and good thermal stability with a high melting point ( $\sim 410^{\circ}$ C).

Unfortunately, even good lead iodide single crystals suffer from the presence of native (residual) impurities, lattice disorder and non-stoichiometry structural defects and imperfections (Shah et al., 1997; Deich and Roth, 1996; Hermon et al., 1998; Shoji et al., 1998; He et al., 2007; Hayashi et al., 2008; Matuchova et al., 2005, 2006, 2009a, b, 2010). Moreover, PbI2 possesses some awful polytypism features such as the coexistence (admixture) of more than one polytype structure in the same grown crystal or of polytypic phase transformations that may occur during growth processes and post-growth working procedures (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii et al., 1980; Konings et al., 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990; Bibik et al., 1985; Shah and Wahab, 2000). Polytypism phenomenon could be exhibited in a variety of layered crystalline compounds and some solids, which have the same underlying basic lattice structure and chemical composition, but which may have more than one structural phase that differ in the manner of structural stacking of the layers of the different constituent atoms of the solid (Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990; Bibik et al., 1985; Shah and Wahab, 2000; Raw et al., 2004; Saddow and Agarwal, 2004; Adolph et al., 1997).

The polytypism phenomenon and effect of coexistence of various polytypes and/or their developing by external agents in materials of technological interest becomes recently important (and controversial) issues. These problems are frequently encountered in pharmaceutical applications (drug manufacturing), where polymorphism in a solid drug would have impact on drug performance, chemical reactivity and patients intake safety (Raw et al., 2004). Polytypism effects can also be serious in electrical power applications utilizing very wide bandgap crystalline materials (e.g., SiC (Saddow and Agarwal, 2004)) and in solid-state nuclear radiation detectors using PbI<sub>2</sub> crystals.

Crystalline PbI<sub>2</sub> compound has a large number of different polytypes, which usually have diverse physical properties such as the scheme layer-stacking structure, crystallography patterns, electrical resistivity, dielectric constant and fundamental optical absorption energy-band edges (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii *et al.*, 1980; Konings *et al.*, 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje *et al.*, 1987; Palosz *et al.*, 1990; Bibik *et al.*, 1985; Shah and Wahab, 2000).

The main common basic types of crystalline PbI<sub>2</sub> polytypic modifications are the 2H, 12R and 4H polytypes, of which the most thermodynamically stable at room

temperature, is the hexagonal 2H-polytype form. Pure and highly stoichiometric PbI2 single crystals produced by the conventional vertical Bridgman-Stockbarger growth method appear to have a 2H-polytype structure (Shah et al., 1997; Deich and Roth, 1996; Hermon et al., 1998; Shoji et al., 1998; He et al., 2007; Hayashi et al., 2008; Matuchova et al., 2005, 2006, 2009a, b, 2010), but other workers have reported that PbI<sub>2</sub> crystals having the 2H polytype structure could be grown from gel or vapour (Konings et al., 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990). The rhombohedral 12R PbI<sub>2</sub> polytype structure may be formed as the product of some growth methods (Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990) or might be obtained by a suitable heat treatment of PbI<sub>2</sub> crystals having initially the 2H structure at an annealing temperature T<sub>a</sub> near 94°C (Salje et al., 1987). The hexagonal 4H-polytype PbI<sub>2</sub>, which is energetically instable at low temperatures, could be induced by a prolonged isothermal annealing of PbI<sub>2</sub> crystals with an initial 2H-polytype modification at temperatures over a rather wider range 140-200°C (with some disorder at high temperatures) (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii et al., 1980; Konings et al., 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990). It has been reported (Bibik et al., 1985) that laser irradiation of 2H-polytype PbI2 crystals cannot produce a 2H→4H phase transition but can induce irreversible 4H→2H phase transition.

It deserves noting here that the actual mechanism of polymorphism formation in the crystalline PbI<sub>2</sub> compound is rather complex and the true reason behind the nature of the polytypism phenomenon in this compound is yet unclear. Indeed, there is still a great amount of dispute about the nature of structural phase transformation even among its 2H, 4H and 12R polytypes, which might coexist in the same crystal in different proportions and no clearcut on the actual temperature around which a particular polytype of these forms would transform to another. Higher order PbI<sub>2</sub> polytypes could also exist in the hexagonal or rhombohedral lattice structures (Konings et al., 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje et al., 1987; Palosz et al., 1990; Bibik et al., 1985). The presence of non-stoichiometric and structural defects, imperfections, faults, native and/or extrinsic impurities in PbI<sub>2</sub> crystals may provoke creation or coexistence (admixture) of different polytypic forms.

The dielectric properties have been reported mostly on PbI<sub>2</sub> pressed powder pellets, but not much AC data on PbI<sub>2</sub> single crystals have been published in the literature (Matuchova *et al.*, 2009b; Hassan and Abdul-Gader Jafar,

2006; Jafar et al., 2009; Yadav et al., 1980; Dugan and Henisch, 1967; Salje et al., 1987). Salje et al. (1987) have used the dielectric constant and loss data of their initially 2H-polytype gel-grown PbI<sub>2</sub> crystals to show that a thermally-induced phase transition of the type 2H-12R had been occurred in these samples at an isothermal annealing temperature around 94°C. Dugan and Henisch (Dugan and Henisch, 1967) have studied the dielectric constant and loss of some gel-grown PbI<sub>2</sub> single crystals (of unspecified polytype form) as a function of AC-signal frequency and the ambient temperature of the samples, which were not subjected to prolonged thermal annealing in priori. The dielectric properties of melt-grown PbI<sub>2</sub> single crystals, the polytype of which was not specified, have been investigated by Yadav et al. (1980).

A recent renaissance for studying the AC-properties of PbI<sub>2</sub> single crystals grown by the Bridgman-Stockbarger technique has been embarked on by (Matuchova *et al.*, 2009b; Hassan and Jafar, 2006; Jafar *et al.*, 2009) to investigate the effect of various *in situ* growth and post-growth experimental factors on some of their AC parameters in an attempt to elucidate the actual conduction and dispersion mechanisms operating in these layered structure crystals. No serious effort has been yet made to relate the dielectric behaviour to the polytype form of PbI<sub>2</sub> single crystals, an issue that is still ambiguous and controversial.

In this work, we present some preliminary experimental results of the 1 kHz and room-temperature parallel-mode capacitance  $C_p$  of typical undoped 2H-polytype  $PbI_2$  single crystals that were in prior being subjected to a prolonged post-growth isothermal annealing at various temperatures in the range  $T_a = 20-94^{\circ}C$ . Low-frequency capacitance measurements could give a clue on the occurrence of thermally-induced polytypic phase transformation in  $PbI_2$  single crystals. The obtained dielectric data are compared with experimental dielectric results of other workers and discussed in view of theoretical dielectric functions models (Adolph *et al.*, 1997; Ahuja *et al.*, 2002).

#### MATERIALS AND METHODS

The lead iodide single crystals investigated in this work were grown by a vertical Bridgman-Stockbarger technique from undoped polycrystalline PbI<sub>2</sub> ingot synthesized with 10% excess of iodine which has been prepared and purified using the Matuchova preparation procedure (Matuchova *et al.*, 2005, 2006, 2009a, b, 2010). According to this method, the starting PbI<sub>2</sub> ingot material was prepared by a 20-days long direct synthesis at 700°C of 6 N lead and 3 N iodine (10% excess). The obtained

starting ingot was then subjected to multi-pass purification runs using a horizontal zone-melting (ZM) apparatus. The X-ray diffraction (XRD) studies made on such undoped PbI<sub>2</sub> single crystals revealed a hexagonal 2 H-polytype structural modification.

Thin slices (1 mm thick) were carefully cleaved (by a sharp razor blade) from typical specimens of these PbI<sub>2</sub> single crystals, with the crystal c-axis being perpendicular to the surfaces of these slices. No chemical etching of these slices were attempted in order to reduce the possibility of forming spurious surface structural faults and defects. Then, two metal contacts were applied symmetrically on the opposite sides of such crystalline PbI<sub>2</sub> slices using conductive silver paste.

The room-temperature resistivity of typical samples of these undoped  $PbI_2$  single crystals is somewhat high (>10°  $\Omega$ ). The parallel-mode capacitance  $C_p$  of some of these highly-resistive crystalline  $PbI_2$  slices has been measured when the applied electric field is parallel to the crystal c-axis, symbolized as (E|c-axis), using an Agilent LCR meter (model HP 4263B) for an AC-signal of 1 kHz frequency.

The AC-measurements were made at room temperature on both as-grown and previously isothermally-annealed  $PbI_2$  crystalline slices for various annealing temperatures in the range 20-94°C. The measured  $C_p$ -values were then used to determine the values of the real part (dielectric constant)  $\epsilon_1$  of the complex relative permittivity,  $\epsilon$  (j $\omega$ ) =  $\epsilon_1$  ( $\omega$ ) + j  $\epsilon_2$  ( $\omega$ ), of the samples studied. The effective dielectric constant of the samples was calculated from the measured  $C_p$ -values using the simple relation  $\epsilon_1 = C_p/C_0$ , where  $C_0$  is the geometrical (space) capacitance between the electrical electrodes of the sample.

## RESULTS AND DISCUSSION

Table 1 depicts the calculated values of the room-temperature dielectric constant of a typical  $PbI_2$  single crystal for various isothermal annealing temperatures. The measured room-temperature 1 kHz dielectric constant  $\epsilon_1$  (E||c-axis) of these undoped crystalline  $PbI_2$  samples grown by the Bridgman-Stockbarger technique are significantly small at high annealing temperatures.

Table 1: Values of  $\epsilon_1$  ( $\epsilon_1$  ( $\epsilon_2$ ) measured at 300 K and 1 kHz for as-grown undoped 2H-polytype PbI<sub>2</sub> single crystals isothermally annealed at various temperatures.

| various temperatures       |                                  |
|----------------------------|----------------------------------|
| Annealing temperature (°C) | Dielectric constant $\epsilon_1$ |
| 20                         | 14.0                             |
| 75                         | 10.0                             |
| 87                         | 8.0                              |
| 94                         | 6.5                              |

The room-temperature  $\varepsilon_1$ -values given in Table 1 are fairly comparable to those reported by Salje *et al.* (1987) at 1 kHz for their gel-grown PbI<sub>2</sub> crystals (of an initial 2H-polytype structure) that were subjected to prolonged thermal annealing at similar temperatures. However, these findings are not in good consistent with the 1 kHz values of  $\varepsilon_1$  reported for PbI<sub>2</sub> single crystals grown by a hydrogel growth method (Dugan and Henisch, 1967) or melt-grown PbI<sub>2</sub> single crystals (Yadav *et al.*, 1980), which were not thermally annealed in prior to measurements, but were heated up to elevated temperatures (T<270°C) while taking the data.

The discrepancies in the reported  $\epsilon_1$ -values of PbI<sub>2</sub> are likely to arise in part from the nature and purity of the studied crystals, from their perfection and stoichiometry, or from their different structural polytypic modifications, a cause that is not readily affordable to confirm for certain. This may explain why the reported behaviour and changes in the electric and dielectric properties of PbI<sub>2</sub> single crystals under different working conditions were mainly attributed to the presence of impurities, imperfections and native defects in these crystals.

No attempt has been hitherto made to correlate the diminishing trend of the dielectric constant of PbI₂ single crystals upon increasing the thermal annealing (or the ambient) temperature with an interpolytypic phase transformation among its polytype modifications. The reversible first-order polytypic 2H≒12R phase transition took place when the gel-grown PbI₂ single crystals of Salje *et al.* (1987) were thermally annealed to 94°C has not been assigned to the behaviour of their dielectric constant and loss with annealing temperature.

The samples studied in the present work are undoped PbI<sub>2</sub> single crystals having an initial 2H-polytype structure that were produced using the normal Bridgman-Stockbarger slow-growth freezing method from a synthesized PbI2 ingot subjected to several prolonged multi-passes in the horizontal ZM-apparatus. The zonemelting procedure would enhance the purification of and reduce the amount of faults and imperfections in the fabricated polycrystalline ingot material, at least over a reasonably large part of the ampoule. We thus believe that the notable monotonic decrease of the measured room-temperature 1 kHz dielectric constant of these undoped PbI<sub>2</sub> crystalline samples with increasing isothermal annealing temperature could be related to a change in the layer-stacking structure of their original 2Hpolytype and a first-order reversible polytypic 2H-12R phase transition had been took place for T<sub>a</sub> = 94°C. Thermal annealing of PbI2 single crystals at higher annealing temperatures (T<sub>a</sub> <200°C), lattice disorder and additional faults are often created in the crystals and/or structural phase transformations to other polytype modifications are likely to take place in them (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii *et al.*, 1980; Konings *et al.*, 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje *et al.*, 1987; Palosz *et al.*, 1990).

Nonetheless, the effect of reducing the amount of structural native defects and imperfections in our undoped  $PbI_2$  single crystals upon prolonged isothermal annealing at temperatures below  $100^{\circ}C$  and thus a diminution of the space-charge polarization effects in these crystals cannot be wholly ruled out as a cause for the observed decrease of their dielectric constant upon thermal annealing.

A rigid confirmation of the aforesaid arguments require much more detailed and systematic investigations of the dielectric and optical properties of a variety of asgrown and thermally annealed undoped and doped PbI<sub>2</sub> single crystals.

The experimental values of the room-temperature  $1 \text{ kHz } \epsilon_1 \text{ (E} \| \text{c-axis)}$  of the undoped crystalline  $\text{PbI}_2$  specimens of this work that were thermally annealed for sufficiently long time at fixed temperatures lying between  $87\text{-}94^{\circ}\text{C}$  compare well with the values of  $\epsilon_1 \text{ (E} \| \text{c-axis)}$  determined from the long-wavelength ellipsometric data at room temperature reported by other workers (Ahuja *et al.*, 2002) for Bridgman-Stockbarger grown  $\text{PbI}_2$  single crystals (polytype form was not specified).

frequency-(energy-) dependent dielectric functions of crystalline samples are usually evaluated numerically by making use of a variety of rigorous theoretical models (Adolph et al., 1997; Ahuja et al., 2002). This can be useful for elucidating the type of structural polytypic modifications in a layered crystalline material as the features of the energy dependence of the dielectric functions remarkably reflect the energy band structure of the crystal that is dependent on the actual polytype structure underlying its direct lattice and on its perfection and purity. Numerical calculations based on these theoretical models are then compared with the pseudodielectric function data, which can be deduced from ellipsometric spectroscopy or transmission and reflectivity measurements over a broad spectral range from the ultraviolet (UV) region through the visible spectrum to deep intermediate infrared (IR) region (Dugan and Henisch, 1967; Blonskii et al., 1980; Adolph et al., 1997; Ahuja et al., 2002), as illustrated, for instance, in Fig. 1a and b, reproduced from the work of Ahuja et al. (2002).

Some of the important trends with the crystal structure in the theoretically calculated spectra of the real parts of the dielectric function tensor could be inferred by

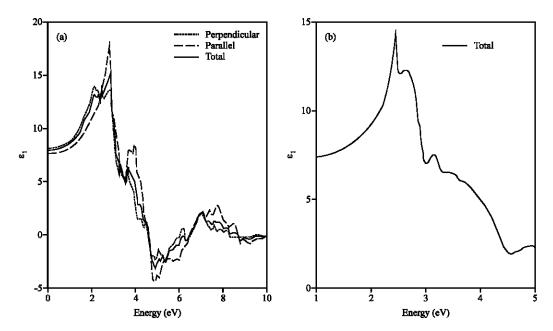



Fig. 1: (a) Photon-energy dependence of the calculated real parts of the dielectric function of a PbI<sub>2</sub> single crystal for different polarization directions of the electromagnetic field relative to the crystal c-axis. (b) Typical experimental ellipsometric data for the total real part of the pseudodielectric function. Both curves are reproduced from Ahuja et al. (2002)

discussing its low-frequency limit (i.e., the longwavelength spectral region) or the dielectric constants  $\epsilon_{_{\! 1}}(E\|c\text{-axis})$  and  $\epsilon_{_{\! 1}}(E\bot c\text{-axis})$  in the low-frequency region (i.e., for  $\omega \rightarrow 0$ ) with the measured dielectric data obtained from normal dielectric (impedance) spectroscopy measurements. In case of crystalline PbI<sub>2</sub>, the differences between the values of the measured  $\varepsilon_i(E\|c\text{-axis})$  and  $\varepsilon_{1}(E_{\perp}c$ -axis) for both photon polarization directions relative to the crystal c-axis appear to be insignificant in the long-wavelength spectral region (Dugan Henisch, 1967; Ahuja et al., 2002). It can be noted that the room-temperature 1 kHz values of  $\varepsilon_1(E||c-axis)$  of our samples are also compatible with the long-wavelength findings of  $\varepsilon_1(\mathbb{E}\|c\text{-axis})$  or  $\varepsilon_1(\mathbb{E}\perp c\text{-axis})$  calculated using the so-called full-potential linear muffin-tin orbital (FPLMTO) method with spin-orbit coupling being taken into account (Ahuja et al., 2002).

# **CONCLUSIONS**

We have suggested that the notable decrease of the experimental room-temperature 1 kHz dielectric constant  $\epsilon_1$  of the as-grown 2H-polytype undoped PbI<sub>2</sub> single crystals of this work with increasing isothermal annealing temperature  $T_a$  can be taken as an evidence for a trend towards a reversible 2H=12R phase transition at  $T_a \sim 94^{\circ}\text{C}$ , a polytype structure transformation which has been

alleged to occur in gel-grown  $PbI_2$  single crystals in the vicinity of this annealing temperature (Salje *et al.*, 1987). The room-temperature 1 kHz  $\epsilon_1$  value of our undoped crystalline  $PbI_2$  samples isothermal annealed at  $T_a \sim 94^{\circ}C$  compares well with the measured and calculated long-wavelength values of  $\epsilon_1$  of  $PbI_2$  single crystals of other workers at room temperature (Ahuja *et al.*, 2002).

Normal dielectric (impedance) spectroscopy could be useful in revealing the polytype phase of PbI<sub>2</sub> single crystals grown under different growth conditions and/or to elucidate possible polytypic transformation among its basic 2H, 4H and 12R polytype modifications, which may be induced upon long-period storage, by photon irradiation, or by prolonged isothermal annealing at temperatures below 150°C (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii *et al.*, 1980; Konings *et al.*, 1995; Palosz, 1983; Rao and Srivastava, 1978; Salje *et al.*, 1987; Palosz *et al.*, 1990; Bibik *et al.*, 1985).

Dielectric and impedance measurements are normally feasible to make and may prove to be viable to achieve this purpose compared with other lengthy and dedicated techniques (Zallen and Slade, 1975; Jain and Trigunayat, 1996; Choudhary and Trigunayat, 1989; Blonskii *et al.*, 1980; Konings *et al.*, 1995; Salje *et al.*, 1987; Palosz *et al.*, 1990; Bibik *et al.*, 1985). The viability of the proposed dielectric approach for studying polytypic modifications

f a crystalline sample stems from the fact that the behavior trend of its dielectric functions spectra reflects the integral details of its energy band structure and the underlying crystal lattice. Another privilege of this approach is that one can test its applicability by comparing the measured low-frequency dielectric constant and loss of the crystalline sample with the long-wavelength optical dielectric functions data and with the corresponding numerical values deduced from proper dielectric functions models.

Further detailed dielectric and optical studies are thus required to explore the effect of different external agents on the polytypism phenomenon and possible polytypic phase transformations in  $PbI_2$  single crystals fabricated by the Bridgman-Stockbarger growth method from  $PbI_2$  ingots synthesized under a variety of preparation conditions.

#### ACKNOWLEDGMENTS

The authors would like to thank the Princess Sumaya University and University of Jordan for financial support.

#### REFERENCES

- Adolph, B., K. Tenelsen, V.I. Gavrilenko and F. Bechstedt, 1997. Optical and loss spectra of SiC polytypes from ab initio calculations. Phys. Rev. B, 55: 1422-1429.
- Ahuja, R., H. Arwin, A.F. Silva, C. Persson and J.M. Osorio-Guillen *et al.*, 2002. Electronic and optical properties of lead iodide. J. Applied Phys., 92: 7219-7224.
- Bibik, V.A., I.B. Blonskii, M.S. Brodin and N.A. Davydova, 1985. Structural phase transition in layer semiconductor PbI<sub>2</sub> induced by laser irradiation. Phys. Status Solidi A, 90: K11-K14.
- Blonskii, I.B., L.V. Mizrukhin and V.V. Tishenko, 1980. Investigation of first-order transition in the layer semiconductor PbI<sub>2</sub> by the exciton spectroscopic method. Phys. Status Solidi A, 57: K113-K117.
- Choudhary, S.K. and G.C. Trigunayat, 1989. Phase transitions in melt-grown PbI<sub>2</sub> crystals. Phase Transitions, 16: 425-430.
- Deich, V. and M. Roth, 1996. Improved performance lead iodide nuclear radiation detectors. Nucl. Instruments Methods Phys. Res. Sect. A, 380: 169-172.
- Dugan, A.E. and H.K. Henisch, 1967. Dielectric properties and index of refraction of lead iodide single crystals. J. Phys. Chem. Solids, 28: 971-976.
- Hassan, M.A. and M.M. Abdul-Gader Jafar, 2006. Frequency dependence of loss tangent of thermally-annealed undoped lead iodide crystals in the dark. Nucl. Instr. Methods Phys. Res. A, 566: 526-535.

- Hayashi, T., M. Kinpara, J.F. Wang, K. Mimura and M. Isshiki, 2008. Growth of PbI<sub>2</sub> single crystals from stoichiometric and Pb excess melts. J. Cryst. Growth, 310: 47-50.
- He, Y., S. Zhu, B. Zhao, Y. Jin, Z. He and B. Chen, 2007. Improved growth of PbI<sub>2</sub> single crystals. J. Cryst. Growth, 300: 448-451.
- Hermon, H., R.B. James, J. Lund, E. Cross and A. Antolak *et al.*, 1998. Lead iodide X-ray and Gamma ray spectrometers for room and high temperature operation. Mater. Res. Soc. Symp. Proc., 487: 361-368.
- Jafar, M.M.A.G., M.A. Hassan, I.F. Al-Hamarneh and M. Matuchova, 2009. AC-Impedance of an undoped lead iodide single crystal prepared from polycrystalline ingot synthesized with 10% excess of iodine. Proceedings of the 8th International Conference on Advanced Applications of Electrical Engineering, April 30-May 2, Houston, USA., pp: 98-102.
- Jain, A. and G.C. Trigunayat, 1996. Growth and polytype transformation of AgI-doped and undoped PbI<sub>2</sub> crystals. Acta Crystallographica, Sec. A, 52: 590-595.
- Konings, R.J.M., E.H.P. Cordfunke and R.R. van der Laan, 1995. Enthalpy increment measurements of PbI<sub>2</sub>: Evidence for a reversible polytypic transition. J. Alloys Compounds, 230: 85-88.
- Matuchova, M., O. Prochazkova, J. Maixner, K. Zdansky and J. Zavadil, 2005. Influence of rare earth holmium on the properties of lead iodide. Phys. Status Solidi C, 2: 1275-1279.
- Matuchova, M., K. Zdansky, J. Zavadil, J. Maixner, D. Alexiev and O. Prochazkova, 2006. Study of lead iodide semiconductor crystals doped with silver. Mater. Sci. Semicond. Processing, 9: 394-398.
- Matuchova, M., K. Zdansky and J. Zavadil, 2009a. Lead iodide crystals prepared under stoichiometric and nonstoichiometric conditions. Mater. Sci. Eng. B, 165: 60-63.
- Matuchova, M., K. Zdansky, J. Zavadil, A. Danilewsky and F. Riesz *et al.*, 2009b. Study of the influence of the rare-earth elements on the properties of lead iodide. J. Cryst. Growth, 311: 3557-3562.
- Matuchova, M., K. Zdansky, J. Zavadil, J. Tonn and M.M. Abdul-Gader Jafar et al., 2010. Influence of doping and non-stoichiometry on the quality of lead iodide for use in X-ray detection. J. Crystal Growth, 312: 1233-1239.
- Palosz, B., 1983. Reasons for polytypism of crystals of the type MX<sub>2</sub> II. Clasification of faults and structural series of polytypes; Conditions of polytypic growth of CdI<sub>2</sub>, PbI<sub>2</sub>, CdBr<sub>2</sub>, SnS<sub>2</sub>, SnSe<sub>2</sub> and Ti<sub>1.2</sub>S<sub>2</sub>. Physica Status Solidi A, 80: 11-41.
- Palosz, B., W. Steurer and H. Schulz, 1990. The structure of PbI<sub>2</sub> polytypes 2H and 4H: A study of the 2H-4H transition. J. Phys. Condens. Matter., 2: 5285-5295.

- Rao, M. and O.N. Srivastava, 1978. Phase transformation and electrical behaviour of lead iodide polytypes. J. Phys. D: Appl. Phys., 11: 919-926.
- Raw, A.S., M.S. Furness, D.S. Gill, R.C. Adams, F.O. Holcombe Jr. and L.X. Yu, 2004. Regulatory considerations of pharmaceutical solid polymorphism in Abbreviated New Drug Applications (ANDAs). Adv. Drug Delivery Rev., 56: 397-414.
- Saddow, S.E. and A. Agarwal, 2004. Advances in Silicon Carbide Processing and Applications (Semiconductor Materials and Device Series). Artech House Inc., London, ISBN-13: 978-1580537407.
- Salje, E., B. Palosz and B. Wruck, 1987. *In situ* observation of the polytypic phase transition 2H-12R in PbI<sub>2</sub>: Investigations of the thermodynamic, structural and dielectric properties. J. Phys. C: Solid State Phys., 20: 4077-4096.
- Shah, K.S., P. Bennett, M. Klugerman, L. Moy and L. Cirignano *et al.*, 1997. Lead iodide optical detectors for gamma ray spectroscopy. IEEE Trans. Nucl. Sci., 44: 448-450.

- Shah, M.A. and M.A. Wahab, 2000. Growth rate and symmetry of polytypes in MX<sub>2</sub>-compounds. J. Mater. Sci. Lett., 19: 1813-1816.
- Shoji, T., K. Hitomi, T. Tiba, T. Suehiro and Y. Hiratate, 1998. Fabrication of a nuclear radiation detector using the PbI<sub>2</sub> crystal and its response characteristics for Gamma-rays. IEEE Trans. Nucl. Sci., 45: 581-584.
- Yadav, D.P., K.V. Rao and H.N. Acharya, 1980. Dielectric properties of PbI<sub>2</sub> single crystals. Phys. Status Solidi A, 60: 273-276.
- Zallen, R. and M.L. Slade, 1975. Inter-polytype conversion and layer-layer coupling in PbI<sub>2</sub>. Solid State Commun., 17: 1561-1566.